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Introduction
Colorectal cancer (CRC) is the third most com-
mon cancer and second most common cause of 
cancer deaths worldwide.1 Colonoscopy reduces 
the risk of CRC through detection and resection 
of pre-cancerous lesions such as adenomas.2 The 
ability to detect adenomas during colonoscopy 
(ADR) is greatly operator dependent, with stud-
ies reporting a wide ADR range of 7% to 53% 
among different endoscopists.3 Failure to detect 
and remove neoplastic lesions is associated with 
the development of interval CRC, which accounts 
for nearly 10% of all diagnosed CRC.4 In addi-
tion, most of the detected polyps during colonos-
copy are diminutive in size (1–5 mm), with a 

negligible risk of progression to cancer.5 
Unnecessary resection and pathology evaluation 
of these non-neoplastic lesions are associated with 
increased costs and adverse events. The American 
Society for Gastrointestinal Endoscopy (ASGE) 
has published a Preservation and Incorporation 
of Valuable endoscopic Innovations (PIVI) state-
ment for optical biopsy of diminutive polyps. The 
“resect and discard” paradigm is recommended 
when the optical biopsy provides 90% agreement 
with histologic assessment for post-polypectomy 
surveillance intervals, and the “diagnose and 
leave” strategy is recommended for hyperplastic 
polyps when the negative predictive value (NPV) 
for diminutive rectosigmoid adenomas is 90% or 
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more.6 However, the performance of endoscopists’ 
optical biopsy has not consistently reached these 
thresholds in community practice.

To overcome these challenges, artificial intelli-
gence (AI) has been introduced to the field of 
endoscopy. AI-assisted computer-aided detection 
(CADe) and diagnosis (CADx) systems, espe-
cially deep-learning techniques, are promising 
options to improve detection and optical biopsy 
and decrease human variation through the ability 
to process high-dimensional endoscopic data and 
to self-identify trainable parameters not appreci-
able to humans. The application of computer-
aided design (CAD) on real-time colonoscopy 
has been shown to increase the ADR, reduce the 
withdrawal time, improve endoscopists’ optical 
biopsy, while reducing the time to make a diagno-
sis. Yet, issues such as real-world applications 
and regulatory approval need to be addressed 
before AI models can be successfully imple-
mented in clinical practice. In this review, we 
summarize the recent literature on the application 
of AI for detection and characterization of colo-
rectal polyps, and review the clinical implementa-
tion, current limitation of existing AI technologies, 
and future directions for this field.

AI for detection of colorectal polyps (CADe)
Table 1 summarizes the important studies on 
CADe for detection of colorectal polyps.

The initial CADe systems were reported in the 
early 2000s.7,8,24 These systems were designed 
with a handcrafted algorithm, based on certain 
polyp features, and provided accuracy more than 
90%. Several other groups designed and evalu-
ated different handcrafted CADe solutions, using 
small numbers of static images. While these sys-
tems typically showed high accuracy on carefully 
chosen data sets, they were limited in real-world 
application due to low sensitivity, high false-posi-
tive rates, and long processing time. More 
recently, deep-learning algorithms such as convo-
lutional neural networks (CNNs) have been uti-
lized for the development of CADe systems, 
enabling the continuous recognition of abnormal 
lesions without the need for external input. Using 
50 polyp and 85 non-polyp videos, Misawa and 
colleagues11 developed a three-dimensional 
CNN-based CADe with a sensitivity and specific-
ity of 90% and 63%, respectively. Urban and col-
leagues reported the first real-time application of 
CNN-based CADe, trained on more than 8,000 

images from 2,000 patients. Their CADe showed 
97% sensitivity, 95% specificity, and 96% accu-
racy for detection of colorectal polyps, which was 
superior to the performance of the endoscopist 
(45% vs 36%). The unique feature of this study 
was that of the 73 polyps missed by endoscopist, 
67 were detected by CADe, with a false-positive 
rate of 5%.12 Klare and colleagues prospectively 
studied CADe during live colonoscopy performed 
by a trained endoscopist while a second observer 
monitored the CADe output. The system ana-
lyzed with an average delay of only 50 ms and 
achieved a polyp detection rate (PDR) of 51% 
and ADR of 29%, comparable to the endoscopist’s 
PDR of 56% and ADR of 31%. The first com-
mercially available CADe (GI-Genius, 
Medtronic) was recently studied in a retrospec-
tive validation trial which showed an excellent 
performance with a per-lesion sensitivity rate of 
99.7%.15

To date, eight randomized controlled trials 
(RCTs) have compared CADe to standard colo-
noscopy, all demonstrating a significantly higher 
ADR by CADe. Wang and colleagues reported 
the first RCT (non-blinded) on 1,058 patients 
(536 with CADe, 522 without CADe) and 
reported a significantly higher ADR (29.1% vs 
20.3%, p < 0.001) and increased number of ade-
nomas per patient (0.53 vs 0.31) in the CADe 
group. However, the increased ADR was limited 
to an increase in detection of diminutive adeno-
mas, and there was no difference in detection of 
polyps more than 10 mm between the two groups. 
Moreover, a higher proportion of polyps detected 
by CADe were hyperplastic (43.6% vs 34.9%) 
and there was no difference in the proportion of 
detected advanced adenomas or sessile serrated 
lesions (SSL) between the two groups.17 The same 
authors performed a double-blind RCT using 
sham-AI and showed significantly greater ADR in 
the CADe than the sham group (34% vs 28%, 
p = 0.03).18 Su and colleagues designed a CADe 
that was able to evaluate the quality of bowel  
preparation and measure the withdrawal time. In 
their study, 308 and 315 patients were analyzed in 
the CADe and control groups. The CADe group 
had a significantly higher ADR (29% vs 17%, 
p < 0.001) with prolonged exposure time (7.0 vs 
5.6 min, p < 0.001) and adequate bowel prepara-
tion.22 Liu and colleagues21 conducted an RCT on 
1,026 patients and found that the CADe group 
had a significantly higher ADR (39% vs 24%, 
p < 0.001). Repici and colleagues conducted a 
multicenter RCT for the GI Genius CADe system 
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on 685 patients and identified a significantly 
higher ADR in the CADe group (54.8% vs 
40.4%). It is important to note that this study 
showed higher ADR for both diminutive (33.7% 
vs 26.5%) and small (6–9 mm) size adenomas 
(10.6% vs 5.8%) which was irrespective of the 
polyp shape or location. Another unique feature of 
this study was its high baseline ADR, as opposed 
to the aforementioned studies.20 Gong and col-
leagues developed a CADe with the ability to rec-
ognize cecal intubation. In addition to showing a 
significantly higher ADR in the CADe group 
(16% vs 8%, p = 0.001), they demonstrated a sig-
nificantly higher detection rate for advanced pol-
yps as well (3% vs 1%).19 Wang and colleagues 
conducted the first randomized tandem trial com-
paring CADe with standard colonoscopy. The 
adenoma miss rate was significantly lower in the 
CADe group (13.8% vs 40.0%, p < 0.001) and 
was significant for diminutive (39.6% vs 13.1%, 
p < 0.001), and small polyps (46.9% vs 13.7%, 
p < 0.0001), but not for the polyps bigger than 10 
mm in size (15.3% vs 33.3%).23 They further 
evaluated the miss rate among visible polyps 
(exposed but not recognized by endoscopists) and 
invisible (not exposed) and reported that CADe 
rarely misses that polyp if the mucosa is exposed 
by the operator (visible in the CADe: adenoma 
miss rate 1.5%, polyp miss rate 2.3%). Regarding 
sessile serrated polyps, serrated miss rate was 
found not to be significantly different between the 
two groups.

AI for characterization of colorectal polyps 
(CADx)
Table 2 summarizes the studies on CADx for 
characterization of colorectal polyps.

CADx for digital image-enhanced endoscopy
Narrow band imaging (NBI; Olympus Corp., 
Tokyo, Japan)–based CADx systems are the most 
extensively studied modality to date. The initial 
CADx systems utilized a support vector machine 
(SVM) and were made for magnifying NBI, which 
limited the widespread use of these systems in clin-
ical practice.25,26,28 Recent integration of CNN 
with CADx has resulted in systems with higher 
diagnostic accuracy and faster processing 
times.31,40,41 Using standard non-magnified NBI, 
Chen and colleagues31 developed a CNN-based 
CADx that had sensitivity, specificity, positive pre-
dictive value (PPV), NPV, and accuracy of 96.3%, 

78.1%, 89.6%, 91.5%, and 91%, respectively. 
Byrne and colleagues developed the first CADx 
that reached the ASGE optical biopsy thresholds in 
real-time clinical practice.34 Using standard NBI, 
they trained the CADx with 223 polyp videos 
(60,089 frames) and tested their system on 125 
diminutive polyp videos, of which credibility score 
did not reach more than 50% for 19 polyps. Of the 
remaining 106 polyp videos, the sensitivity, speci-
ficity, PPV, NPV, and accuracy for identifying 
diminutive adenomas and hyperplastic polyps were 
98%, 83%, 90%, 97%, and 94%, respectively. 
Zachariah and colleagues37 designed a CNN-based 
CADx with both white-light imaging (WLI) and 
NBI that exceeded the ASGE PIVI thresholds with 
NPV and accuracy of 93% and 94%, respectively. 
This study resulted in accurate automatic classifi-
cation of diminutive polyps, irrespective of 
endoscopists’ experience and NBI usage, which 
could potentially be a positive factor for the com-
munity endoscopists. Using both NBI and blue 
light imaging (BLI), Zorron Cheng Tao Pu devel-
oped a CADx based on the modified Sano (MS) 
classification and validated it with two internal and 
external polyp image data sets.39,42 The CADx had 
a mean area under the curve (AUC) of 94.3% for 
the internal set, and 84.5% and 90.3% for the 
external sets (NBI and BLI, respectively). A unique 
feature of this study was to show an equal highly 
accurate CADx prediction across two different 
imaging technologies (NBI and BLI), suggesting 
the potential to have a CADx trained and used with 
two different technologies, even when the predicted 
endoscopy imaging technology is not part of the 
training set. Moreover, the CADx AUC was com-
parable with experts and similar with both NBI and 
BLI. Song and colleagues developed and compared 
their CNN-based CADx model with both trainees 
and NBI expert endoscopists. The CADx system 
had a significantly higher diagnostic accuracy 
(81%–82%) compared with the trainees (63.8%–
71.8%, p < 0.01), and comparable to the experts 
(82.4%–87.3%, p = 0.72).35 Importantly, the 
addition of CADx as a support tool resulted in sig-
nificant improvement in trainees’ diagnostic accu-
racy (63.8%–72% vs 82.7%–84.2%, p < 0.001). 
Similar results were also noted by Jin and col-
leagues, who showed that the addition of CADx as 
a support tool resulted in improvement of 
endoscopists’ diagnostic accuracy (82.5% to 
88.5%, p < 0.05). The greatest improvement was 
noted in novice endoscopists (73.8% to 85.6%, 
p < 0.05), almost reaching the accuracy of experts 
(89.0%, p = 0.10).38
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CADx for chromoendoscopy
There are a few older studies on CADx for chro-
moendoscopy. Takemura and colleagues devel-
oped a software that enabled computer-aided 
prediction of pit pattern by extracting six features 
(e.g. area, perimeter, circularity) from crystal vio-
let–stained images. Their CADx performed sur-
prisingly well, with 98.5% accuracy.27 Pit pattern 
classification requires crystal violet staining by 
endoscopist, and the depth of color depends on 
how much dye is sprayed. Therefore, it is difficult 
to obtain uniform image quality and as a result, to 
obtain robust CADx for chromoendoscopy.

CADx for white-light imaging
Studies on CADx for WLI have failed to report 
high diagnostic accuracy, likely because optical 
diagnosis using WLI is usually less informative than 
by NBI or chromoendoscopy. Komeda and col-
leagues developed a WLI-based CADx model with 
a reported diagnostic accuracy rate of only 75.1%. 
Sánchez-Montes WLI-based CADx reached 
95.0% sensitivity, 87.9% specificity, 82.6% PPV, 
96.7% NPV, and 91.1% accuracy for differentiat-
ing diminutive rectosigmoid adenomas.33,30

CADx for endocytoscopy
Endocytoscopy (H290ECI, Olympus, Tokyo, 
Japan) is a novel in vivo microscopic imaging tech-
nique that allows real-time visualization of cellular 
and microvascular patterns of colorectal polyps.43 
Endocytoscopy is considered ideal for pairing with 
CAD systems because it consistently provides 
focused, fixed-size images, thus facilitating easier 
image analysis. In 2015, Mori and colleagues 
developed a CAD system which used stained fea-
ture extraction to predict neoplastic polyps in  
152 patients. Polyps less than 10 mm were ana-
lyzed in real-time and the system was able to 
achieve a sensitivity of 92.0% and specificity of 
79.5%, with an accuracy of 89.2% for identifying 
neoplastic changes, comparable to those of expert 
endoscopists.44 In a prospective trial on 791 
patients and 466 diminutive rectosigmoid polyps, 
the NPV was 93.7%, reaching the performance 
level required for the ASGE diagnose-and-leave 
strategy.32 Misawa and colleagues29 developed an 
NBI-based CADx for endocytoscopy that achieved 
more impressive results with overall sensitivity of 
84.5%, specificity of 97.6%, and accuracy  
of 90.0% using the existing training images.  
When the resulting probability of diagnosis was 
greater than 90%, the result was considered a 

“high-confidence” diagnosis. These diagnoses 
carried an overall sensitivity of 97.6%, specificity 
of 95.8%, and accuracy of 96.9%, surpassing the 
proposed cutoffs for the diagnose-and-leave strat-
egy.29 In a retrospective comparison of 30 
endoscopists (trainee and expert) of both stained 
endocytoscopy and NBI images versus endocytos-
copy, endocytoscopy identified colon lesions with 
96.9% sensitivity, 100% specificity, 98% accuracy, 
100% PPV, and 94.6% NPV, which were all sig-
nificantly greater than those of the endoscopy 
trainees and experts. For NBI, endocytoscopy dis-
tinguished neoplastic from non-neoplastic lesions 
with 96.9% sensitivity, 94.3%, 96.0% accuracy, 
96.9% PPV, and a 94.3% NPV, all significantly 
higher than those of the endoscopy trainees. 
Sensitivity and NPV were significantly higher, but 
the other values are comparable to those of the 
experts.36 A recent cost-effectiveness analysis on 
the use of AI for implementing the diagnose-and-
leave strategy showed that through AI, 145 rec-
tosigmoid diminutive polyps were not resected, 
which suggested that one could reduce the average 
colonoscopy cost and the gross annual reimburse-
ment for colonoscopies by 18.9% and US$149.2 
million in Japan, 6.9% and US$12.3 million in 
England, 7.6% and US$1.1 million in Norway, 
and 10.9% and US$85.2 million in the United 
States, respectively.45 However, endocytoscopy is 
not widely used in clinical practice. Given its cost-
efficient potential, more attention should be paid 
toward regulation, accessibility, and effective 
implementation of this powerful technology.

Full workflow systems (CADe + CADx)
To enhance the integration of CAD systems into 
clinical practice, full workflow systems with the 
ability to perform both polyp detection and char-
acterization have been developed. Mori and col-
leagues17 designed a novel CAD that included 
two algorithm, a deep learning–based CAD for 
polyp detection with WLI, and an algorithm for 
optical biopsy by endocytoscopic images. Guizard 
and colleagues46 developed a full work flow sys-
tem using both WL and NBI, which was also able 
to tag polyps with unique identifiers that could be 
tracked throughout the procedure. Ozawa and 
colleagues designed a CNN-based CAD for both 
WLI and NBI, using a single-shot MultiBox 
detector that could detect and characterize a tar-
get object simultaneously. For WLI, the sensitiv-
ity and PPV were 90% and 83%, and for NBI, the 
sensitivity and PPV were 97% and 98%, respec-
tively. Among those lesions that were accurately 
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identified as polyps, 83% were correctly classified 
through images and 97% of adenomas were pre-
cisely identified under the WLI.17

Limitations and future directions
While AI technologies have shown impressive 
results for detection and histologic prediction of 
colorectal polyps, there are still several points that 
need to be addressed before the use of CAD can be 
implemented in routine clinical practice. To 
improve the reliability and minimize bias, the per-
formance of CAD systems should be evaluated in 
prospective RCTs, conducted in both community 
and academic centers, and among endoscopists 
with different levels of experience. The preferred 
study endpoint would be those of ASGE PIVI 
strategies, for example, the design of the CAD 
models should use widely available technology 
(such as standard NBI), with the ability to process 
raw videos taken during real-time colonoscopy. 
Moreover, training should be performed with a 
large number of standardized high-quality data 
sets, and testing should be done with several data 
sets and diverse contents. Recently, Misawa and 
colleagues launched a publicly accessible colonos-
copy video database (SUN-database) that contains 
49,799 polyp frames annotated with bounding 
boxes and 102,761 frames without polyps, making 
a total of 152,560 frames.47 It is important to note 
that the pathology is not always the gold standard 
for diagnosis, especially regarding the ⩽3 mm 
colorectal lesions. In a recent study on 644 colon 
polyps ⩽3 mm in size, there was a 28.9% (13.2% 
HPs, 0.3% SSLs, and 15.4% normal mucosa; 
respectively) discrepancy between expert endo-
scopic and histologic opinion, of which 15.4% 
were diagnosed as normal by the pathologist. 
Following a blinded optical evaluation by two 
expert endoscopists, agreement with the endo-
scopic diagnosis was made in 94% and 100% of 
cases, respectively.48 Based on these data, Shahidi 
and colleagues evaluated the application of AI as 
the arbitration between endoscopist and patholo-
gist when discordant diagnoses occur. They used 
an established real-time AI clinical decision sup-
port solution (CDSS), which agreed with the 
endoscopic diagnosis in 89.6% lesions. In discord-
ant cases, CDSS agreed with the endoscopic diag-
nosis in 90.3% lesions. Interestingly, of those 
lesions identified on pathology as normal mucosa, 
CDSS agreed with the endoscopic diagnosis in 
90.9% of cases.49 In addition to adenomas, the 
CAD designs should also focus on detecting the 
proximal colon lesions, specifically SSLs.

Obtaining regulatory approval is an essential factor 
for using CAD systems in clinical practice. 
Currently, the CAD EYE™ (Fujifilm Corp, 
Tokyo, Japan), DISCOVERY™ (Pentax Corp, 
Tokyo, Japan), Endo-AID (Olympus Corp), and 
GI-Genius (Medtronic Corp, Minneapolis, MN) 
have successfully obtained the regulatory approval, 
which hopefully will open doors for more plat-
forms. Medico-legal issues are important topics to 
be discussed. As AI systems do not always provide 
accurate information, negative results due to the 
use of AI can possibly happen, which could lead to 
medico-legal challenges. We should recognize the 
strengths and weaknesses of AI and avoid over 
relying on the results of AI. However, with wide 
spread of the AI tools in medical fields, we will 
have to reconsider the medico-legal issues in the 
near future.

Summary
In recent years, the application of AI has signifi-
cantly expanded in the field of gastrointestinal 
endoscopy. Multiple studies have shown that 
integration of CAD with colonoscopy can improve 
the endoscopists’ performance in detection and 
characterization of colorectal polyps, which are 
promising steps toward improving and standard-
izing colonoscopy quality and implementing the 
ASGE PIVI paradigm, among others. However, 
the majority of these data are based on small stud-
ies at tertiary care centers, with relatively small 
number of images used for the AI model’s train-
ing set, with possible selection bias and no rand-
omization. There is a substantial need for large, 
multicenter clinical trials to establish the diagnos-
tic accuracy of AI technology in real-time clinical 
practice, which will be an essential step for obtain-
ing regulatory approval and widespread use of AI 
technologies.
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