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Abstract
Huachansu, a traditional Chinese medicine prepared from the dried toad skin, has been used

in clinical studies for various cancers in China. Resibufogenin is a component of huachansu

and classified as bufadienolides. Resibufogenin has been shown to exhibit the anti-prolifer-

ative effect against cancer cells. However, the molecular mechanism of resibufogenin

remains unknown. Here we report that resibufogenin induces G1-phase arrest with hypopho-

sphorylation of retinoblastoma (RB) protein and down-regulation of cyclin D1 expression in

human colon cancer HT-29 cells. Since the down-regulation of cyclin D1 was completely

blocked by a proteasome inhibitor MG132, the suppression of cyclin D1 expression by resibu-

fogenin was considered to be in a proteasome-dependent manner. It is known that glycogen

synthase kinase-3β (GSK-3β) induces the proteasomal degradation of cyclin D1. The addi-

tion of GSK-3β inhibitor SB216763 inhibited the reduction of cyclin D1 caused by resibufo-

genin. These effects on cyclin D1 by resibufogenin were also observed in human lung cancer

A549 cells. These findings suggest that the anti-proliferative effect of resibufogenin may be

attributed to the degradation of cyclin D1 caused by the activation of GSK-3β.

Introduction
Huachansu, a traditional Chinese medicine, is dried venom secreted from the skin glands of
Bufo bufo gargarizans Cantor [1]. It was reported that huachansu suppresses the growth of
human lung cancer H460, A549 and H1299 cells in vitro [2]. Moreover, in China, a meta-anal-
ysis showed that combined treatment of huachansu with conventional chemotherapeutic
agents was more effective in increasing response rate and Karnofsky score than chemothera-
peutic agents alone against gastric cancer patients [3]. Huachansu was also used for clinical
studies in patients with other advanced malignancies [4–6]. Resibufogenin (Fig 1) is a compo-
nent of huachansu and has been shown to inhibit the growth of human hepatocellular cancer
HepG2 and Bel-7402 cells [7, 8]. Moreover, resibufogenin also inhibited the growth with G2/
M-phase arrest in human hepatocellular cancer SMMC-7721 cells [8]. However, precise molec-
ular mechanism of the growth inhibition by resibufogenin is still unknown.

G1 to S-phase transition is regulated by cyclin-dependent kinases (CDKs) 2/4/6 with cyclin
D/E [9]. Cyclin D1 and cyclin E activate CDK4/6 and CDK2, respectively. Cyclin D1-CDK4/6
and cyclin E-CDK2 phosphorylate retinoblastoma (RB) protein at Ser780 and Ser807/811 sites,
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respectively, and these phosphorylations are required to completely inactivate RB protein [10].
The RB Ser807/811 phosphorylation by cyclin E-CDK2 requires RB Ser780 phosphorylation by
cyclin D1-CDK4/6 [11]. Therefore, cyclin D1 is important in G1 to S-phase transition, and is
over-expressed in many human malignant tumors [12–14]. The transcription of cyclin D1 is
activated by the accumulation of β-catenin as a result of loss of functional adenomatous polyp-
osis coli protein in colon cancer [15].

The expression of cyclin D1 is regulated by not only transcription but also degradation. The
stability of cyclin D1 is regulated by proteasomal degradation [16]. The cyclin D1 degradation
is triggered by the phosphorylation [17] and the phosphorylation is caused by glycogen
synthase kinase-3β (GSK-3β) [18, 19].

In this study, we elucidated the molecular mechanism of the growth inhibition by resibufo-
genin using human colon cancer HT-29 cells and human lung cancer A549 cells. We found
that resibufogenin induced G1-phase arrest by down-regulation of cyclin D1 protein through
the proteasomal degradation resulting in hypophosphorylation of RB protein.

Materials and Methods

Cell culture
Human colon cancer HT-29 cell line was purchased as a cell line of the NCI-60 from the NCI
Developmental Therapeutics Program. Human lung cancer A549 cell line was purchased from
ATCC. HT-29 cells and A549 cells were maintained in DMEM and RPMI-1640, respectively.
These media were supplemented with 10% FBS, 4 mM or 2 mM L-glutamine for DMEM or
RPMI-1640, respectively, 50 U/ml penicillin, and 100 μg/ml streptomycin. These cells were
incubated at 37°C in a humidified atmosphere of 5% CO2.

Reagents
Resibufogenin was purchased fromMatsuura Yakugyo. MG132 was purchased from Peptide
Institute. SB216763 was purchased from Sigma-Aldrich. These reagents were dissolved in DMSO.

Fig 1. Structural formula of resibufogenin.

doi:10.1371/journal.pone.0129851.g001
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Cell viability assay
After the incubation of cells for 1, 2, or 3 days with the indicated concentrations of resibufo-
genin, the number of viable cells and dead cells was measured by a Guava EasyCyte plus flow
cytometer according to the manufacturer’s instructions (Millipore).

Determination of apoptosis by annexin V staining
Cells were treated with resibufogenin at the indicated concentrations or celecoxib, a positive
control as an apoptosis-inducer, for 24 h. Subsequently, cells were subjected to annexin V
staining using the Vybrant Apoptosis Assay Kit (Molecular Probes) according to manufactur-
er’s instructions. The stained cells were measured by FACSCalibur (Becton Dickinson).

Cell cycle analysis
Cells were incubated with the indicated concentrations of resibufogenin for 24 h. The cells
were then fixed in 0.2% Triton X-100 (Nacalai Tesque), treated with 300 μg/ml RNase A
(Sigma-Aldrich), and their nuclei were stained with 10 μg/ml propidium iodide (Sigma-
Aldrich). The stained nuclei were measured by FACSCalibur. The data was analysed using
Modfit LT software (Verity Software House).

5-Bromo-2’-deoxyuridine (BrdU) incorporation
Cells were treated with resibufogenin at the indicated concentrations for 24 h. Subsequently,
the cells were incubated with BrdU for 2 h. The incorporation of BrdU into DNA was mea-
sured using a cell proliferation enzyme-linked immunosorbent BrdU assay kit (Roche).

Protein isolation andWestern blot analysis
Cells were lysed in buffer containing 50 mM Tris-HCl (pH 7.5), 1% SDS, 1 mMDTT, 0.43 mM
4-(2-aminoethyl) benzenesulfonyl fluoride hydrochloride, and Phosphatase Inhibitor Cocktail
(Nacalai Tesque). The lysate was sonicated, centrifuged, and the supernatant was collected.
The protein extract was boiled with sample buffer for 5 min, subjected to SDS-PAGE, and
transferred to PVDF membrane (Millipore). Anti-human phospho-RB (Ser780) and phospho-
RB (Ser807/811) (Cell Signaling Technology) rabbit antibodies, and anti-human cyclin D1
(MBL), RB (BD Pharmingen) and GAPDH (HyTest) mouse antibodies were used as the pri-
mary antibodies. The signals were developed with Chemi-Lumi One L (Nacalai Tesque) or
Immobilon Western (Millipore). The relative band intensity against each loading control was
assessed by densitometric analysis using ImageJ software [20].

Statistical analysis
Statistical analysis of the data was performed using the Student’s t-test for comparison between
treatments and controls. P< 0.05 was considered significant.

Results

Resibufogenin inhibits the growth of human colon cancer HT-29 cells
We investigated the effect of resibufogenin on the growth of HT-29 cells using a Guava Easy-
Cyte plus flow cytometer. Resibufogenin at 2 μM or more for 2 and 3 days significantly
(P< 0.01) inhibited the viable cell number (Fig 2A). Next, we investigated whether resibufo-
genin induced cell death using a Guava EasyCyte plus flow cytometer. As shown in Fig 2B, via-
bility was not drastically changed. Furthermore, we investigated whether resibufogenin

Resibufogenin Induces G1-Phase Arrest via Degradation of Cyclin D1

PLOSONE | DOI:10.1371/journal.pone.0129851 June 29, 2015 3 / 12



Fig 2. Resibufogenin inhibits the growth of human colon cancer HT-29 cells. (A) Growth inhibitory effect of resibufogenin by counting viable cell
number. Cells were treated with resibufogenin at the indicated concentrations for 1, 2, or 3 days. Viable cell number was measured by a Guava EasyCyte
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induced apoptosis using annexin V staining. As shown in Fig 2C, resibufogenin slightly
induced apoptosis. However, the induction of apoptosis by resibufogenin was much weaker
than that by celecoxib, which is known to induce apoptosis in HT-29 cells [21]. These results
suggest that resibufogenin inhibits the growth of HT-29 cells partially through slight induction
of apoptosis.

Resibufogenin induces G1-phase arrest in HT-29 cells
We performed a cell cycle analysis using flow cytometry. Resibufogenin treatment at 2 μM or
more significantly (P< 0.05) increased the G1-phase with a decrease in the S-phase (Fig 3A).
Representative histogram in each sample is shown in Fig 3B. We also performed a cell cycle
analysis in synchronized cells by serum starvation. Resibufogenin treatment at 2 μM or more
drastically increased the G1-phase in synchronized cells, and the increase of G1-phase in syn-
chronized cells was more apparent than that in unsynchronized cells (Fig 3C). Representative
histogram in each sample is shown in Fig 3D. Furthermore, we also examined the effect of resi-
bufogenin on BrdU incorporation. Resibufogenin treatment at 1 μM or more significantly sup-
pressed BrdU incorporation (Fig 3E). These results indicate that resibufogenin arrests the cell
cycle at G1-phase and inhibits the entry to S-phase. Since resibufogenin induced G1-phase
arrest, we performed β-galactosidase assay to investigate whether resibufogenin induced senes-
cence or not. As a result, resibufogenin treatment did not induce SA-β-Gal activity (S1 Fig).
These results demonstrate that resibufogenin induces G1-phase arrest but not senescence.

Resibufogenin converts RB protein to the unphosphorylated form with
down-regulation of cyclin D1 expression
We investigated whether resibufogenin could convert RB protein to the unphosphorylated
form with down-regulation of cyclin D1 and/or cyclin E expressions. Resibufogenin at 1 μM or
more decreased phosphorylated form of RB with down-regulation of cyclin D1 and cyclin E
expressions in HT-29 cells (Fig 4A). On the other hand, resibufogenin did not dose-depen-
dently change the expressions of CDK2, CDK4, CDK6, p15INK4b, p16INK4a, p18INK4c, p19INK4d,
p21WAF1/Cip1 and p27Kip1 (S2 Fig). We further performed the time-course study of the phos-
phorylation status of RB protein and the expression of cyclin D1. Three hours after the treat-
ment, resibufogenin down-regulated cyclin D1 expression, and 6 h after the treatment
resibufogenin reduced the phosphorylated form of RB protein in HT-29 cells (Fig 4B). Almost
similar results were obtained in human lung cancer A549 cells (S3 Fig). It raises the possibility
that conversion of RB protein to the unphosphorylated form may be caused by the preceding
reduction of cyclin D1.

Resibufogenin down-regulates cyclin D1 through proteasomal
degradation
To elucidate the molecular mechanism of reduction of cyclin D1 induced by resibufogenin, we
first investigated the effect of resibufogenin on cyclin D1 mRNA expression using quantitative
RT-PCR. Resibufogenin did not decrease but increased the cyclin D1 mRNA level (S4 Fig),

plus flow cytometry. UT, untreated; DM, treated with DMSO. Points, means (n = 3); bars, SD. *P < 0.05, **P < 0.01, compared with the DMSO-treated
control. (B) The effect of resibufogenin on cell viability. Cells were treated and measured as shown in (A). Viability was calculated using the number of viable
cells and dead cells. UT, untreated; DM, treated with DMSO. Points, means (n = 3) (C) The effect of resibufogenin on apoptosis by annexin V staining. Cells
were treated with resibufogenin at the indicated concentrations for 24 h, and subjected to annexin V staining. The stained cells were measured by
FACSCalibur. UT, untreated; DM, treated with DMSO. Celecoxib at 100 μMwas used as a positive control (PC). Points, means (n = 3); bars, SD. *P < 0.05,
**P < 0.01, compared with the DMSO-treated control.

doi:10.1371/journal.pone.0129851.g002
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Fig 3. Resibufogenin induces G1-phase arrest in HT-29 cells. (A) Cell cycle analysis of HT-29 cells treated with resibufogenin. Cells were treated with
resibufogenin at the indicated concentrations for 24 h. The DNA content of propidium iodide-stained nuclei was analysed by flow cytometry. The percentages
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suggesting the importance of the regulation at a protein level. Therefore, we examined the sta-
bility of cyclin D1 when treated with resibufogenin. HT-29 and A549 cells were treated by resi-
bufogenin with or without MG132, a proteasome inhibitor, and then analysed for cyclin D1
expression using Western blotting. MG132 completely recovered the resibufogenin-induced
reduction of cyclin D1 (Fig 5A and 5B). These results indicate that resibufogenin down-regu-
lates cyclin D1 through the proteasomal degradation.

GSK-3β is required for resibufogenin-induced cyclin D1 degradation
It has been reported that GSK-3β phosphorylates cyclin D1 at Thr286 and causes subsequent
proteasomal degradation [17–19]. To elucidate the role of GSK-3β in resibufogenin-mediated
cyclin D1 degradation, we used SB216763, a specific inhibitor of GSK-3β. HT-29 and A549
cells were treated by resibufogenin with or without SB216763. SB216763 attenuated the degra-
dation of cyclin D1 by resibufogenin (Fig 5C and 5D). These results suggest that resibufogenin
induces the cyclin D1 degradation through GSK-3β. Since β-catenin is a well-known substrate
of GSK-3β and degraded by subsequent proteasomal degradation [22], we examined the
expression level of β-catenin. Resibufogenin also down-regulated β-catenin expression simi-
larly to cyclin D1 in HT-29 cells (S5 Fig). These results suggest resibufogenin might activate
GSK-3β, resulting in the down-regulation of both cyclin D1 and β-catenin.

Discussion
In this study, we found that resibufogenin induced G1-phase arrest with the conversion of RB
protein to the unphosphorylated form with down-regulation of cyclin D1 protein through the
proteasomal degradation in human colon cancer HT-29 cells and human lung cancer A549
cells. On the other hand, cyclin D1-CDK4/6 complex phosphorylates and inactivates RB pro-
tein resulting in promoting the G1/S phase transition [10]. Interestingly, cyclin D1 is frequently
over-expressed in human malignant tumors [12–14, 23]. For example, cyclin D1 gene is over-
expressed in 40% of human breast cancers [24], and high cyclin D1 expression levels correlate
with the low survival probability for patients with lung cancer [13]. In the present study, resi-
bufogenin down-regulated cyclin D1 through the proteasomal degradation (Fig 5A and 5B),
thereby suggesting that resibufogenin might be useful for the treatment of malignant tumors
with over-expression of cyclin D1. Furthermore, in cancer cell lines with mutations in both
KRAS and PIK3CA, MEK inhibitor could not induce the cell cycle arrest due to the sustained
cyclin D1 expression [25]. This suggests that cyclin D1 expression is correlated with the resis-
tance of MEK inhibitor. Therefore, the down-regulation of cyclin D1 by resibufogenin may be
also useful to overcome the resistance of MEK inhibitor in malignant tumors with mutations
in both KRAS and PIK3CA.

Cyclin D1 in the nucleus is phosphorylated by GSK-3β and subsequently exported to cyto-
plasm [18, 19]. Phosphorylated cyclin D1 in cytoplasm is ubiquitinated by SCFFBX4-αB Crystallin

and subsequently degraded by 26S proteasome [16]. GSK-3β is phosphorylated and inactivated
by Akt and p38 MAPK [26, 27]. Ser9 of GSK-3β is phosphorylated by Akt and Thr390 is

in G1 (black), S (dark gray) and G2/M (light gray) phases of the cell cycle were analysed using Modfit LT software. UT, untreated; DM, treated with DMSO.
Points, means (n = 3); bars, SD. *P < 0.05, **P < 0.01, compared with the DMSO-treated control. (B) Representative histogram of each treatment. (C) Cell
cycle analysis of HT-29 cells treated with resibufogenin in synchronized cells by serum starvation. Cells were treated with resibufogenin at the indicated
concentrations for 24 h after the 24 h serum starvation without FBS. The cell cycle analysis was similarly performed and shown as described in the figure
legend of Fig 3A above. (D) Representative histogram of each treatment. (E) BrdU incorporation analysis of HT-29 cells treated with resibufogenin. Cells
were treated with resibufogenin at the indicated concentrations for 24 h. Subsequently, the cells were incubated with BrdU for 2 h. The incorporation of BrdU
into DNA was measured using a cell proliferation enzyme-linked immunosorbent BrdU assay kit. The data obtained with DMSOwas taken as 100%. UT,
untreated; DM, treated with DMSO. Points, means (n = 3); bars, SD. **P < 0.01, compared with the DMSO-treated control.

doi:10.1371/journal.pone.0129851.g003
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phosphorylated by p38 MAPK, respectively. Although we found that resibufogenin induced
the cyclin D1 degradation depending on the activity of GSK-3β in this study, resibufogenin did
not decrease the phosphorylation status of GSK-3β (S6 Fig). Our results suggest that resibufo-
genin might activate GSK-3β through the Akt- and p38 MAPK-independent pathway.

Fig 4. Resibufogenin converts RB protein to the unphosphorylated formwith down-regulation of cyclin D1 expression. (A) The effect of
resibufogenin on the expression of phosphorylated RB (p-RB (Ser780) and p-RB (Ser807/811)), RB, cyclin D1 and cyclin E. Cells were treated with
resibufogenin at the indicated concentrations for 24 h and analysed byWestern blotting. (B) Time-course study on the phosphorylation status of RB protein
and the expression of cyclin D1. Cells were treated with 5 μM resibufogenin (R) for 1, 2, 3, 6, 9 or 24 h and analysed byWestern blotting. In both figures, RB
or GAPDHwas used as a loading control for protein quantitation. UT, untreated; DM, treated with DMSO. The band intensity was measured and normalized
by RB or GAPDH, and the protein levels are shown at the bottom of each blot.

doi:10.1371/journal.pone.0129851.g004
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Recently, huachansu, which is dried venom secreted from the skin glands of Bufo bufo gar-
garizans Cantor, has been expected as a candidate of anticancer agents [28]. Its anticancer
potential was considered as an inhibitor of NF-κB [28]. We demonstrated here, for the first
time, that resibufogenin, which is a component of huachansu, a traditional Chinese medicine,
induced the cyclin D1 degradation through the activation of GSK-3β. Therefore, resibufogenin
might be worth developing as a possible treatment for the malignant tumors with cyclin D1
over-expression.

Supporting Information
S1 Fig. Resibufogenin dose not induce senescence. After the treatment of DMSO or 5 μM
resibufogenin (R) for 24 h, SA-β-gal activity was measured using Cellular Senescence Assay Kit
(Cell Biolabs). The obtained data were normalized to protein concentrations. UT, untreated;
DM, treated with DMSO. Points, means (n = 3); bars, SD.
(TIFF)

S2 Fig. Resibufogenin does not dose-dependently change the expressions of CDK2, CDK4,
CDK6, p15INK4b, p16INK4a, p18INK4c, p19INK4d, p21WAF1/Cip1 and p27Kip1. Cells were treated

Fig 5. Resibufogenin down-regulates cyclin D1 through proteasomal degradation. (A) The effect of MG132 on suppression of cyclin D1 expression by
resibufogenin in HT-29 cells. Cells were treated by 5 μM resibufogenin with or without 20 μMMG132 for 24 h. (B) The effect of MG132 on suppression of
cyclin D1 expression by resibufogenin in A549 cells. Cells were treated with 2.5 μM resibufogenin with or without 20 μMMG132 for 24 h. (C) The effect of
SB216763 on suppression of cyclin D1 expression by resibufogenin in HT-29 cells. Cells were treated by 5 μM resibufogenin with or without 30 μM
SB216763 for 3 h. (D) The effect of SB216763 on suppression of cyclin D1 expression by resibufogenin in A549 cells. Cells were treated with 2.5 μM
resibufogenin with or without 30 μMSB216763 for 6 h. In all figures, GAPDH was used as a loading control for protein quantitation. UT, untreated; DM,
treated with DMSO. The band intensity was measured and normalized by GAPDH, and the protein levels are shown at the bottom of each blot.

doi:10.1371/journal.pone.0129851.g005
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with resibufogenin at the indicated concentrations for 24 h and analysed by Western blotting.
GAPDH was used as a loading control for protein quantitation. UT, untreated; DM, treated
with DMSO. The band intensity was measured and normalized by GAPDH, and the protein
levels are shown at the bottom of each blot. The image of GAPDH for CDK2, CDK6 and
p19INK4d is the same as that in Fig 4A due to the same gel.
(TIFF)

S3 Fig. Resibufogenin converts RB protein to the unphosphorylated form with down-regu-
lation of cyclin D1 expression in A549 cells. (A) The effect of resibufogenin on the expression
of phosphorylated RB (p-RB (Ser780) and p-RB (Ser807/811)) and cyclin D1. A549 cells were
treated with resibufogenin at the indicated concentrations for 24 h and analysed by Western
blotting. (B) Time-course study on the phosphorylation status of RB protein and the expres-
sion of cyclin D1. A549 cells were treated with 2.5 μM resibufogenin (R) for 3, 6, or 9 h and
analysed by Western blotting. In both figures, RB or GAPDH was used as a loading control for
protein quantitation. UT, untreated; DM, treated with DMSO. The band intensity was mea-
sured and normalized by RB or GAPDH, and the protein levels are shown at the bottom of
each blot.
(TIFF)

S4 Fig. Resibufogenin does not decrease but increases cyclin D1 mRNA expression in HT-
29 cells. Cells were treated with resibufogenin at the indicated concentrations for 24 h. Cyclin
D1 mRNA was measured by quantitative RT-PCR. Cyclin D1 mRNA was normalized to
GAPDHmRNA, and the data obtained with DMSO was taken as 1. UT, untreated; DM, treated
with DMSO. Data are shown as means (n = 3) ± SD. �P< 0.05, ��P< 0.01, compared with the
DMSO-treated control.
(TIFF)

S5 Fig. Resibufogenin down-regulates the expression of β-catenin. HT-29 cells were treated
by 5 μM resibufogenin (R) for 9 h. The expression of β-catenin was analysed by Western blot-
ting. GAPDH was used as a loading control for protein quantitation. UT, untreated; DM,
treated with DMSO. The band intensity was measured and normalized by GAPDH, and the
protein levels are shown at the bottom of each blot.
(TIFF)

S6 Fig. Resibufogenin does not decrease the phosphorylation status of GSK-3β. The effect
of resibufogenin on the phosphorylation status of GSK-3β (Ser9) (A) or GSK-3β (Thr390) (C) in
HT-29 cells. Cells were treated by 5 μM resibufogenin (R) for 1, 2, or 3 h, and analysed by
Western blotting. The effect of resibufogenin on the phosphorylation status of GSK-3β (Ser9)
(B) or GSK-3β (Thr390) (D) in A549 cells. Cells were treated by 2.5 μM resibufogenin (R) for 3,
6, or 9 h, and analysed by Western blotting. In all figures, GSK-3β was used as a loading control
for protein quantitation. UT, untreated; DM, treated with DMSO. The band intensity was mea-
sured and normalized by GSK-3β, and the protein levels are shown at the bottom of each blot.
(TIFF)

S1 Materials and Methods. Supporting materials and methods.
(DOCX)
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