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Abstract: The development of white light emitting diodes (WLEDs) holds great promise for replacing
traditional lighting devices due to high efficiency, low energy consumption and long lifetime. Metal-
organic frameworks (MOFs) with a wide range of luminescent behaviors are ideal candidates to
produce white light emission in the phosphor-converted WLEDs. Encapsulation of emissive organic
dyes is a simple way to obtain luminescent MOFs. In this review, we summarize the recent progress on
the design and constructions of dye encapsulated luminescent MOFs phosphors. Different strategies
are highlighted where white light emitting phosphors were obtained by combining fluorescent dyes
with metal ions and linkers.
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1. Introduction

White light emitting diodes (WLEDs), as solid-state lighting sources, have attracted
increasing attention in the past decades owing to their potential applications in displays
and lighting [1]. WLEDs are energy saving and environmentally friendly, and have higher
luminous efficiency than conventional incandescent and fluorescent lamps [2]. Moreover,
WLEDs emit polychromatic light rather than monochromatic light that was emitted by
traditional light emitting diodes (LEDs) [3]. It is well known that white light can be
generated by mixing primary colors (red, green and blue) in appropriate proportions or
using a pair of complementary colors [4]. Light sources with Commission International
de l′Eclairage (CIE) coordinates (0.33, 0.33), color correlated temperature (CCT) between
2500 K and 6500 K, and color rendering indices (CRI) value above 80 are preferred for
high-quality white light illumination [5]. Quantum yield (QY) is another important photo-
physical parameter, which refers to the ratio of photons emitted to the photons absorbed
(unless otherwise specified, QY in this review is the absolute quantum yield). Currently,
there are mainly two approaches to produce WLEDs: (1) multichip combination, in which
three LEDs with primary colors are mixed appropriately to generate white light [6] and
(2) phosphor-converted WLEDs (pc-WLEDs) approach, where phosphors are excited by a
single-chip LED to produce white light. For pc-WLEDs, white light can often be obtained
by a blue LED coated with a yellow-emitting phosphor or a ultraviolet (UV) LED coated
with mixing phosphors [7]. Most commercially available WLEDs are pc-WLEDs due to the
high cost and poor color stability of the color-mixed LEDs [8]. The first commercial WLED
was developed by Nichia Chemical Co. in 1996 [9], which adopted a blue LED (InGaN)
with yellow-emitting phosphor (YAG:Ce). Since then, tremendous progress has been made
and the luminous efficacy has increased from 5 lm/W to over 300 lm/W [3]. Phosphors are
of vital importance in determining the optical properties of WLEDs, including luminous
efficiency, chromaticity coordinates, color temperature, lifetime and reliability. WLEDs
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phosphors should have the following properties: strong light absorption, broad excitation
spectrum, useful emission spectrum, high quantum efficiency, optimal Stokes shift, high
stability, etc. [4]. Current phosphors are almost all based on rare-earth metals and their
self-quenching and absorption effects lower the phosphor performances [10]. Therefore, it
is urgent to develop new phosphors, especially organic luminescent phosphors.

Metal-organic frameworks (MOFs) are a class of porous crystalline materials com-
posed of inorganic and organic moieties via coordination bonds, which are known for
tunable pore size, high surface areas, structure flexibility and multiple functionality. These
extraordinary properties have made MOFs ideal candidates for catalysis, gas storage and
separation, membranes, biomedical imaging and luminescence-based sensing and light-
ing [11,12]. Specially, MOFs offer a unique platform for the development of luminescent
materials due to structural predictability, multifunctionality, nanoscale processability and
well-defined environments for luminophores in crystalline states [13,14]. Luminescence in
MOFs can arise from organic ligands, metal ions and charge transfers such as ligand-to-
metal charge transfer (LMCT), metal-to-ligand charge transfer (MLCT), ligand-to-ligand
charge transfer (LLCT) and metal-to-metal charge transfer (MMCT) [15]. In addition, some
guests introduced into MOFs via supramolecular interactions can emit or induce lumines-
cence, and white light can be easily obtained by rational structure design and luminescent
guest selection. Overall, these various effects have naturally led to speculation that MOFs
could find potential applications in WLEDs. The first attempt to obtain white light by
using MOFs can be traced back to 2007 [16]. Since then, different color-emitting lanthanide
metals, conjugated organic ligands and guest species such as dye molecules and quantum
dots have been incorporated in MOFs to generate white light [17,18].

Encapsulation of emissive organic dyes is quite a simple way to obtain MOFs with
multiple luminescence emissions [19]. Organic dyes are probably the most widespread
fluorophores among the luminescent materials because of wide excitation band, large
absorption coefficient, moderate-to-high quantum yields, short fluorescent lifetime and
great availability [20]. However, there are two serious problems when directly applying
organic dyes in WLEDs. One is the aggregation caused quenching (ACQ) effect induced by
π-π stacking interactions of the organic dyes, which results in low fluorescence intensity in
solid states in comparison with their bright solution states. Additionally, the other is the
thermal and photo-stability of organic dyes [10]. MOFs are ideal supporting materials to
prevent organic dyes aggregating in solid states [21,22], since MOFs are highly porous and
able to encapsulate molecular dyes in confined pores, so they are capable of preventing
aggregation-induced quenching and restricting internal molecular motions to inhibit non-
radiative relaxation [23]. In addition, by carefully choosing fluorescent linkers and organic
dyes, MOFs can serve as an antenna to transfer energy to the dyes. The emissions from
encapsulated dyes can be easily adjusted by changing the component and content of dyes.
Moreover, diverse luminescence properties can be achieved by engineering interactions be-
tween dyes and constituents of MOFs. Thus, encapsulation of dyes into MOFs is massively
proposed as phosphor converters in white light emitting diodes [21].

There are three major methods to encapsulate organic dyes in MOFs [21]. The first is
the two-step synthesis method, in which the pristine MOF is synthesized first and then
immersed in a solution of fluorescent dyes. Despite the simplicity of this approach, the
mismatch size between MOF aperture and organic dyes not only restricts the choice of
dyes, but also causes guest leakage, which hiders the extensive application of this approach.
The second is the in situ encapsulation method, where dyes are introduced during the
crystal formation. Although this method is helpful in obtaining fluorescent MOFs with
uniform distribution of fluorescent dyes, more factors including pore size, pore windows
and structures of MOFs for desired organic dyes should be considered. The final method
is to use fluorescent linkers incorporated in the frame of MOFs, in which permanent
fluorescence can be easily obtained, although the steric hindrance caused by bulky ligands
often reduces the yield of the fluorescent of MOFs. In practice, fluorescent ligands are
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often combined with dyes to induce dual emissions, and the ligand-to-dye energy transfer
process can be controlled by changing the excitation energy.

MOFs materials with porosity, multifunctionality and crystallinity have aroused much
interest since the debut of the “metal-organic frameworks” concept in 1995 [24], and the
scope of this research has expanded from structure design and topology analysis to a
wide range of applications in gas storage, catalysis and biomedicine [11,12,25–28]. A
number of excellent reviews have summarized the properties and applications of lumi-
nescent metal–organic frameworks (LMOFs) [8,10,13–15,17,19,20,29–32], while the reviews
that specifically and systemically discuss the encapsulation of organic dyes in MOFs
(dye@MOFs) for WLEDs applications are still rare. This review mainly summarizes recent
progress achieved in developing pc-WLEDs based on dye@MOFs, where white light can be
generated by coating the dye encapsulated MOF hybrids on the corresponding blue-LED
chip or UV-LED chip. The emphasis was put on the white light emitting phosphors fabrica-
tion. The origin of luminescence in dye@MOFs has been discussed to tune high-quality
white light.

2. Phosphors Excited by Blue-LED Chip

The combination of a blue-LED chip with yellow phosphors belongs in a partial
conversion. The blue light emitting from LED chip is partially absorbed by the phosphor
and refurbished into yellow light, while the remaining part of blue light is transmitted
through the phosphor [3]. The blue and yellow light, as a pair of complementary colors,
mix together to generate white light. Generally, compared to the UV chip WLEDs, the blue
LED chips have higher theoretical efficiency, better reproducibility and lower input energy,
so they are quite attractive for low-cost bright white-light sources [33]. However, these
WLEDs often show low CRI and high CCT caused by red emitting deficiency, which limits
their indoor use. In the past decades, the design and synthesis of new blue-light-excitable
single-phase phosphors have emerged as a hot research area, and much progress has been
made in improving color-rendering properties, especially benefiting from the development
of MOF materials. From a fundamental point of view, the abundant luminescent behaviors
and ordered structures of MOFs allow for the fine-tuning of emission color across the CIE
diagram and improve luminescent intensity simultaneously.

An effective way to improve color-rendering properties is to broaden the emission
spectra. Qian et al. [34] simultaneously encapsulated green-emitting coumarin 6 (Cou-6),
yellow-emitting rhodamine 6G (R6G) and red-emitting rhodamine 101 (R101) into a MOF
crystal to synthesize a yellow broadband phosphor ZJU-28⊃Cou-6/R6G/R101 via ion
exchange method. By coating the single-phase phosphor ZJU-28⊃Cou-6/R6G/R101 on
commercial blue LED chips, the WLED lamp exhibits bright white light with luminous
efficiency of 126 lm/W, CRI of 88 and CCT of 4446 K, and the total quantum yield (QY)
can reach up to 82.9%. The good performance was ascribed to the high intrinsic quan-
tum yields of dyes and fluorescence resonance energy transfer (FRET) process between
them. In addition, the confinement effects of the MOFs can effectively inhibit the ACQ of
dye molecules.

WLEDs can also be fabricated by combining blue chips with dye@MOFs and other
commercialized phosphors [35]. Various concentration of rhodamine (Rh) dye was adopted
to synthesize a series of Rh@bio-MOF-1 via cation exchange, and then the mixtures of
the yellow-emitting Rh@bio-MOF-1, green (Ba,Sr)2SiO4:Eu2+ and red CaAlSiN3:Eu2+ were
coated on the blue LED chip to form phosphor film, which exhibits high luminous efficacy
of 94–156 lm/W, CRI of 80–94 and excellent stability.

Unlike ion exchange, in situ encapsulation, in which fluorescent dyes are incorporated
into the pores during the preparation of MOF crystals, have the advantage of uniform
distribution of the fluorescent molecules, as long as the dyes can stand the synthesis condi-
tions of MOFs. Li et al. [36] adopted the in situ encapsulation approach to avoid tedious
ion-exchange synthesis and prevent dye leakage. Two yellow-emitting nanocomposites
R6G@ZIF-8 and DBNT@UiO-66 with solubility compatibility and solution processability
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were synthesized, which can be excited by blue light to generate white light with absolute
quantum yield of 63.1% and 22.7%, respectively. Similarly, Qian et al. [37] incorporated
red, green and blue dyes into ZIF-8 by in situ self-assembly process to fabricate stable
remote-type incandescent white-light device. They evaluated the thermostability and
photostability of TPU-encapsulated ZIF-8⊃pm546/pm605/SRh101 phosphor in detail, and
found the stability was greatly enhanced with TPU coating, which was ascribed to the
protection against the oxygen and water invasion.

Guest species like carbon dots with strong resistance to irradiation and heat are
preferable in order to improve the stability of phosphors. Li et al. [38] encapsulated
both green-emitting carbon quantum dots (CQDs) and red-emitting rhodamine B (RhB)
into ZIF-8, where RhB molecules can be sensitized by CQDs. Single-phase single-shell
CQDs&RhB@ZIF-82 and single-phase multi-shell CQDs@ZIF-82@RhB@ZIF-82 were fabri-
cated as yellow phosphors. Multi-shell CQDs@ZIF-82@RhB@ZIF-82 shows higher lumi-
nescence efficiency due to a large spatial distance that can suppress the FRET interactions
between CQDs and dyes. Benefiting from the host-guest shielding effect, the stability of
hybrid materials can be further improved. Tan et al. [39] conducted a long-term material
stability test on dye-encapsulated MOF Gaq3@ZIF-8, and the results showed that after
8 months, not only the structure of ZIF-8 could remain stable with Gaq3 dye being encap-
sulated, but also the absolute QY of Gaq3@ZIF-8 (15%) was exactly the same as prepared,
which demonstrates that when trapping Gaq3 in ZIF-8 pores, the host can act as a shield
to protect Gaq3 from photodegradation. A WLED emitting uniform white light could be
obtained by coating Gaq3@ZIF-8 on a blue LED.

3. Phosphors Excited by UV-LED Chip

For WLEDs based on UV-LED and phosphors, all radiation from UV LED is converted
into red, green and blue (RGB) light, which refers to full conversion. The phosphors
excited by UV-LED chip must emit white light, so RGB phosphors are often adopted.
As mentioned before, pc-WLEDs fabricated by blue LED coated with yellow phosphors
may suffer such weaknesses as poor CRI and low stability of color temperature, due to
deterioration of the chip or the phosphors. By contrast, UV-LED combined with mixed
phosphors is one of the best approaches to generate white light for both high luminous
efficiency and high CRI, at the expense of poorer efficacy owing to higher wavelength-
conversion losses. Recently, developing single-phase white light phosphors is of great
significance and different strategies have been adopted to improve UV-LED luminous
efficacy. In general, luminescence in MOFs can be obtained from linkers, framework metal
ions, and absorbed guests [29].

3.1. Luminescence from Organic Dyes

In order to obtain a single-phase white light phosphor, Bu et al. [40] reported the
encapsulation of RGB dyes into anionic MOF via dye exchange, as shown in Figure 1a.
NKU-114 with abundant nitrogen sites can serve as an excellent host matrix to incorporate
electron-deficient cationic dyes due to the donor–acceptor electrostatic interactions. DSM,
AF and 9-AA, with strong red, green and blue light emissions, respectively, were used as
selected cationic dyes (Figure 1b), because of suitable spectral overlap and proper molecule
size. By carefully tuning the relative contents of three dyes, white-light-emitting NKU-
114@DSM-AF/9-AA composite could be obtained, with CIE coordinates (0.34, 0.32), CRI
and CCT values of 81 and 5101 K, respectively. The absolute quantum yield reaches a
comparative high value of 42.07%, compared with some other reported dye-encapsulated
system [41,42]. A WLED was assembled by coating NKU-114@DSM-AF/9-AA on the
surface of a UV-LED chip. Under 50 mA, the WLED shows corresponding CIE coordinates,
CRI, CCT and luminous efficiency values of (0.3402, 0.3365), 85.41, 5148 K and 2.4 lm/W,
respectively.
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In 2019, inspired by the extensive applications of core-shell structured MOFs, Gong [41]
proposed a novel approach to construct core-shell structured cyclodextrin (CD) based MOFs
by encapsulating different guests hierarchically into the framework. CD has the ability
to improve fluorescence of organic dyes, because it can provide a confined hydropho-
bic cavity to change the stacking patterns of organic dyes and decrease the freedom of
molecular motions [43]. CD-MOF⊃dyes, with γ-cyclodextrin (γ-CD) as organic ligands
(Figure 2a), exhibit extremely high luminous intensity because of synergistic effect of CD
and MOFs. Fluorescein (FL), RhB and 7-hydroxycoumarin (7-HCm) were chosen as en-
capsulates. The chemical structures of FL, RhB and fluorescence emission spectrum of
CD-MOF⊃7-HCm are shown in Figure 2b–d. CD-MOF⊃RhB with longer emission wave-
length was selected as core, and CD-MOF⊃7-HCm@FL@RhB was fabricated via epitaxial
seeded growth (Figure 2e). The prepared core-shell crystals emit bright white light upon
excitation of UV-LED, with CIE coordinate of (0.35, 0.32).
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Li et al. [44] reported high quality white-light-emitting dyes@ZIF-8 composites based
on the three models (multiphase single-shell dye@ZIF-8, single-phase single-shell dyes@ZIF-
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8, and single-phase multi-shell dyes@ZIF-8) (Figure 3a), in which dye locations are tunable.
Red-emitting rhodamine B (RB), green-emitting fluorescein (F) and C-151 were chosen
to match the pore structure of ZIF-8. Multiphase single-shell dye@ZIF-82 is solution-
processable for device fabrication, and white light can be generated by optimizing the ratio
of C-151@ZIF-82, F@ZIF82, and RB@ZIF-82, with CIE coordinates of (0.32, 0.34). Single-
phase single-shell C-151&F&RB@ZIF-82 composite can be prepared by introducing C-151,
F, and RB simultaneously into ZIF-8 via in situ encapsulation. By carefully tuning the
content of red, green and blue emitting dyes, white light emitting C-151&F&RB@ZIF-82

composites with CIE coordinates (0.30, 0.34) and (0.34, 0.34) were obtained (Figure 3b). The
efficiency decrease problem caused by FRET process can be solved by adopting model 3,
a single-phase multi-shell dyes@ZIF-8. In model 3, RB, F and C-151 were encapsulated
successively into ZIF-8 using shell-by-shell overgrowth, and the CIE chromaticity coor-
dinates of multi-shell C-151@ZIF-82 @F@ZIF-82 @RB@ZIF-82 changed from (0.21, 0.26) to
(0.32, 0.34) by tuning the concentration of RB (Figure 3c).
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3.2. Luminescence from Dyes and Metals

During the development of luminescent MOFs, the lanthanide MOFs have aroused
extensive interest from the very beginning owing to high luminescence quantum yield,
large Stokes shifts and sharp line-emissions [30]. Since f–f transition is parity-forbidden,
lanthanide ions are often sensitized by organic ligands due to antenna effect. Qian [45]
fabricated a phosphor for WLED by encapsulating blue dye within lanthanide MOF.
EuBPT, TbBPT and EuxTbyBPT were synthesized by the solvothermal reaction. Owing
to the energy transfer from BPT ligands to the lanthanide ions, the absolute quantum
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yields of red-emitting EuBPT and green-emitting TbBPT reached 37.11% and 73.68%,
respectively. By optimizing the Eu3+/Tb3+ ratio, Eu0.05Tb0.95BPT exhibits yellow light, and
when combined with blue dye C460, white light emitting phosphor with absolute QY of
43.42% could be generated. The CRI and CCT values of the phosphors were estimated to
be 90 and 6034 K, respectively. The WLED devices were fabricated by coating the prepared
phosphor on a commercial UV-LED chip, and the luminous efficiency was measured to
be 7.9 lm/W. Similarly, Saha [46] incorporated a single red emitting dye RhB into blue
emitting gadolinium-based MOF to achieve perfect white light with high quantum yield.

Apart from the lanthanide, actinide can also be used to construct luminescent MOFs.
Recently, inspired by the concept of ‘molecular compartment’ [47], Luo et al. synthesized
a cage-based actinide MOF ECUT-300 [48]. Due to the trigonal building unit being con-
structed from the coordination of uranyl ions and carboxylate, ECUT-300 with mesopore A
(2.8 nm), mesopore B (2.0 nm) and micropore C (0.9 nm) could be fabricated. Combining
uranyl ions and 4,4′,4′ ′,4′ ′ ′-(ethene-1,1,2,2-tetrayl)tetrabenzoic acid as ligand, ECUT-300
with blue-green emission was observed upon excitation at 408 nm. Interestingly, RhB was
encapsulated in the cage B of ECUT-300, and WLED device could be fabricated by coating
RhB@ECUT-300 on an UV LED. While [Fe(tpy)2]3+ was encapsulated in cage C, which
could be used to selectively adsorb C2H2 over CO2. In addition, the incorporation of both
RhB+ and [Fe(tpy)2]3+ is helpful in stabilizing the framework structure.

3.3. Luminescence from Dyes and Organic Linkers

Combining the emissions from linkers and dyes to generate single-phase white light
phosphors is a hot research topic in recently years. In 2015, Qian [49] first encapsulated
two dyes simultaneously into blue-emitting anionic MOFs via ion exchange. ZJU-28
exhibits blue emission under excitation at 365 nm, which ascribes to the H3BTB ligand.
ZJU-28⊃DSM/AF, as white lighting phosphor, can be easily prepared by soaking ZJU-28
into the mixed solution of red-emitting DSM and green-emitting AF, exhibiting broadband
white emission with CIE coordinates of (0.34, 0.32), CRI value up to 91% and CCT of 5327
K. Since the confinement of MOFs can effectively suppress ACQ, the absolute QY could
be improved to 17.4%. Substituting the H3BTB ligand with carbazole-based ligand 4,4′,4′’-
(9H-carbazole-3,6,9-triyl)-tribenzoic acid (H3L) [50], a white-light-emitting phosphor with
same CRI value could be obtained, while the quantum yield could reach up to 39.4%.

It is worth noting that efficient blue emission plays an important role in developing
WLED, so strong blue fluorescent molecules are often introduced in company with red
and green fluorescent molecules. Zhu [51] reported the incorporation of neutral and ionic
RGB guest molecules into a neutral MOF HSB-W1 (Figure 4a). HSB-W1 exhibits blue
emission upon excitation at 365 nm. HSB-W1⊃DCM, HSB-W1⊃C6 and HSB-W1⊃CBS-127
can be conveniently synthesized and exhibit red, green and blue emission, respectively, as
shown in (Figure 4b). HSB-W1⊃DCM⊃C6⊃CBS-127 composite emits white-light with high
quantum yield (up to 26%) and CRI (up to 92%). The results showed that incorporating
RGB dyes into blue-emission MOFs is a useful strategy to design single-phase white-
light phosphors.

The combination of blue and yellow emission can generate white light. Apart from
H3BTB and HSB ligands, 9,10-dibenzoate anthracene (DBA) is also an efficient blue emitter.
A new phosphor for WLED was fabricated by encapsulating RhB into Al-DBA, and exhibits
an emission lifetime of 1.8 ns and 5.4 ns for the blue and yellow light, respectively, enabling
the WLED for visible light communication (VLC) [23].
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There is a class of materials that are non-emissive in dilute solutions, but become highly
luminescent after aggregation. This phenomenon is termed “aggregate induced emission”
(AIE), which was proposed by Tang [52]. Tetraphenylethylene (TPE) as a typical AIE
luminogen is of great interest in WLEDs [53]. Fu et al. [54] synthesized a TPE-based MOF
with broadband green-yellow emission due to the energy transfer between dual linkers.
White light can be generated by encapsulation of sulforhodamine 101 (SR101) into the MOF
matrix, with corresponding QY, CRI and CCT values of 41.7%, 81.3 and 4527 K, respectively.
Zhou et al. [55] investigated the dye encapsulation in TPE-based MOF for WLED. PCN-
128W containing TPE-based ligand can be used to sensitize dye molecules through FRET,
so DSM@PCN-128W shows dual emissions upon a single excitation. Compared with
PCN-128W, the H4ETTC ligand exhibits about 70 nm red-shift, because the confinement of
MOFs increases the HOMO-LUMO energy gap of the linkers and generates high energy
emission. In order to understand better, the typical molecular structures of the ligands
are summarized in Table 1. By coating DSM@PCN-128W on UV LED chip, a WLED was
obtained showing CIE chromaticity coordinates of (0.34, 0.33), CRI of 79.1, and CCT of
5525 K, and the absolute quantum yield of DSM@PCN128W was measured to be 21.2%.
Similarly, by substituting H4ETTC with H8ETTB as a carboxylate ligand, Dong and Lei
synthesized PCN-921 with a strong fluorescence emission at 447 nm [56]. The innovation
of their work lies in the realization of room-temperature phosphorescence and white light
emission by hierarchically encapsulating coronene and RhB dye. The results showed that
by introducing guests into MOFs, coronene@PCN-91 exhibited a phosphorescence lifetime
of 62.5 ns, and the hybrid material RhB@coronen@PCN-921 emitted bright white light by
coating on a commercial UV LED. In addition, some TPE-based luminescent MOFs also
exhibit piezofluorochromic behavior, and by combining organic dye encapsulation, white-
light emission can be obtained. Adopting this strategy, Pan and coworkers constructed dual-
emission luminescent MOF HNU-49 and generated relative pure white light by adjusting
the pressure and the concentration of RhB [57]. The key parameters for white LEDs with
dye-encapsulated MOFs as phosphors are summarized in Table 2 for easy comparison.
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Table 1. Structural information about organic ligands of MOFs.

MOF Organic Ligand Ref.
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Table 2. Key parameters for white LEDs with dye-encapsulated MOFs as phosphors.

Dye-Encapsulated MOF Materials CIE (x,y) CCT(K) CRI QY (%) Ref.

ZJU-28⊃Cou-6/R6G/R101 (0.34, 0.32) 4446 88 82.9 [34]
R6G@ZIF-8 - - – 63.1 [36]

ZIF-8⊃pm546/pm605/SRh101 (0.465, 0.413) 2642 85 - [37]
NKU-114@DSM/AF/9-AA (0.3402, 0.3365) 5148 85.41 - [40]

CD-MOF⊃7-HCm@FL@RhB (0.35, 0.32) - - - [41]
ZJU-28⊃DSM/ AF (0.34, 0.32) 5327 91 17.4 [49]

[Zn4OL2·xDMF]n⊃DCM/C6 (0.32, 0.31) 6186 91 39.4 [50]
HSB-W1⊃DCM/C6a/CBS-127 (0.31, 0.32) 6638 90 26 [51]

DSM@PCN-128W (0.34, 0.33) 5525 79.1 21.2 [55]

The luminescent MOFs mentioned above exhibit a large Stokes shift to prevent self-
absorption, which are referred to as down-conversion materials. Another type of MOFs
belongs to up-conversion materials, exhibiting an anti-Stokes shift luminescence character.
Generally, two methods can be used to achieve up-conversion in MOFs, one exploiting
energy transfer between lanthanide ions, the other triplet-triplet annihilation, which is
based on ligand selection and design [20]. In 2019, Pan reported a series of dye-encapsulated
MOFs exhibiting dual way (one-photon absorption (OPA) and two-photon absorption
(TPA)) excited fluorescence (Figure 5a) [42]. LIFM-WZ-6 containing TPE ligand shows
blue-green and strong green emission upon excitation at 365 nm and 730 nm, respectively.
Electron-deficient cationic dyes RhB+, BR-2+, BR-46+, DSM+ and APFG+ were chosen due
to appropriate D-A interactions and molecule size. RhB+@LIFM-WZ-6 was first synthesized
and when excited at 365 nm, the corresponding CIE coordinates, CCT, CRI and absolute QY
values were (0.33, 0.35), 4745 K, 77 and 9.8%, respectively. Similar results were obtained for
another four dyes, confirming the universality of the OPA approach. WLED devices were
fabricated by coating the prepared phosphors on the surface of the commercial UV LED
chip. Compared with the typical OPA process, two-photon excited fluorescence emission
(TPEF) is more complicated and often shows different colors. Through TPA process, white
light emitting phosphors RhB+@LIFM-WZ-6, BR-2+WZ-6 and APFG+@LIFM@LIFM-WZ-6
were obtained under the excitation of 800, 790 and 730 nm, respectively (Figure 5b–d).
More importantly, the emissive color of dye@MOF can be adjusted by simply tuning the
excitation wavelengths.
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Figure 5. (a) Schematic illustration of OPA and TPA dual-way excited white-light emission in dye@LIFM-WZ-6; (b) TPEF
spectra and CIE coordinate values of RhB+@LIFM-WZ-6 (0.05 wt%); (c) TPEF spectra and CIE coordinate values of BR-
2+@LIFM-WZ-6 (1 wt%); (d) TPEF spectra and CIE coordinate values of APFG+ @LIFM-WZ-6 (0.05 wt%). (Reproduced
with permission from ref. [42]. Copyright © 2019 Wiley—VCH Verlag GmbH & Co. KGaA, Weinheim).

3.4. Organic Dyes as Fluorescent Linkers

Inspired by substitutional solid solutions (SSS) concept applied in inorganic materials,
Newsome [58] constructed luminescent MOFs by combining nonfluorescent linkers with
dilute RGB fluorescent organic dyes, as shown in Figure 6a. Excited-state proton transfer
(ESPT) dyes are of extensive interest due to unique photophysical properties caused by keto-
enol tautomerism. They have enol tautomers in the ground state, but exists as a keto tau-
tomers after excitation (Figure 6b). Multivariate MOFs are attractive for making multicolor
emitting crystals, and the non-fluorescent link and ESPT dyes (Figure 6c) are chosen because
of good stability, high quantum yield and color variability. Solid-state emission peaks cen-
tered at 430, 510, and 630 nm (Figure 6d) were seen after excitation at 365 nm for 10%-R, 10%-
G and 10%-B, respectively. The keto emission in the MOFs is quite close to the ester forms of
the RGB links solvated in toluene, as shown in dashed lines, suggesting that prepared MOFs
exhibit solution-like properties. Finally, a series of Zr6O4(OH)4(RxG1-2xBx)yNF1-y MOFs
were synthesized. (Zr6O4(OH)4(R0.4G0.2B0.4)0.01NF0.99) emitted combination of broadband
emissions from RGB, with coordinates of (0.31, 0.33) on the CIE chromaticity diagram, an
absolute QY of 4.3%, a CRI of 93 and a CCT of 6480 K. Other prepared MOFs also exhibited
good fluorescence performance. These findings showed that substituting MOF linkers with
fluorescent dyes are capable of obtaining both tunable emission chromaticity and accurate
color rendering.
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Recently, Liu and Li applied a mixed-linker strategy to successfully synthesize a series
of UiO-68 MOFs with full color emission by changing the ratios of chromophore and
non-fluorescent linkers [59]. Obviously, introducing of non-fluorescent linkers is helpful
in reducing the concentration of emissive linkers and increasing the spatial distances
between fluorescent linkers, which effectively suppresses the π-π stacking interactions and
thus enhances the emission efficiency. It is believed that this general approach is of great
significance to overcome the challenge of ACQ, portending the potential application of
luminescent MOFs in WLEDs [60].

4. Conclusions and Outlook

Luminescent MOFs materials offer a promising platform for light-emitting diodes,
chemical sensing, bioimaging and anti-counterfeiting codes. In the past decades, much
attention has been focused on design of linkers and encapsulation of guest molecules
instead of lanthanide metal-based MOFs for environment consideration.

Encapsulation of organic dyes into MOFs is a feasible and ingenious approach to
construct pc-WLEDs, which combines the benefits from dyes and MOF structures. The
porosity and crystallinity of MOFs are helpful to suppressing ACQ of dye molecules and
thus improving both fluorescent intensity and quantum yield. Meanwhile, the organic
dyes enrich the luminescent behaviors without sacrificing the strength of MOFs. Although
the warm white light can be generated by encapsulating fluorescent dyes in luminescent
MOFs with high performance, the luminous efficiency is still low. In addition, organic
dyes leakage, stability and unsuitable size hinder the extensive application of this method.
According to the previous study, most reported dye@MOFs are synthesized based on
currently available organic dyes or MOFs. From fundamental views, it is necessary to
develop novel organic dyes and MOF structures considering factors such as topology,
luminescence, charge transfer and stability. Moreover, in-depth research on mechanism
behand should be devoted in order to provide instructions for material design and synthesis.
For the purpose of industrialization and commercialization, the stability of phosphors,
including photo-stability and thermal stability is of vital significance, while currently the
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reports on the stability of dye-encapsulated MOF phosphors are still rare. It is predictable
that more effort will be devoted to investigate the stability of LMOF materials.

While the development of luminescent MOFs for WLEDs is still in infancy, it is
evident that the future of WLEDs based on MOF is bright, not only because MOF structure
provides various luminescence, but also because the low energy input can reduce the
carbon footprint. There is still a long way ahead in achieving commercially available
MOF-based WLEDs. In the coming decades, chemists and material scientists will work
more closely to develop novel stable and high efficiency single phase white light emitting
phosphors for WLED fabrication.
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