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The intricate interplay between malignant cells and host cellular and non-cellular
components play crucial role in different stages of tumor development, progression,
and metastases. Tumor and stromal cells communicate to each other through receptors
such as integrins and secretion of signaling molecules like growth factors, cytokines,
chemokines and inflammatory mediators. Chemokines mediated signaling pathways have
emerged as major mechanisms underlying multifaceted roles played by host cells during
tumor progression. In response to tumor stimuli, host cells-derived chemokines further
activates signaling cascades that support the ability of tumor cells to invade surrounding
basement membrane and extra-cellular matrix. The host-derived chemokines act on
endothelial cells to increase their permeability and facilitate tumor cells intravasation and
extravasation. The tumor cells-host neutrophils interaction within the vasculature initiates
chemokines driven recruitment of inflammatory cells that protects circulatory tumor cells
from immune attack. Chemokines secreted by tumor cells and stromal immune and non-
immune cells within the tumor microenvironment enter the circulation and are responsible
for formation of a “pre-metastatic niche” like a “soil” in distant organs whereby circulating
tumor cells “seed’ and colonize, leading to formation of metastatic foci. Given the
importance of host derived chemokines in cancer progression and metastases several
drugs like Mogamulizumab, Plerixafor, Repertaxin among others are part of ongoing
clinical trial which target chemokines and their receptors against cancer pathogenesis. In
this review, we focus on recent advances in understanding the complexity of chemokines
network in tumor microenvironment, with an emphasis on chemokines secreted from host
cells. We especially summarize the role of host-derived chemokines in different stages of
metastases, including invasion, dissemination, migration into the vasculature, and seeding
into the pre-metastatic niche. We finally provide a brief description of prospective drugs
that target chemokines in different clinical trials against cancer.
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INTRODUCTION

One of the key property of cancer cells is the ability to invade the
basementmembrane, intravasate into the peripheral circulation and
colonize in distant organs to establish metastasis nodules, which is
the major cause of cancer related deaths (1, 2). For decades, it was
believed that cancer cells are self-sufficient to achieve uncontrolled
growth and metastases. However, the work done in last few decades
strongly support the notion that tumor growth and metastases is
rather a complicated process supported by variety of other cell types
present in the intimate tumor microenvironment (TME) (3). The
process of metastases can be broadly divided into three phases,
namely dissemination, spread, and seeding at the site of metastases
(4). At the stage of dissemination, tumor cells undergo
transcriptional modifications to induce epithelial-to-mesenchymal
(EMT) phenotypic change, invade the basement membrane and
extracellular matrix (ECM) and intravasate into the vasculature.
Once in the vasculature, circulating tumor cells (CTCs) can
extravasate at the site of metastases. After extravasating at the site
of metastases, CTCs colonize and proliferate to formmetastatic foci.
Now it is established that intricate interplay between the tumor cells
and other cells present in TME participates in all stages of tumor
metastases, including invasion, ECM remodeling, intravasation and
colonization of distant organs (5).

Components of Tumor Microenvironment
A tumor mass is a dynamic 3D structure that includes cellular
and extracellular components creating a unique TME. The
cel lular component of the TME is composed of a
heterogeneous population of stromal cells (5). These stromal
cells are host derived and include innate immune cells, such as
monocytes, macrophages, NK cells; adoptive immune cells,
including T cells and B cells; and non-immune fibroblast,
pericytes, endothelial cells, adipocytes, and mesenchymal
stromal cells (MSCs). In addition, ECM and milieu of secreted
factors are also integral extracellular components of the TME.

Different Mechanisms of Tumor-Stroma
Communication
Reciprocal interaction between tumor cells and other cell types
occurs in different ways, including direct cell-to-cell contact,
secreted molecules and cargo vesicles known as exosomes.
Cancer cells express various cell surface ligands that can
directly interact with membrane receptors present on other cell
types in the vicinity (6). One such class of receptors is the
integrins. Integrins bind cells to the ECM and respond to shear
stress (6, 7). Cancer cells also shed vesicles loaded with nucleic
acids, peptides and metabolites that can fuse with other cells.
Extracellular vesicles play role in angiogenesis (8)
immunosuppression (9), aid in crosstalk of cancer cells with
fibroblasts (10) and development of premetastatic niche (11, 12).
A number of different chemokines such as CCR8, CCL18 in
glioblastoma (13), CCL2, CCL3, CCL4, CCL5, CCL20 in lung
carcinoma have been reported that are packaged and shedded by
chemokines in the TME (14). However, the most extensively
studied mode of cancer cell interactions is through secreted
molecules. The major type of secreted signaling molecules are
Frontiers in Immunology | www.frontiersin.org 2
growth factors, cytokines/chemokines, inflammatory mediators,
and metabolites. Soluble ligands secreted by cancer cells bind to
their cognate cell surface receptors present on stromal cells, or
vice-versa, and activate specific signaling pathways. Cytokines
are small protein (5–20 kDa) involved in activating cell signaling
by binding to specific cell surface receptor and regulate
immunity, inflammation and hematopoiesis. Chemokines are
smaller (8–14 kDa) cytokines that are predominantly involved in
cell chemotaxis and trafficking. Chemokines have broadly been
divided into two subfamilies on the bases of presence (CXC) or
absence (CC) of an amino acid between N terminal first two
cysteine residues (15). In this review we will discuss the role of
chemokines secreted by stromal cells that favor metastases of
cancer cells.

Innate Immune Cells
Innate cells are one of the major type of cells recruited to the TME.
Tumors are known to educate these inflammatory cells to support
tumor growth andmetastases (16). The major type of inflammatory
immune cells in the TME is tumor-associated macrophages
(TAMs) and myeloid-derived suppressor cells (MDSCs) (17–20).
Classically activated macrophages are the first line of immune
defense and are known to clear pathogens from site of infection.
However, tumor educated TAMs are incapable of clearing tumor
cells due to reduced phagocytic activity. Rather than activating
immune response, TAMs suppress immune cells by various
mechanisms, including upregulation of checkpoint molecules,
secreting immune suppressive molecules like IL-10, TGF-b and
prostaglandin-E2 (PGE2) and deviating immune helper cells
maturation towards immune suppressive phenotypes (21–23). In
addition, TAMs provide growth factors to proliferative cancer cells,
secrete ECM degrading enzymes to enhance invasion and escort
cancer cells to the vascular interface (24–26). Another type of innate
immune cell, MDSCs are immature myeloid cells that are highly
immune-suppressive in nature. By metabolizing L-arginine,
MDSCs deprive T-cells of a critical substrate for nitric oxide
production and inhibit their proliferation and activation. The
MDSCs also divert T-cell maturation towards immune
suppressive T regulatory (Tregs) cells (27). The MDSCs have
broadly been divided into Ly6G-positive granulocytic MDSCs
and Ly6C-positive monocytic MDSCs. Monocytic MDSCs
suppress both antigen specific and antigen non-specific T cell
responses using both cytokines and NO to perform these
functions while granulocytic MDSCs inhibit only antigen specific
T cell responses [reviewed by (28, 29)]. Monocytic MDSCs impair
interferon-a production by increasing STAT1 phosphorylation
leading to loss of T cell function and immunosuppression (30).
Granulocytic MDSCs produce ROS and inhibit T cell proliferation
by downregulation of TCRz expression, inhibition of NF-kB
activation, and cell death by induction of apoptosis (29).

Adaptive Immune Cells
Adaptive immune cells can elicit a highly specific immune
response against foreign antigens, including cancer. The major
types of adaptive immune cells include CD4+ T helper cells, CD8+
T effector cells and B cells. CD8+ T cells are key factor in anti-
tumor immune surveillance. The interaction of tumor-antigen
December 2020 | Volume 11 | Article 598532
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presenting dendritic cells and CD4+ T helper cells releases
chemokine CCL3 and CCL4 that in turn attract CCR5+
cytotoxic CD8+ T cells (31). Previous studies showed that cancer
cells, along with tumor-educated inflammatory cells suppress T-
cells to escape immune surveillance. Under the influence of
immune suppressive TME, CD4+ T helper cells differentiate
from immune promoting phenotype to immune suppressive
Treg phenotype (5, 27, 32). In addition, tumor educated B cells
coverts CD4+ T cells to immunosuppressive Tregs (33).

Non-Immune Cells
Cancer associated fibroblasts (CAF) are the major type of
stromal cells that comprise the TME. The contribution of
fibroblasts to tumor growth was first inferred in1986, when
Picard and colleagues demonstrated the importance of
injecting fibroblasts with cancer cells for achieving successful
tumor engraftment in vivo (34). Later, it was observed that not
only direct cell-cell contact but secreted factors are also involved
in epithelial/cancer cell-fibroblast interactions (35, 36). Thus,
fibroblast-associated tumor-promoting properties have now
largely been attributed to growth factors, chemokines/cytokines
and metabolites, together known as fibroblast secretome.
However, exchange of metabolites and activation of signaling
pathways between fibroblasts and tumor cells via direct cell-cell
contact mechanisms continue to be viewed as important (17, 37).
The studies done in the last two decades with transgenic mouse
models on oncogenic or antitumor genes have provided strong
evidence regarding the role of fibroblasts in supporting tumor
cell proliferation, ECM remodeling, metastases and elevating the
process of angiogenesis, as reviewed elsewhere (38–40).

Endothelial cells that are recruited to the TME promote neo-
angiogenesis. The expansion of blood vasculature ensures
adequate perfusion to support overwhelming tumor growth
and provides for a route for hematogenous dissemination. The
interaction of tumor cells with endothelial cells is a critical step in
the process of intravasation, extravasation and metastases
whereby cancer cells manipulate pericytes to alter blood vessel
integrity and facilitate intravasation (41–43).

Extracellular Components
ECM and secreted factors play a dynamic role in tumor biology.
The expression of ECM proteolytic enzymes, matrix
metalloproteinases (MMPs), is closely associated with tumor
progression (44–46). The tumor-induced deposition of ECM at
the site of primary as well as metastatic tumor is responsible for
chemotherapy and immunotherapy resistance by limiting the
entry of drugs to the core of tumor (47).
ROLE OF STROMA-DERIVED
CHEMOKINES IN THE LOCAL INVASION
OF PRIMARY TUMOR

The local dissemination of primary tumor cells into the adjacent
normal tissues is an initial step of tumor metastases. The
sequence of this program involves epithelial-mesenchymal
Frontiers in Immunology | www.frontiersin.org 3
transition (EMT); acquisition of tumor-initiating capability
known as cancer stem cell (CSC) properties; cell adhesion to
extracellular matrix (ECM) or vascular endothelial cells;
extracellular matrix (ECM) remodeling, and cell migration/
invasion (48, 49) (Figure 1).

Chemokines, play an essential role in the dissemination of
cancer cells into adjacent normal tissues. Interactions between
tumor and stromal cells promote chemokine production in
stromal cells which in turn directly or indirectly stimulate
cancer metastases (50). Table 1 describes multifaceted roles of
stromal cells derived chemokines in local invasion by
primary tumor.

Stromal Chemokines and EMT
EMT re-programming is one essential step enabling the invasion
and metastatic dissemination of cancer cells. During this process,
cancer cells are endowed with malignant traits associated with
the loss of epithelial traits and the acquisition of a more
mesenchymal phenotype (89). It has been widely accepted that
heterotypic signaling pathways induced by chemokines from the
tumor-associated stroma can trigger EMT in a variety of
carcinomas (49). These have been proven by several co-culture
experiments involving cancer cells and host cells such as
fibroblasts. CXCL12 expressed by CAFs causes EMT in breast
cancer and human tongue squamous cell carcinoma (76, 90).
EMT mechanistically was studied in breast (91, 92), thyroid (93)
and colon cancer (77). Signaling pathways perturbed were PI3K/
AKT/PKB), MAPK/ERK (77, 92), WNT/b-catenin (91) and NF-
kB pathways (93). Similarly, fibroblasts when co-cultured with
prostate cancer cells produce CXCL1 (which binds to CXCR1
receptor on tumor cells). CXCR1 receptor is also present on
neutrophils which produce LCN2. The CXCL1-LCN2 paracrine
axis activates Src signaling and leads to EMT and contributes to
tumor progression (66). Furthermore, in pancreatic cancer
CXCL8 causes cell invasion and promotes metastases (72).
Similarly in gastric cancer, neutrophils like cells expressed
CXCL8 and induced EMT through CXCR1/CXCR2 receptors
(25, 73, 94) and CXCL16 produced by MSCs induces
proliferation and migration of tumor cells (86). CAF-derived
CXCL16 could also promote brain metastases in breast cancer,
which were significantly inhibited by the CXCL16 neutralizing
antibody (87).

Several CC chemokines CCL5 and CCL18 also promote EMT,
cell migration and invasion in co-culture experiments involving
TAMs and different cancer cells. Signaling pathways activated by
CC chemokines include NF‑kB and b-catenin/STAT signaling in
breast and prostate cancer and MEK/ERK/NF-kB/integrin avb3
pathways in osteosarcoma by CCL5 (54), PI3K/AKT/mTOR, and
ERK1/2 signaling in endometrial carcinoma and squamous cell
carcinoma of the head and neck by CCL18 (60, 95). Furthermore,
co-culture of monocyte-derived macrophages which is a major
source of CCL20 with hepatoma cells induces EMT and
accelerates tumor metastases in a CCL20-dependent manner
(20, 61, 64) by activation of P38 MAPK (96), CrkL-ERK1/2 (97)
and JAK2/STAT3 pathways (65). In addition, fibroblasts can
secret the CC family chemokine CCL17/CCL22 that activates
CCR4 and ERK/AKT signaling (57) and plays a critical role in
December 2020 | Volume 11 | Article 598532
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the malignant progression of prostate, breast and hepatocellular
cancer (24, 57, 58).

Stromal Chemokines and CSC-Like Traits
Induction of EMT triggers in several types of cancer cells to
acquire cancer stem cell (CSCs) properties such as self-renewal,
tumor-initiating and multipotent differentiation potential that
enhances metastases (98). Disseminated cancer cells are
believed to be endowed with CSC-like properties, which
permits mesenchymal differentiation and increased capacity
for establishment of metastatic colonies (49). Many studies with
CXCL12, CXCL8, CCL2 and CCL18 chemokines have reported
a correlation between the stromal chemokines and the
acquisition of CSC-like traits (99). In addition, CCL2 was
shown to activate the STAT3 and NOTCH1 pathways (51)
and macrophages-derived chemokine CXCL8 increases CSCs-
like populations and enhances mammosphere formation via
activation of AKT/mTOR signaling in renal and breast cancer
(25, 74).

Stromal Chemokines and Extracellular
Matrix Remodeling in TME
The EMT process confers the polarized epithelial cells properties
that are critical to the invasion-metastases cascade, which
includes interaction with basement membrane surface
Frontiers in Immunology | www.frontiersin.org 4
receptors and degradation of ECM (49). Stromal CXC and CC
chemokine families have been reported to trigger protease
release, leading to ECM degradation and play essential roles in
cancer metastases (48).

CAF-derived CXCL12 upregulates tumoral expression of matrix
metalloproteinases (MMP-2, 9, 13) and thereby leads to contraction
of collagen matrices (18, 44, 78). CXCL12/CXCR4 axis also induces
the formation and maturation of invadopodia, which alters cellular
morphology, induces ECM degradation and promotes invasive
features (79) through RhoA/ROCK/MLC-2, Src-Arg-cortactin
and MAPK signaling pathways (18, 79). In addition, co-culture of
gastric cancer cells and tumor-associated lymphatic endothelial cells
(LECs) elevated CXCL1 secretion in LECs which in turn
upregulated integrin b1 and MMP2/9 that promotes cell
adhesion, migration, invasion and lymph node metastases (67).

Aberrant expression of CC chemokine receptors has also been
also related to ECM remodeling processes (48, 56). Chemokine
CCL2 and CCL5 in prostate and ovarian cancer promoted
MMP-2 and MMP-9 secretion by ERK, Rac signaling (55); in
chondrosarcoma through Ras/Raf-1/MEK/ERK/NF-kB and in
breast and liver cancer via PI3K/Akt and GSK-3b pathways (52,
53). CCL7 interacts with CCR3 and activates RhoA/ERK and
PI3K pathways, resulting in collagen degradation and
invadopodia formation, contributing to cell invasion (56).
CCL17/22 enhanced MMP2 expression via ERK/AKT signaling
in hepatocellular cancer (57), and upregulate MMP13 expression
via ERK/NF-kB signaling in colorectal cancer (59). Similarly,
CCL20/CCR6 binding leads to MMP2 upregulation via JAK2/
STAT3 and CrkL-Erk1/2 pathways, and MMP9 upregulation
through the activation of PKC-a, src, Akt, and NF-kB pathways
in breast and gastric cancer (65, 97).
Role of Stromal Cell Chemokines
in Cancer Cell Dissemination
As discussed above, stromal chemokines act on tumor cells in
epithelial cancers and trigger EMT. Subsequently, epithelial
cancer cells regulate cell-cell adhesion structures and cell polarity
that contribute to cancer cell dissemination. Within invasive
carcinomas, the multicellular microanatomical structures called
Tumor MicroEnvironment of Metastases (TMEM) serve as the
functional sites of tumor cell dissemination and transendothelial
migration.Migratory breast, pancreatic, lung and colon cancer cells at
TMEM overexpress an invasive form of Enabled (Ena)/vasodilator-
stimulated phosphoprotein (VASP) protein (MENAINV) in their
non-invasive compartments with an intact basement membrane
(100) and promotes cancer invasion and migration of tumor cells
(101, 102). MENAINV expressing invasive cancer cells enhance
transendothelial migration in response to cancer cell-macrophage
contact (100, 102). These cells migrate along collagen fibers and
stream toward vasculature paired with TAMs driving invadopodium
assembly and results in matrix degradation, discohesive tumor
morphology and increased tumor cell motility (103, 104). The
TAM derived growth factors help cancer cells to form invadopodia
and acquire invasive properties via EGF/CSF1 paracrine loop and
through the activation of Notch signaling (100, 102).
FIGURE 1 | Schematic illustration of multifaceted roles of chemokines in
invasion and dissemination. Chemokines bind to their receptors and regulate
ECM remodeling, EMT, cell migration, and cell invasion.
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CAF-derived CXCL14 can also modulate cell adhesion and
promote motility. CXCL14 interacts with atypical receptor
ACKR3 with greater binding affinity and activates Akt and
ERK1/2 MAPK by b-arrestin binding (80). Stromal CXCL16
modified cellular adhesion as well as motility by promoting Ezrin
activation, avb3 integrin clustering and F-actin stability via
FAK/PI3K/PKC and CXCR6/ERK1/2/RhoA/cofilin/F-actin
pathway (46, 88).
ROLE OF STROMA-DERIVED
CHEMOKINES IN INTRAVASATION AND
TRANSPORT OF TUMOR CELLS

The major cause of cancer related death is due to distant
metastases. Invasion of basement membrane, ECM and
directional migration towards the vasculature is not sufficient
for successfully metastases. Cancer cells must migrate across the
vessel wall into the blood or lymph vasculature, a process known
as tumor cell intravasation. It is a rate-limiting step of metastases
and determines the number of circulatory tumor cells (CTCs),
which in turn, dictates the probability of metastases. Cancer cells
can access the vasculature through passive, active or assisted
mechanisms of intravasation. Passive mechanism involves tumor
cells getting entrapped in endothelial emboli while active
mechanism involves intravasation involves transendothelial
migration of tumor cells. In assisted intravasation, TAMs
escort tumor cells across endothelium. At the site of
metastases, tumor cells again migrate across endothelial cells, a
process known as extravasation, to colonize and generate
metastatic foci. In this section, we discuss the role of stromal
cell-secreted factors, especially chemokines, in the process of
intravasation and extravasation.

Passive Intravasation and Stromal
Chemokines
A tumor embolus is a nest of tumor cells embedded in
endothelium. A developing, immature or a dilated blood vessel
may allow formation of emboli (41, 43). Tumor cells along with
tumor stroma has been observed in an embolus (105). Histologic
evaluation of extrahepatic bile duct carcinomas showed that the
presence offibroblasts in the tumor embolus positively associates
with increased metastases (105). The notion of stromal
contribution to emboli-mediated metastases was established
with the observation that injection of emboli containing tumor
cells and stromal cells increases chances of experimental
metastases (42). Very recently, it has been observed that co-
injection of tumor cells with CAFs frequently generated emboli
with proliferative tumor cells compared to control fibroblasts or
no fibroblasts (106) and increases the viability of tumor cells in
the emboli (107). Stromal fibroblasts-derived chemokine
CXCL12 and Transforming Growth Factor b1 (TGFb1) induce
Src-mediated EMT and proliferate tumor cells present in emboli.
Specific inhibition of CXCL12 and TGFb1 in CAFs inhibited the
proliferating tumor cells in the emboli (106) highlighting the
importance of CAFs in protecting tumor cells in the emboli.
T
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Active Intravasation and Stromal
Chemokines
As an active mechanism, tumor cells degrade the basement
membrane and intravasate through trans-endothelial
migration. During this process, tumor cells undergo EMT,
achieve invasive and highly motile phenotype and secrete
factors to increase permeability of blood vessels in the TME.
CXCL12 expressing organs are a target for CXCR4 positive
cancer cells and blocking the CXCL12/CXCR4 interaction
using neutralizing antibodies (nAb) significantly inhibits
experimental metastases (108). We and others have established
fibroblasts as a critical source of CXCL12 in the TME (3, 40, 109).
Co-implantation of human CAFs secreting CXCL12 with tumor
cells enhances breast tumor growth (40) with CXCL12 recruiting
endothelial cells to enhance angiogenesis. We have shown that,
depletion of fibroblast-specific CXCL12 results in reduced tumor
growth, decreased number of CTCs and inhibits metastases of
orthotopic and spontaneous mammary tumors (109). Fibroblast-
derived CXCL12 expands the leaky tumor vasculature by
recruiting endothelial precursor cells and suppressing tight
junction molecules and this facilitates tumor cell intravasation
(109). Using RNA hybridization technique, we confirmed that
fibroblasts are a critical source of CXCL12 and that fibroblast
specific deletion of CXCL12 abrogates CXCL12 protein
expression in the TME suggesting that stromal fibroblasts-
secreted chemokine CXCL12 shapes the TME in favor of
tumor growth and metastases. The major steps of metastases,
especially the role offibroblasts-derived CXCL12 in intravasation
are summarized in Figure 2. Besides CXCL12, stromal fibroblast
and mesenchymal stem cells (MSCs) also indirectly upregulate
chemokines such as CXCL8 and CCL2 through inflammatory
molecules like TNF-a and IL-1b (109–111). Importantly, TNF-a
stimulated cancer cell-MSC or cancer cell-fibroblast co-cultures
stimulated endothelial cell migration and sprouting in vitro and
increased tumor growth in vivo (110). In another study, co-
culture of tumor cells and MSCs elevated CCL5 expression in
MSCs which increased invasive and migratory properties of
tumor cells that express its receptor, CCR5, leading to
increased metastases (112).

Role of Stromal Chemokines in Assisted
Intravasation
The passive and active mechanisms of intravasation assume a
tumor vasculature that is disorganized and hyper-permeable and
thus conducive for tumor cells intravasation. However, researchers
suggest that tumor cells are assisted by macrophages during the
process of intravasation. A direct association of tumor cells and
macrophages during migration was demonstrated by Wyckoff
and colleague in 2004 using intravital imaging. Another study
using multiphoton in vivo imaging showed that perivascular
macrophages directly interact with tumor cells and endothelial
cells of blood vessels creating the TMEM. TMEM density directly
correlates with systemic metastases (32).Within the TMEM,
macrophages promote tumor cell intravasation (113). In-vivo
imaging has shown that tumor cell intravasation occurs only at
TMEM doorways and tumor cells are escorted by Tie2 positive
Frontiers in Immunology | www.frontiersin.org 6
TAMs to blood vessels (114). Tie2-positive macrophages locally
and transiently compromise vascular integrity by expressing
VEGF-allowing intravasation of tumor cells by compromising
endothelial cell-cell junctions. Others have suggested that VEGF-
A-induce increases in endothelial permeability is a transient and
regulated phenomenon (115). Although the role of chemokines
secreted by Tie2-positive macrophages has not been studied in
TMEM, these cells are known to express chemokines in rheumatoid
arthritis (116). In addition, fibroblast-derived CXCL12 can also
recruit CXCR4+ TAMs which can alter vessel permeability to
facilitate intravasation (117).

The mechanistic studies showed existence of an active EGF/
EGFR and CSF1/CSF1R feedback loop between tumor cells and
macrophages in renal clear cell carcinoma, glioblastoma and
breast cancer (118–122). ErbB3 overexpressing MTLn3 breast
cancer cells are more invasive than normal MTLn3 cells in
presence of ErbB3 ligand HRG-b1. MTLn3-ErbB3 and transgenic
MMTV-Neu tumors invasiveness in presence of HRG-b1 is
inhibited by blocking EGFR, CSF-1R, or macrophage function,
indicating that invasiveness to HRG-b1 is dependent upon the EGF/
CSF-1 paracrine loop. Furthermore, CXCL12 also triggers in vivo
invasion of transgenic MMTV-PyMT tumors in an EGF/CSF-1–
dependent manner (Hernandez et al., 2009). Similarly, co-
expression of CSF-1 and its receptor CSF-1R on renal tubular
epithelial cells (TEC) promotes proliferation and inhibits apoptosis
during regeneration of renal tubules. When CSF-1 and CSF-1R are
coexpressed in renal cell carcinoma and TEC aids in RCC survival
and inhibition of apoptosis (122).
ROLE OF STROMAL CHEMOKINES IN
SURVIVAL OF CTCs IN CIRCULATION

Once in the vasculature, cancer cells face various barriers such as
physical stress, oxidative stress, anoikis, and the lack of growth
factors and cytokines to survive and successfully extravasate
and colonize in distant organs. Millions of tumor cells are shed
from primary tumor into the efferent blood of mammary
adenocarcinoma (123). However, only about 0.1% cells survival
and the rest become non-viable within 48 h (124). There are
several chemokine-mediated mechanisms that are involved in
survival or killing of CTCs. One of the mechanism of CTC death
is through immune cell derived chemokine/chemokine receptors.
It has been shown that CX3CR1+ monocytes are recruited to the
tumor cell aggregates in response to tumor-derived CX3CL1,
where they can directly engage cancer cells or secrete CCL3,
CCL4 and CCL5 to activate natural killer cells to kill CTCs (125).
CCL2 is a potent chemoattractant for phagocytic cells including
monocytes, and macrophages (126).

Tumor cells secrete thrombin to activate platelets to aggregate
around tumor cells. The activated platelets cross-link with each
other to create tumor cell-platelet microemboli. In addition,
tumor cell-platelet association also inhibits NK cells mediated
lysis of CTCs (127, 128). In addition to protecting CTCs in the
vasculature, platelets are known to secrete CXCL12, which
promotes their survival, transendothelial migration and
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extravasation (129, 130). As another mechanism to support CTCs
survival, platelets secrete lysophophatidic acid (LPA) that binds to
its receptors, LPAR1, 2 and (3) on breast cancer cells and activates
the secretion of IL6, IL8, CCL2 and CXCL1, enhance survival and
increases the migration potential of CTCs (131).

Role of Stromal Chemokines in
Establishing Pre-Metastatic Niche
Tumor cells in distant organs induce formation of a
microenvironment that promotes the establishment and
growth of tumors and this was subsequently referred to as the
‘pre-metastatic niche’ (PMN) (132–134). PMNs arise as a result
of combined efforts of tumor secreted factors, stroma secreted
factors and tumor-shed extracellular vesicles (EVs) that regulate
the stepwise evolution of PMN (133). Establishing a PMN
involves changes at the local and systemic levels. Locally,
within the PMN, changes arise in the stroma, vasculature and
ECM (135, 136).

The expression of CXCR4 receptor on tumor cells aids in
their colonization to organs expressing CXCL12 such as bone
marrow which favors tumor cell survival and growth (137).
Activation of CXCR4 receptor by CXCL12 has been reported
in different cancers such as brain neoplasms, colorectal cancer,
Frontiers in Immunology | www.frontiersin.org 7
prostrate cancer, melanoma, ovarian cancer, etc (138–142).
SCLC overexpresses CXCR4 and activation by CXCL12
overexpressed in bone marrow induces migration, invasiveness
and adhesion to marrow stromal cells which prevent apoptosis in
SCLC cells from chemotherapy (137, 143, 144).

Formation of PMNs in lungs is reported to be initiated by
accumulation of VEGFR1+ bone marrow derived hematopoietic
progenitor cells along with resident fibroblasts which express high
levels of CXCL12. VLA4 is expressed by VEGFR1+ cells which
causes resident stromal fibroblasts to upregulate fibronectin which
forms a permissive niche for incoming tumor cells (132). The
hematopoietic progenitor cells promote migration and adhesion of
lung carcinoma and CXCR4+ B16 melanoma cells to the lung
PMNs (132). Furthermore, lung epithelial cells secrete chemokines
such as CXCL1, CXCL2, CXCL5 and CXCL12 to recruit
neutrophils in Lewis Lung Carcinoma (LLC) xenograft models in
response to TLR3 activation by LLC exosomal RNAs (145, 146). In
the liver, CXCL12 is involved in PMN formation through CXCL12-
CXCR4 dependent recruitment of neutrophils that enhance PMN
properties by secretion of chemokines such as tissue inhibitor of
metallopeptidase 1 (TIMP1) (111, 147, 148). In the lymph nodes,
CCR7+ melanomas colonize and inhibiting the CCL21 with
neutralizing antibodies blocks CCR7 mediated metastases (149).
A

B C

FIGURE 2 | Steps of metastases. (A) A cartoon of TME showing tumor cells invade ECM and migrate towards blood vessels. (B) At the blood vessels, tumor cells
transmigrate across endothelial layer and become circulatory tumor cells (CTCs). (C) Tumor cells extravasate and seed into the lungs to generate metastatic foci. The
dashed line inset diagram describes molecular events occurring at the time of transendothelial migration shown in (B) within dashed line box. The CAFs present in
TME secrete CXCL12 that act on endothelial cells through receptor CXCR4 and decrease the expression of tight junction (TJ) molecules, which results in
intravasation of tumor cells.
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In the central nervous system, CCR7 expression in the brain
endothelial cells, is an essential adhesion signal for CCR7+
leukemia T-cells to specifically seed and metastasize to central
nervous system. Silencing of the CCR7 or its ligand CCL19 in
animals models has been reported to inhibit infiltration of leukemia
cells into the brain (150).

Besides the stromal changes, one of the major vascular changes
which prime distant tissue for metastatic cell colonization is
formation of blood clots due to leaky vasculature (151). Vascular
clots rich in fibrin and platelets coat the surface of CTCs and aid in
their dissemination (152). Platelets secrete CXCL5 and CXCL7,
contact with tumor cells cause recruitment of granulocytes
(CD11b+MMP9+Ly6G+) to tumor cells in lung to form early
metastatic niches directly helping in tumor cell seeding and
development of lung metastases (153, 154). In addition, CTCs
homing and survival in PMNs is aided by tissue factor mediated
clot formation in which macrophage populations are already
recruited during PMN formation (155).

Role of Stromal Chemokines in
Extravasation of CTCs at PMNs
After surviving the hostile vascular environment, CTCs undergo
trans-endothelial migration to extravasate from the blood vessel
into local PMN. The host cells co-ordinate with each other in
response to tumor signals to help extravasation of CTC. Upon
activation by tumor cells, platelets secrete CXCL5 and CXCL7
chemokines to recruit CXCR2-positive neutrophils (153). These
neutrophils release cytosolic and granulated proteins that are
assembled along with chromatin fibers to generate large, web-like
structures know as neutrophil extracellular traps (NETs) (153,
156). NETs have been reported in pancreatic, liver, breast and
gastric cancers (157–160). In metastatic breast cancer, neutrophils
formmetastatic supporting NETs. NET-DNA acts as a chemotactic
signal to attract cancer cells rather than just acting as a trap at
distant metastatic sites (161). These NETs contributes to the
extravasation by sequestering CTCs and degrading the ECM to
facilitate migration of CTCs (156, 162). In addition, tumor-derived
CCL2 can directly act on CCR2 positive endothelial cells to increase
their permeability or indirectly via increasing CXCL12 expression,
which helps CXCR4 positive cancer cells to extravasate into the
PMNs (129, 163, 164). Finally, the CCL2 from tumor cells and
CCL5 from activated endothelial cells can further recruit the
inflammatory monocytes/macrophages to prepare the cellular
assembly of CTCs, platelets, neutrophils, endothelial cells and
monocytes/macrophages required for efficient extravasation of
CTCs (154). Activation of CCR2 signaling prompts TAMs to
secrete another chemokine, CCL3, leading to enhanced TAMs–
tumor cell interaction and prolonged retention of TAMs in the
metastases sites, which promotes extravasation of breast cancer cells
(165, 166).
Role of Chemokines in Establishing
Metastatic Foci
As final step of metastases, tumor cells have to seed, survive, and
proliferate into the PMC to develop metastatic foci. CCR2+
inflammatory monocytes recruit to the PMN and are differentiate
Frontiers in Immunology | www.frontiersin.org 8
into metastases associated macrophages (MAMs) (165). These
MAMs express another cytokine CCL3 to help seeding of CTCs as
it has been shown that the genetic deletion of CCL3 or CCR2
prevents metastatic seeding of breast CTCs (166). High expression
levels of chemokine CXCL8 and CCL2 in the bone marrow
microenvironment promotes the survival of leukemia cells by
enhancing their adhesion to bone marrow MSCs (167). In
melanoma too, CCR2+ BMDCs inhibit proliferation of T cells and
help in immune escape (168, 169). Regulatory cells such as MDSCs,
macrophages, Tregs in the PMNs are also responsible for
suppressing anti-tumor responses and help in tumor cell survival
(170, 171). MDSCs cause immune suppression at PMNs resulting in
tumor cell survival and promote metastases by downregulation of
IFNg which causes expression of pro-inflammatory cytokines,
interleukins and CXCL12 (147, 148, 172). Mechanistically, MDSCs
inhibit activity of T cells through arginase1 and reactive oxygen
species (ROS) production (27, 173). Tumor evoked B regulatory cells
(tBregs) play a primary role in lung metastases by the conversion of
resting anti-tumor CD4+ T cells into FoxP3+ expressing Treg cells
through the paracrine action of TGFb and CCL22 expressed from
lung (33). The studies discussed above describe the functions
performed by stromal cells-derived chemokines throughout the
multi-step process of metastases (Figure 3).
THERAPEUTIC TARGETING OF
CHEMOKINES

Given that chemokines and their receptors have been recognized
as the key regulators of cancer progression, strategies targeting
different chemokine/chemokine receptor axes exert antitumoral
and antimetastatic activities in many tumors to counteract
cancer growth and dissemination, inhibiting angiogenesis and
regulating the leukocyte recruitment (174, 175).

CXCR4 inhibitors have been reported promising therapeutic
effects on solid tumors, including glioblastoma, breast cancer and
mesothelioma. A phase I trial (NCT01837095) with CXCR4
antagonist Balixafortide and Eribulin chemotherapy evaluated
the safety, tolerability, pharmacokinetics and efficacy in heavily
pretreated, relapsed breast cancer patients. The combination has
given promising results in HER-negative metastatic breast cancer
(176). Current phase I/II study showed that CXCR4 inhibitor
Plerixafor was well tolerated as an adjunct to chemoirradiation in
newly diagnosed glioblastoma patients and reduced tumor local
recurrences by inhibiting postirradiation tumor revascularization
(177). Very recently it has been shown that CXCR4 inhibitor
AMD3100 decreased desmoplasia, immunosuppression and
increased T cells infiltration into tumors, and thereby enhanced
the efficacy of immune checkpoint inhibition in a pre-clinical
murine model of breast cancer (178).

CXCR1/2 inhibitor Repertaxin enhanced chemotherapeutic
efficacy of 5-fluorouracil in gastric cancer by attenuating cell
proliferation, inducing apoptosis and suppressing malignant
behavior (179). In pancreatic adenocarcinoma (PDAC), genetic
depletion of CXCR2 prevented neutrophil accumulation and
improved T cell entry, which contributed to tumor suppression
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and therapeutic response of anti-PD-1 (180, 181). Additionally,
combination of SB225002 (CXCR2 inhibitor) with RS504393
(CCR2 inhibitor) overcame the compensatory response of
myeloid subset, augmented antitumor immunity and improved
chemotherapeutic response of FOLFIRINOX in an orthotopic
model of pancreatic adenocarcinoma (182). A phase Ib clinical
trial (NCT02001974) using combination of CXCR1/2 inhibitor
Reparixin with paclitaxel was tolerable and safe and showed
positive response in metastatic breast cancer (183). Another
preclinical study also showed that the anti-CCR4 antibody,
Affi-5, exerted antitumor activity in renal cancer models by
regulating Th1/Th2 switch, altering myeloid cell phenotype,
increasing NK cells and Th1 cytokine levels and reducing
immature myeloid cells infiltration (184).

It has been reported that interference with the CCL2/CCR2
axis shows antitumoral activity for reducing monocytes
recruitment (175). However, cessation of antiCCL2 therapy
leads to an overshoot of metastasis and accelerates death (185).
In murine pancreatic cancer models, CCR2 antagonist combined
with anti–PD-1 decreased tumor burden by blocking monocyte/
macrophage recruitment and relieving suppression of the CD8+ T
cells (186). In an orthotopic murine model of hepatocellular
carcinoma, blocking CCL2/CCR2 axis with a natural product
from Abies georgei named 747 or RDC108 suppressed liver
tumor growth and recurrence via inhibition of TAMs and other
immune suppressive myeloid cells (187, 188). Encouraging results
have been reported in other clinical studies. A phase I trial of
CCR2 antagonist CCX872 plus chemotherapy FOLFIRINOX has
been evaluated in non-resectable pancreatic cancer patients
(NCT02345408). Compared to median overall survival of 18
Frontiers in Immunology | www.frontiersin.org 9
months in FOLFIRINOX only treated patients, the median
overall survival was increased by 18.6–29% in CCX872/
FOLFIRINOX treated patients. The better overall survival was
associated with decreased immune suppression by reducing
inflammatory monocytes, circulating monocytes and monocytic
myeloid derived suppressor cells (189). A phase Ib study
(NCT02732938) evaluated the effect, safety and tolerability of
CCR2 inhibitor PF-04136309 plus nab-paclitaxel and
gemcitabine in aggressive pancreatic cancer (190). The same
inhibitor in combination with FOLFIRINOX chemotherapy has
been evaluated in a pancreatic cancer clinical trial (NCT01413022)
(191). However, targeting the CCR2 ligand CCL2 has not shown
promising results in clinical trials. A clinical trial (NCT00537368)
using human CCL2 neutralizing monoclonal antibody CNTO888
could not completely inhibit CCL2 in prostate cancer patients and
did not show clinical response compared to standard therapy.
Other clinical trials using CNTO888 could not achieve any clinical
response in solid tumor patients (NCT01204996) (192). These
studies emphasize the importance of thoroughly evaluating
different strategies for targeting chemokine- signaling pathways
to develop novel therapeutic strategies against difficult-to-manage
aggressive malignancies.
CONCLUSION

Chemokines are crucial molecules involved in autocrine and
paracrine signaling required for proper functioning of multicellular
organisms. Dysregulation of chemokine secretion can predispose to
significant pathology, including malignancies. The emergence of
FIGURE 3 | The schematic diagram showing different function of stromal-derived chemokines in pre-metastatic niche formation and metastases. Tumor cells along
with stromal and immune cells in the primary tumor secrete several chemokines such as CCL2, CXCL12, CCL19, etc., that help in establishing the PMN in distant
organs such as lung, liver, brain. Within the lungs SDF-1 and leukotrienes help in immune invasion. CCL2, CXCL12 aid in angiogenesis, form clots in blood vessels
and help in survival of melanoma in the lung by inhibiting NK cell activity. In the brain, CCL19 acts on CCR7+ tumor cells and aid in their colonization. In the liver,
CXCL12 along with TIMP1 and MIF help in neutrophil recruitment and deposition of fibronectin making liver tissue permissive for formation of a metastatic niche for
circulating tumor cells.
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the field of tumor microenvironment have revolutionized the
understanding of how tumors exploit host tissues to successfully
proceed through different stages of tumor progression, leading to
disseminated metastases. The recent advances in the field of TME
has shifted the focus of research from targeting cancer cell-
autonomous functions to include the host components for
designing novel therapies. As a major mechanism of metastases,
the tumor educated host cells secrete chemokines and cytokines
that feedback on tumor cells and help in dissemination,
hematogenous spread and metastatic colonization. Therefore,
hindering chemokine signaling pathways between tumor and
host cells as a therapeutic strategy against metastatic tumors is
gaining increased attention. Recent findings have also established
the critical role played by host cells, especially those of the immune
system, in the success of conventional radiation therapy and
chemotherapy. Therefore, translational significance of targeting
host-derived chemokines should be considered in developing
novel therapies against cancer, especially metastatic cancer.
Frontiers in Immunology | www.frontiersin.org 10
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