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Abstract
It has been long recognized that cholesterol is a critical molecule in mammalian
cell biology, primarily for its contribution to the plasma membrane’s composition
and its role in assuring proper transmembrane receptor signaling as part of lipid
rafts. Efforts have also been made to characterize the cholesterol biosynthetic
pathway, cholesterol homeostasis, and cholesterol-derived metabolites in order
to gain insights into their dysregulation during metabolic diseases. Despite the
central role cholesterol metabolism plays in shaping human health, its
regulation during immune activation, such as immune response to pathogens
or autoimmune/autoinflammatory diseases, is poorly understood.
The immune system is composed of several type of cells with distinct
developmental origin, life span, molecular requirements, and gene
expressions. It is unclear whether the same array of cholesterol metabolism
regulators are equally employed by different immune cells and whether distinct
cholesterol metabolites have similar biological consequences in different
immune cells.
In this review, we will describe how cholesterol metabolism is controlled during
the adaptive and the innate immune response and the role for intracellular and
extracellular receptors for cholesterol and its derivatives.
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Introduction
Cholesterol has a central and ubiquitous role in mammalian  
cells, as the pathway of cholesterol biosynthesis from acetyl  
coenzyme A is active in all nucleated cells and cholesterol 
is an essential component of mammalian plasma membrane, 
accounting for up to 25% of all membrane lipid. The choles-
terol structure confers rigidity to the plasma membrane; thus, a  
different percentage of cholesterol results in different plasma  
membrane rigidity. Several biological processes are controlled 
by cholesterol-containing lipid rafts on the plasma membrane,  
including transmembrane receptor signaling and virus entry and 
budding1.

Despite the critical role for cholesterol in mammalian  
membrane homeostasis, excess cellular cholesterol is toxic and 
therefore cholesterol biosynthesis requires tight regulation.  
Cholesterol has been recognized to exert a negative feedback  
loop on its own biosynthesis and uptake, and its metabolism 
has been extremely well characterized molecularly. Although  
virtually all mammalian cells are dependent on cholesterol  
metabolism, there is a limited understanding of how choles-
terol metabolism is regulated in the steady state and during 
immune activation, such as in response to infection and during  
autoimmunity.

Dissecting how cholesterol shapes the immune response is  
complicated by the multilayered, complex role of cholesterol: 
in addition to having its own effects on cellular homeostasis,  
cholesterol is the substrate for the production of several 
metabolites, including oxysterols2, bile acids3, and steroid  
hormones4. These cholesterol-derived metabolites have diverse 
immunomodulatory as well as metabolic effects; the intracel-
lular and extracellular receptors for cholesterol and its deriva-
tives have not been completely characterized in every immune 
cell type; and the potentially different impact of cholesterol  
origin (dietary or endogenous) on immune activation has not 
been fully understood. In this review, we will describe the  
main regulators of cholesterol metabolism and their role in the 
adaptive and the innate immune response.

SREBP
Groundbreaking work from Goldstein et al. defined cholesterol 
as a key molecule in suppressing its own biosynthesis through 
a negative feedback circuit5. Cholesterol exerts its function by  
preventing sterol response element-binding proteins (SREBPs) 
from promoting sterol biosynthesis. SREBPs are transcription 
factors that promote the transcription of enzymes in the  
cholesterol biosynthetic pathway, including 3-hydroxy-3- 
methylglutaryl-CoA reductase (HMGCR), as well as the low-
density lipoprotein (LDL) receptor, which is responsible for  
cholesterol uptake6. In the presence of cholesterol, SREBPs  
are kept in the endoplasmic reticulum (ER) by the multi- 
transmembrane SREBP cleavage-activating protein (SCAP) 
which binds the ER-resident insulin-induced gene (INSIG)7. 
SCAP contains a sterol-sensing domain that is thought to bind  
ER membrane cholesterol8; when cholesterol levels drop in 
the ER, SCAP detaches from INSIG through a conformational  
change9. SCAP then escorts SREBPs into the Golgi, where 
site 1 and site 2 proteases cleave SREBPs and activate them as 

transcription factors10. SREBP family members include three  
proteins: SREBP1a, SREBP1c, and SREBP211.

SREBP2 is encoded by the Srebf2 gene, whereas SREBP-1a 
and SREBP-1c both are encoded by the Srebf1 gene: SREBP-1a 
and SREBP-1c are different isoforms of SREBP1 that arise 
from alternate promoter usage. Despite their similar regula-
tion, SREBP proteins have a distinct effect on cellular lipid  
metabolism. SREBP1c controls the transcription of genes  
involved in the biosynthesis of fatty acids; SREBP2 controls 
the transcription of genes involved in cholesterol biosynthesis,  
intracellular lipid movement, and lipoprotein import, whereas  
the SREBP1a transcriptional regulon partially overlaps with that  
of SREBP1c and SREBP2.

LXR
The liver X receptor alpha (LXRα) and beta (LXRβ) are  
members of the nuclear hormone receptor family of transcrip-
tion factors that have key roles in regulating the homeostasis of  
cholesterol and fatty acids. LXRα and LXRβ have distinct  
patterns of expression; LXRβ is ubiquitously expressed across  
most cell types, whereas LXRα is restricted mainly to adipose  
tissue, the liver, and the intestine.

LXRs control intracellular levels of cholesterol by transcribing 
genes that encode proteins involved in sterol efflux, such as  
Abca1, Abcg1, and Apoe, therefore preventing cholesterol  
accumulation. LXRs also induce the expression of SREBP1c 
and enzymes involved in fatty acid remodeling, such as Elovl5, 
Fads2, Scd1, and Scd2. As LXRs are thought to work in a  
ligand-dependent manner, several efforts have been made to  
define the endogenous ligands for LXRs, but so far the identity 
of native ligands that activate LXRs in vivo has remained  
elusive.

Oxysterols
Cholesterol can be enzymatically modified to form metabo-
lites with diverse bioactivities3. The most characterized proximal  
cholesterol metabolites are oxysterols, which are oxidized via 
hydroxylation reactions typically on the non-cyclic side chain 
of cholesterol. 25-hydroxycholesterol (25-HC) is synthesized 
from cholesterol by the addition of a hydroxyl group at posi-
tion 25: the enzyme responsible for 25-hydroxylation reaction  
is cholesterol 25-hydroxylase (CH25H), a multi-transmembrane 
ER protein. 27-HC is instead generated through the action  
of the sterol 27-hydroxylase CYP27A1, a mitochondrial cyto-
chrome P450 oxidase. Both 25-HC and 27-HC can be hydrox-
ylated at the 7α position by the enzyme 7α-hydroxylase 
(CYP7B1) to generate 7α,25-HC and 7α,27-HC. CYP7B1 is 
a cytochrome P450 family enzyme and is also situated in the 
ER. Both CYP7B1 and CYP27A1 are abundant in the liver, 
whereas CH25H is virtually absent in the liver under homeostatic  
conditions. This is in line with the described role of CYP27A1 
and CYP7B1, but not CH25H, in the conversion of cholesterol 
into bile acids, making several oxysterols de facto bile acid  
synthesis intermediates. Interestingly, all three enzymes can 
be found, albeit with a range of expression, in several other  
tissues. These include primary and secondary lymphoid organs,  
suggesting that they might play a role in a distinct set of  
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biological processes, particularly immune regulation. Similar 
to other 7α-hydroxylated sterols, 7α,25-HC and 7α,27-HC 
are metabolized by the enzyme 3β-hydroxysteroid dehydroge-
nase type 7 (HSD3B7), which is situated in the ER. HSD3B7,  
similar to CYP7B1 and CYP27A1, is very abundant in the liver 
and it is essential for bile acid synthesis; nevertheless, its ability 
to metabolize 7α,25-HC and its expression in other tissues  
suggest that it has an extrahepatic role in controlling oxysterol  
levels.

Regulation of the SREBP pathway in macrophages
Studies from the 1970s found that the addition of 25-HC 
to mitogen-stimulated lymphocyte cultures could repress  
proliferation12. Intriguingly, the inhibited lymphocyte prolifera-
tion in the presence of 25-HC could be rescued by cholesterol, 
suggesting that 25-HC could repress cholesterol biosynthesis.  
This phenomenon was subsequently explained by studies  
demonstrating that 25-HC can inhibit SREBP activation via  
direct binding to Insig-19. This causes Insig-1 to associate with 
the SCAP/SREBP complex and trap it in the ER. These data  
suggest that there are two layers of feedback regulation for  
the SREBP pathway: cholesterol-based feedback and oxysterol- 
based feedback.

Despite ample biochemical evidence that 25-HC is a potent  
inhibitor of SREBP, the role of oxysterols in controlling  
cholesterol biosynthesis has been controversial. Initial analysis 
of Ch25h-knockout mice, which are thus 25-HC-deficient, found 
no evidence of homeostatic cholesterol abnormalities3. This  
suggested that perhaps endogenous 25-HC plays a non-essential 
or redundant role in restricting SREBP activity. However, it is  
important to consider that levels of homeostatic cholesterol,  
particularly serum LDL and high-density lipoprotein (HDL),  
are controlled predominantly by hepatic lipoprotein metabolism. 
As described above, hepatic Ch25h expression levels are very  
low at baseline and this likely explains the lack of a genetic  
requirement for Ch25h in controlling whole animal cholesterol 
metabolism.

It is now appreciated that Ch25h is a type I interferon  
(IFN-I)-inducible enzyme, particularly in myeloid cells3–5. This 
is consistent with previous studies showing that IFN-I causes  
repression of cholesterol biosynthesis13. However, Blanc et al. 
and Liu et al. found that while Ch25h/25-HC has antiviral  
activity downstream of IFN-I signaling, this was uncoupled  
from its ability to inhibit the SREBP pathway, as expression 
of the constitutively active nuclear form of SREBP2 could not 
rescue the antiviral activity13,14. The authors proposed distinct  
models to explain the antiviral action of 25-HC. Liu et al. found 
that 25-HC inhibits the entry of viruses into cells, potentially  
through remodeling of the host cell plasma membrane to  
prevent viral particle fusion. On the other hand, Blanc et al.  
suggested that 25-HC blocks viral replication through inhibition 
of isoprenoid biosynthesis, as the addition of geranylgeraniol  
to 25-HC-treated cells could rescue viral titers. Recently,  
Bensinger et al. uncovered an additional co-regulation between 
IFN-I and cholesterol, as they showed that limiting the pool 
size of cholesterol synthesis induces type I IFN response in a  

STING (stimulator of type I IFN genes)-dependent manner 
and protects them from viral infection15. Similarly, Ghazal et al.  
showed that an IFN-induced microRNA (miRNA), miR-342-5p, 
targets mevalonate-sterol biosynthesis through multiple 
mechanisms suppressing the pathway at different functional  
levels, further underlining the importance of IFN-I-cholesterol  
biosynthetic cross-talk in antiviral response16.

While the studies on IFN-I induction of Ch25h in the context of 
viral infection did point to a physiological role of oxysterols in  
controlling cholesterol metabolism, Reboldi et al. demon-
strated for the first time that endogenous 25-HC controls SREBP  
activity in the context of inflammation17. The authors found that  
Ch25h knockout mice have increased interleukin-17A (IL-17A) 
production from αβ and γδ T cells in secondary lymphoid 
organs. Additionally, bone marrow-derived macrophages 
(BMDMs) from Ch25h-knockout mice have augmented tran-
scription and secretion of the cytokine IL-1β, a potent inducer 
of IL-17A from lymphocytes, in response to lipopolysac-
charide (LPS). Importantly, transcriptome analysis revealed 
that while unstimulated Ch25h-knockout BMDMs have no  
difference in SREBP pathway activity compared with wild- 
type cells, Ch25h-deficient BMDMs show hyper-SREBP activity 
upon LPS stimulation. Overexpression of Insig-1 and deletion 
of SCAP both decreased Il1b mRNA levels, suggesting that 
SREBP can promote Il1b transcription either directly or  
indirectly.

IL-1β and its family member IL-18 are unique among cytokines 
in that they lack a leader sequence for canonical protein  
secretion18. Instead, IL-1β and IL-18 normally exist as cytosolic 
pro-form cytokines that must be cleaved for activation and  
cellular release. Activation of these cytokines is regulated by a  
multimeric protein complex known as “the inflammasome”, 
which consists of an NLR/ALR family sensor protein, an  
adaptor protein called ASC, and the cysteine protease caspase-1. 
Ligand binding to an inflammasome sensor protein causes ATP- 
dependent oligomerization and recruitment of ASC through  
PYRIN domain interactions. ASC then recruits caspase-1 via  
binding of their respective CARD domains. Because this  
complex is oligomeric, multiple caspase-1 proteins are brought  
into close proximity, which promotes caspase-1 autoproteolysis  
and release of its active form that subsequently can process  
IL-1β and IL-18.

Since Ch25h-deficient BMDMs hyper-secrete IL-1β in response 
to LPS, this leads to the question of how the SREBP pathway 
and cholesterol pathway connect with inflammasome  
activation. Dang et al. found that dysregulation of macrophage 
cholesterol biosynthesis is sufficient to promote inflammasome 
activation and IL-1β processing19. Surprisingly, this seems to be 
downstream of the AIM2 inflammasome sensor protein, which  
canonically recognizes cytosolic double-stranded DNA (dsDNA). 
The authors found that dysregulated cholesterol biosynthesis 
in Ch25h-deficient BMDMs can cause mitochondrial damage,  
leading to release of mitochondrial DNA into the cytosol, 
thus providing a spurious ligand for AIM2. Additionally,  
NLRP3 was found to play a partially redundant role in driving  
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inflammasome activation in response to cholesterol. This is  
consistent with studies showing that macrophage cholesterol 
accumulation in Abca1/Abcg1 double-knockout mice causes  
NLRP3 activation20.

Liver X receptors control macrophage inflammatory 
signaling
As described above, LXRs are key transcriptional regulators 
of cholesterol efflux in response to sterol overload. However, 
like SREBPs, LXRs are appreciated to have additional roles in  
controlling macrophage inflammation. Transcriptional studies 
found that the addition of the synthetic LXR agonist GW3965 to  
BMDMs could repress the expression of nuclear factor-kappa B 
(NF-κB) target genes in response to LPS treatment21. This was 
shown to be dependent on LXRs, as LXRαβ double-knockout  
macrophages were no longer responsive to GW3965, clearly  
demonstrating that LXR has the capacity to inhibit inflamma-
tion. Less clear is whether inflammatory/anti-inflammatory  
signals promote the expression of endogenous LXR agonists 
in macrophages, as most of the functional studies looking at the  
role of LXRs in inflammation have relied on the use of synthetic 
agonists.

The mechanism underlying LXR-dependent suppression of 
inflammatory signaling is also open to debate. Current evidence  
suggests that ligand binding promotes LXR SUMOylation, 
which causes LXR to target gene promoters for Toll-like receptor 
(TLR) target genes22. NCoR co-repressor complexes need to be  
removed from gene promoters in order for transcriptional 
activation to occur. This removal requires a member of the  
NCoR complex known as Coronin 2A, which binds to nuclear 
actin and thus promotes actin-dependent removal of NCoR from 
gene promoters23. It has been shown that SUMOylated LXR  
prevents turnover of NCoR complexes from TLR target gene 
promoters by interfering with Coronin 2A binding to nuclear  
actin23. These data suggest a direct inhibition model for LXR  
repression of inflammatory gene induction, whereby binding to 
specific gene promoters prevents their transcription. However, a  
study by Ito et al. suggested that LXR primarily inhibits inflam-
matory signaling via its ability to promote Abca1/Abcg1- 
dependent cholesterol efflux24. The authors found that GW3965 
is no longer capable of suppressing TLR target gene transcrip-
tion in Abca1-knockout macrophages that are impaired for effi-
cient cholesterol efflux. The authors argue that the promotion of  
cholesterol efflux by LXR prevents the recruitment of MyD88 
and TRAF6 to TLR signaling clusters on the plasma membrane24. 
Rong et al. additionally found that treatment of macrophages 
with GW3965 promotes the transcription of Lpcat3 in an LXR- 
dependent manner25. Lpcat3 is a phospholipid (PL) remodeling 
enzyme that preferentially incorporates polyunsaturated fatty 
acids into PLs. The authors showed that knockdown of Lpcat3  
induces ER stress and activation of NF-κB-dependent cytokines 
in response to saturated fatty acid challenge. These data suggest 
that an additionally anti-inflammatory mechanism for LXR is  
preventing ER stress via induction of Lpcat3. The studies by 
Ito et al. and Rong et al. challenge the concept that LXR has  
direct repressor activity on inflammatory genes. Resolution of  
these conflicting models will require better reagents to assess 

genome-wide LXR target binding, as it would be of interest 
to determine whether Abca1 deficiency affects LXR target  
choice.

Despite its described role in repressing inflammatory gene  
induction, LXR has also been described to be required for host  
survival of intracellular bacterial infection. LXRαβ double- 
knockout mice are more susceptible to Listeria monocytogenes 
infection, by both survival and colony-forming unit (CFU)  
analysis26. This was initially argued to be a result of LXR- 
dependent control of macrophage survival, as LXR-deficient 
BMDMs were more apoptotic when challenged with bacteria, 
potentially due to decreased expression of SPα. However, these 
interpretations are complicated by recent data showing that 
LXRα is critical for development and maintenance of liver and  
splenic tissue macrophage populations27. LXRα-knockout mice 
have dramatically decreased homeostatic numbers of Kupffer 
cells and splenic marginal zone macrophages, which could be a  
simple explanation for why these mice are susceptible to  
bacterial infections with a predilection for those organs. It is not 
clear whether LXRα promotes the differentiation or survival 
of liver and spleen macrophage populations. It is tempting to  
speculate that these macrophages are constantly being loaded 
with cholesterol because of phagocytosis of red blood cells and 
other circulating apoptotic cells and thus that the requirement for  
LXRα reflects an adaptation to tissue-specific metabolic stress.

Cholesterol metabolism in T-cell and B-cell 
proliferation
The role of cholesterol in adaptive immune response was origi-
nally investigated in the context of lipid raft and antigen recep-
tor signaling. Lipid rafts are plasma membrane microdomains 
with distinct lipid composition from the surrounding membrane, 
as they are enriched in cholesterol as well as in glycosphin-
golipids and sphingomyelin. Lipid rafts are stabilized by the  
addition of cholesterol, suggesting that intracellular cholesterol 
metabolism could control raft formation. Historically, the inves-
tigation of cholesterol significance in lipid raft during adaptive 
cell activation relied on chemical compounds, such as methyl 
β-cyclodextrin, to deplete cholesterol from the membrane 
raft and then assess B-cell receptor (BCR) and T-cell receptor 
(TCR) signaling28,29. However, these molecules often have a 
global effect on the plasma membrane and actin cytoskeleton,  
preventing us from drawing a conclusion about the role of  
cholesterol in the lipid raft. Most recently, the role of choles-
terol and its metabolism in TCR signaling has been addressed 
in a more mechanistic way. For example, Xu et al. showed that  
inhibiting cholesterol esterification in T cells by genetic ablation 
or pharmacological inhibition of ACAT1, a key cholesterol 
esterification enzyme, potentiates CD8+ T-cell effector function  
against tumors30. This effect was due to augmented plasma  
membrane cholesterol content that led to increased TCR  
clustering and immunological synapse formation30. The central role 
of cholesterol metabolism in controlling TCR signaling has also 
been highlighted by the findings of Davis et al., who showed that 
cholesterol sulfate, a naturally occurring analog of cholesterol, 
acts as a negative regulator of TCR signaling by disrupting TCR  
nanoclusters31.
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Upon antigen receptor stimulation, T cells and B cells activate a 
proliferative program that requires cell enlargement, organelle 
biogenesis, and cellular replication: in order to sustain the  
increased metabolic demands, anabolic pathways must be 
turned on, and they dominate the cellular metabolism32. The 
first evidence that cholesterol metabolism was critical for  
lymphocyte activation came from experiments taking advantage  
of statins, drugs that block HMG-CoA reductase, the enzyme 
responsible for catalysis in the rate-limiting step of cholesterol 
biosynthesis. T cells activated in vitro and treated with statin 
showed impaired proliferation33; B cells showed a similar 
sensitivity to statin, but they strongly upregulate enzymes 
involved in the cholesterol biosynthetic activation upon  
CD40–CD40L interaction, the second signal in B-cell activation 
that has different kinetics and anatomic requirements in 
comparison with the BCR ligation34. The statin inhibitor  
effect is related to the cholesterol biosynthetic pathway but  
might not be directly dependent on the intracellular cholesterol  
levels. To fully characterize the role of cholesterol metabolism, 
new genetic and biochemical tools that allow a restricted and  
timely inhibition of distinct protein in the cholesterol pathway will 
be needed.

One critical observation of the central role for cholesterol  
metabolism during T-cell and B-cell proliferation came from 
the age-dependent expansion of T cells and B cells in mice  
deficient in both LXRα and LXRβ35. Bensinger et al. suggested 
that oxysterols, not cholesterol per se, were acting as ligands for  
LXRs, as the addition of exogenous oxysterol activated LXRs 
in lymphocytes and blocked proliferation in an LXR-dependent  
fashion.

This observation was in line with the nature of several ligands 
of other nuclear hormone receptors, which are often small  
lipophilic molecules, and with the strong upregulation of the  
enzyme SULT2B1 upon T-cell activation. As SULT2B1 metabo-
lizes oxysterols, it reduces oxysterol intracellular concentration  
and therefore their availability as LXR ligands.

The decreased signaling through LXR during T-cell activation was 
accompanied by a concomitant activation of SRBEP pathways, 
as SREBP-2 and SREBP1 target genes were strongly induced.  
More recently, it has been shown that, in CD8+ T cells, both 
SREBP1a and SREBP2 directly control cell growth and  
proliferation by mediating the lipid-anabolic program36. T cells 
lacking SREBP chaperone SCAP showed impaired prolifera-
tion and reduced cell enlargement because of a block in G

0
–G

1
.  

Pathway analysis suggested that SREBPs specifically regulated 
lipid anabolism and growth of T cells without perturbing TCR  
signaling or influencing other aspects of T-cell activation.

The described model that places LXR and SREBPs as central  
players during lymphocyte activation through the intracellular  
level of cholesterol and oxysterol does not completely recapitu-
late the in vivo observations. For example, although SCAP is  
critical in inhibiting SREBP activity in T cells and in influenc-
ing CD8+ proliferation in vitro, deletion of SCAP in vivo does 
not affect T-cell homeostasis, suggesting the possibility that other  
pathways are involved in controlling T-cell activation and play 

a more central role. Lymphocyte proliferation in vitro can be  
reduced in an LXR-dependent way with exogenous oxysterol 
treatment; nevertheless, mice deficient in the enzymes required  
for the generation of LXR-activating oxysterols did not show  
lymphocyte expansion. These discrepancies could have several 
non-mutually exclusive explanations: it is possible that in vivo  
different oxysterols play a redundant role in controlling lym-
phocytes through LXR; thus, only concomitant ablation of  
several enzymes would recapitulate the phenotype observed in 
LXR-deficient mice. It is also conceivable that other ligands for 
LXRs exist in vivo and that they are not cholesterol derivatives.

Oxysterols control immune cell migration
Despite the inconclusive data on the role of oxysterols in regu-
lating T-cell and B-cell activation in vivo through SREBPs and 
LXR in vivo, more robust evidence exists for the oxysterols as  
migratory cues that shape the adaptive immune response37. In 
the effort to identify the ligand for the orphan receptor EBI2, 
two oxysterols—7α,25-HC and 7α,27-HC—were identified as 
EBI2 ligands38. 25-HC and 27-HC, which lack a single hydroxyl  
group and thus are intermediates in the enzymatic reaction that  
produces 7α,25-HC and 7α,27-HC, are not able to activate  
EBI2. EBI2 is expressed by several immune cells but is especially 
high in B cells and is rapidly upregulated upon BCR stimula-
tion. B cells rely on EBI2 to reach the outer follicles shortly after  
antigen engagement and then use both CCR7 and EBI2 to 
position at the T–B border and finally in the interfollicular  
regions and the outer follicle39. B cells deficient in EBI2 failed 
to properly migrate in the required microanatomic location 
of lymphoid organs and show reduced T cell-dependent  
antibody responses40,41. Genetic manipulation of the enzymes 
involved in the generation of EBI2 ligands reduced in vivo  
production of 7α,25-HC and 7α,27-HC and phenocopied the  
EBI2-deficient mice42. In addition to controlling B cells, EBI2  
ligands control the positioning of a variety of immune cells  
in vivo: T follicular helper cells43,44, ILC345,46, and dendritic  
cells47,48. In vivo, the location of the enzymes required for EBI2 
ligand gradient generation has been characterized at least in  
the spleen, and both hematopoietic and non-hematopoietic cells 
have been shown to be involved in EBI2 ligand generation42.  
Ch25h transcript is abundantly found in the outer follicle and 
within interfollicular regions, including in the marginal zone 
bridging channel, but is low in B-cell follicles and the T-cell  
zone. In contrast, Cyp27a1 transcript is abundant in marginal  
zone bridging channels as well as in the T-cell zone but low in 
B-cell follicles. The transcript for Cyp7b1, the enzyme that can  
metabolize both 25-HC and 27-HC to the corresponding 7a  
EBI2 ligand, is instead more evenly distributed49. Such striking 
differences for the splenic pattern of Ch25h and Cyp27a1 
suggest that, although both act on EBI2, 7α,25-HC and  
7α,27-HC might be sensed by distinct cells: why multiple EBI2  
ligands exist and what their functional implications are in vivo  
are not fully understood.

Cholesterol biosynthetic intermediates as RORγt 
ligands
Oxysterols, including 25-HC, have been initially identified as  
RAR-related orphan receptor gamma t (RORγt) activators in  
biochemical assays50. RORγt is an orphan nuclear receptor that 
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is critical for lymphoid tissue organogenesis, T helper 17 (Th17) 
cells, and innate lymphoid cell group 3: digoxin was identified 
as an RORγt antagonist on the basis of its ability to displace  
25-HC binding to RORγt51. However, mice lacking 25-HC  
production did not show decreased IL-17 response or  
impaired lymphoid organogenesis, ruling out 25-HC as an 
RORγt activator in vivo. Two other oxysterols—7b,27-HC and  
7a,27-HC—have also been suggested to be natural ligands for  
RORγt52, and mice deficient in the enzyme Cyp27a1 indeed  
showed reduced IL-17-producing cells. Such reduction was 
observed only in young animals, and Cyp27a1-deficient mice  
were not protected during IL-17-dependent immune disease 
models, suggesting that other RORγt ligands—endogenous or  
exogenous or both—might exist.

More recently, RORγt ligand was mapped as a cholesterol  
biosynthetic intermediate (CBI) by an insect cell-based RORγt 
reporter system53. Deficiency in two enzymes involved in 
CBI resulted in distinct phenotypes for RORγt+ cells: lack of  
Cyp51 showed smaller lymph node anlagen in embryo at E14.5, 
while T cell-restricted Sc4mol deficiency led to partial reduction 

of in vitro Th17 cells but had no impact on lymph node  
development. Such partial and cell-specific phenotypes suggest 
that multiple ligands could regulate RORγt function in vivo and  
specific CBI might act as an RORγt ligand in distinct cells.

More studies are needed to fully capture the in vivo production 
of cholesterol metabolites and their source and their effect on  
immune cells. Only the systematic combination of enzymatic  
deficiency and receptor deficiency in vivo will allow us to  
dissect the role of the cholesterol metabolite in the maintenance, 
regulation, and activation of both innate and adaptive immune  
systems.
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