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Abstract
Hyperpolarization is an emerging method in magnetic resonance imaging that allows nuclear spin polarization of gases or 
liquids to be temporarily enhanced by up to five or six orders of magnitude at clinically relevant field strengths and adminis-
tered at high concentration to a subject at the time of measurement. This transient gain in signal has enabled the non-invasive 
detection and imaging of gas ventilation and diffusion in the lungs, perfusion in blood vessels and tissues, and metabolic 
conversion in cells, animals, and patients. The rapid development of this method is based on advances in polarizer technol-
ogy, the availability of suitable probe isotopes and molecules, improved MRI hardware and pulse sequence development. 
Acquisition strategies for hyperpolarized nuclei are not yet standardized and are set up individually at most sites depending 
on the specific requirements of the probe, the object of interest, and the MRI hardware. This review provides a detailed intro-
duction to spatially resolved detection of hyperpolarized nuclei and summarizes novel and previously established acquisition 
strategies for different key areas of application.

Keywords  Magnetic resonance imaging (MRI) · Hyperpolarization · Spectroscopy · Spectroscopic imaging (MRSI) · 
Metabolic imaging

Introduction

The main limiting factor in molecular imaging by magnetic 
resonance imaging (MRI) is its inherently low sensitivity, 
resulting from low spin polarization at thermal equilibrium 
and exacerbated by low concentrations in vivo of many 
compounds of potential interest that contain NMR-active 
isotopes. These limitations can be overcome temporarily 
by increasing the polarization by more than five orders of 
magnitude beyond thermal equilibrium, which is possi-
ble through several hyperpolarization techniques [1], and 
administering the exogenous hyperpolarized substance to the 
subject during or shortly before acquisition. The most promi-
nent techniques, dissolution dynamic nuclear polarization 
(dDNP) [2] and spin exchange optical pumping (SEOP) [3], 

have led to breakthroughs in molecular imaging by means 
of MRI. Detection of biologically relevant hyperpolarized 
13C-labeled substrates in the micromolar concentration 
range, such as [1-13C]pyruvate [4], 13C-bicarbonate [5], or 
[1,4-13C2]fumarate [6], as well as their respective metabolic 
products [1-13C]lactate, [13C]carbon dioxide, and [1,4-13C2]
malate, has become possible, and can give new insights into 
biochemical pathways in vivo [7]. The evaluation of the 
clinical potential is currently underway, with more than 20 
ongoing clinical trials focusing on hyperpolarized [1-13C]
pyruvate [8]. Imaging of inhaled hyperpolarized noble gases 
129Xe [9] and 3He [10] with SEOP and its application for 
measurement of flow [11] and diffusion [12] is used clini-
cally primarily to assess lung health [13–16], particularly in 
the acinar airways that cannot be assessed with computed 
tomography [17].

Several different techniques have been developed to 
overcome the low net spin polarization imposed by the 
Boltzmann distribution at thermal equilibrium at clinically 
relevant field strengths. By various means, these methods 
induce a transient state of increased nuclear polarization that 
decays with the spin–lattice relaxation time T1. Five different 
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approaches are currently used to create a hyperpolarized spin 
state for various nuclear isotopes, which currently include 
1H (protons), and various others (X-nuclei): 3He, 6Li, 13C, 
15N, 29Si, 31P, 129Xe, 83Kr, and 107,109Ag:

1.	 Brute-force hyperpolarization methods that exploit low 
temperatures and high B0 field are generally applicable 
but achieve only moderate polarization levels [18, 19].

2.	 Spin exchange optical pumping (SEOP) is used to polar-
ize the noble gases 3He [10], 83Kr [20], and 129Xe [9] 
using circularly polarized laser light to excite specific 
transitions of alkali metal vapors. The polarization is 
then transferred to the nuclei of the noble gas atoms 
by spin exchange collisions of the alkali metal and the 
noble gas atoms [3]. The hyperpolarized gas may be 
delivered and measured as a gas or after dissolution in a 
liquid solvent [21].

3.	 Parahydrogen-induced polarization (PHIP) uses a chem-
ical reaction to transfer the high para-state spin order of 
hydrogen to bonded atoms through J-coupling [22] in 
the liquid state, e.g. for 13C [23].

4.	 Signal amplification by reversible exchange (SABRE) 
transfers polarization from parahydrogen to the mol-
ecule of interest in the liquid state using an activated 
catalyst for, e.g. 1H, 13C, 15N, [24, 25], and 31P [26, 27].

5.	 Dissolution dynamic nuclear polarization (dDNP) can 
transfer electron polarization to nuclear spins in the solid 
state at cryogenic temperatures, which are subsequently 
heated, dissolved in a liquid, and preserved at room tem-
perature, e.g. for 13C [2], 6Li [28], 15N [29], 19F [30], 29Si 
[31], 31P [32], and 107,109Ag [33].

Regardless of hyperpolarization technique and route of 
administration into the subject or object of interest, efficient 
acquisition strategies are needed, which are adapted to the 
properties of hyperpolarized signals. The hyperpolarized 
magnetization decays with T1, which can be on the order of 
a few tens of seconds in vivo (e.g. for 13C compounds [34, 
35] or 129Xe in an MR magnet [9]). Each RF excitation fur-
ther reduces the available signal for subsequent excitations, 
which is particularly limiting when using dDNP, which typ-
ically provides single doses of hyperpolarized compound 
solution with intervals of more than 30 min between dis-
solutions. This is also the case for inhaled gas imaging, in 
which the available magnetization (and thus signal) can be 
replenished at most once per subject breath. Hyperpolarized 
compounds and their metabolites, particularly those labeled 
with 13C or 15N, as well as 129Xe in various solutions or 
trapped in molecular cages [36–38], can cover a wide range 
of chemical shifts, which can hinder or help the design of 
sequences to separate their signal contributions, particu-
larly in combination with the smaller gyromagnetic ratio 
of non-proton nuclei and the consequent need for higher 

gradient field strengths. For metabolic imaging, it is often 
necessary to acquire temporally resolved data, in order to 
extract metabolite dynamics. For imaging of lung ventila-
tion, temporally resolved data allow gas flow to be visualized 
[11]. Temporally resolved data can also help ensure that the 
peak signal is measured after a hyperpolarized compound is 
administered, as the timing of its arrival in the area of inter-
est may not be known prior to the measurement.

In this article, we review acquisition strategies for the 
measurement of hyperpolarized nuclei that are used to 
address these challenges, including strategies for pre-scan 
adjustments, hardware and field strength considerations, 
and sequence components including spectral encoding, 
spatial encoding, and excitation and contrast. We also dis-
cuss in more detail several important acquisition strategies 
and individually notable pulse sequences, including non-
imaging spectroscopy, free induction decay (FID) chemi-
cal shift imaging (FID-CSI), echo planar spectroscopic 
imaging (EPSI), spiral multi-echo methods, free precession 
sequences, spectral-spatial excitation, and relaxometry.

Hardware considerations

In addition to the pulse sequence, system hardware, includ-
ing most notably the static magnetic field strength and the 
radiofrequency (RF) coils used, are important considera-
tions for localized hyperpolarized spectroscopy and imaging 
experiments.

Static magnetic field strength

The static magnetic field (B0) strength has several impacts 
on hyperpolarized nuclear magnetic resonance imaging and 
spectroscopy, with some differences to those of thermal pro-
ton measurements.

The imaging system field strength does not determine 
polarization level [39] or strongly affect signal strength 
for hyperpolarized compounds that are introduced from an 
external source [40]. Hyperpolarized measurements have 
thus been performed in vivo at 3 mT with 3He [40, 41], 
15 mT with 129Xe and 3He [42], 48.7 mT with 13C [43], and 
100 mT with 3He [39], which are much lower field strengths 
than are typically used for thermal proton measurements.

There are several advantages associated with lower static 
magnetic field strengths for hyperpolarized measurements. 
Lower field strengths show reduced susceptibility effects, 
resulting in threefold increase in T2* at 0.43 T compared 
with 1.5 T for 3He imaging in vivo, providing an effective 
increase in signal strength for sequences with long echo 
times [44]. The T1 relaxation rates of many hyperpolarized 
13C compounds are also strongly dependent on the B0 field 
strength [45]. Lower field strengths can also compensate 
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for the greater demands placed on gradient systems with 
X-nuclei due to their lower gyromagnetic ratio than that 
of protons. The same k-space trajectory, slice profile, or 
pulsed-gradient diffusion weighting will require propor-
tionally larger gradient strengths for X-nuclei. This can be 
particularly problematic for sequences that traverse k-space 
rapidly with long readout gradients, such as multi-gradient 
echo spectroscopic measurements of 13C compounds, which 
can display a much wider range of chemical shifts [46] than 
protons in most biologically interesting compounds, and 
thus benefit from rapid echo spacing and associated wide 
spectral bandwidth. At lower fields, however, these gradient 
demands are proportionally reduced. Additionally, heteronu-
clear decoupling of protons, particularly for molecules con-
taining 13C or 15N atoms, can require prohibitively large RF 
power in humans at high field for decoupling large spectral 
bandwidths due to specific absorption rate (SAR) restric-
tions [47, 48]. Last, lower field permanent magnets can be 
advantageous due to their lower costs compared with cryo-
genically cooled superconducting magnets [39].

As with thermal proton spectroscopy, a major advantage 
of higher field strengths for hyperpolarized spectroscopy is 
improved separation of spectral peaks [47, 49]. This is useful 
with hyperpolarized nuclei in liquids, such as precise meas-
urement of chemical shifts for 13C [50] or frequency-selec-
tive saturation with 129Xe HYPER-CEST [38]. Addition-
ally, peak splitting due to J-coupling, affecting molecules 
containing multiple spin ½ atoms, such as protons and 13C 
or 15N, is not field dependent, and is thus less problematic 
at higher field strengths, without the need for decoupling.

Hyperpolarized spectroscopy and imaging measurements 
in vivo are normally conducted in combination with ther-
mal proton imaging for anatomical reference to guide the 
planning of the hyperpolarized measurement, to provide 
complementary parametric or functional information, and 
for pre-scan adjustments. As such, the most suitable field 
strength for hyperpolarized imaging is often the field of an 
existing MRI system, to which X-nucleus imaging capability 
is added. The impacts of field strength on proton imaging 
are thus also relevant for most hyperpolarized X-nucleus 
experiments.

Radiofrequency coils

Radiofrequency (RF) coils and resonators are used to 
transmit and receive the radiofrequency fields that both 
manipulate magnetization and convey the signal in NMR 
and MRI measurements. For both proton and X-nucleus 
measurements, RF coils are produced in a wide variety of 
sizes and configurations, designed for particular measure-
ment scenarios and geometries. RF coils may be catego-
rized in by three independent properties: (1) the B0 field, 
nucleus, and frequency for which an RF coil is resonant, 

(2) the coil size and shape, including whether coils are 
volume resonators or surface coils, and (3) whether coils 
are single channel, multi-channel, or phased arrays. These 
properties directly impact the types of hyperpolarized 
measurements for which a coil is suitable.

RF coils are designed to be resonant within a relatively 
narrow band of frequencies, in order to be optimally sensi-
tive within that band and be minimally sensitive to other 
signals. For hyperpolarized measurements on standard 
NMR and MRI systems, which are normally designed 
and used primarily at proton frequencies, additional RF 
coils designed for X-nucleus applications are required. 
For X-nuclei with substantially lower gyromagnetic ratio 
than that of protons (i.e. those other than 19F), the Lar-
mor frequency at which the RF coil operates is similarly 
reduced, which affects its noise characteristics [10, 51]. 
For example, at 3 T, 128 MHz for 1H is sample noise 
dominated, whereas 32 MHz for 13C has relatively more 
noise contribution from the coil [52], meaning improved 
coil design can be more impactful. Dual resonance coils 
are also available for 1H and 13C, 23Na, or 31P, [48, 53–58], 
which are useful for heteronuclear 1H-13C decoupling [48, 
59] and polarization transfer applications, which involve 
simultaneous transmission on multiple frequency chan-
nels. Triple resonance coils [60, 61] can also be helpful 
for B1 calibration of hyperpolarized compounds containing 
13C by using signal from natural abundance 23Na, because 
their Larmor frequencies are similar.

Coil geometry substantially impacts the applications 
for which the coil is suitable. Volume resonators surround 
the subject and provide relatively uniform B1 transmit and 
receive profiles, and are most suitable for imaging applica-
tions where the overall distribution of signal across the field 
of view is important, such as when the signal magnitude in 
well-separated regions is directly compared, e.g. for lung 
gas distribution [16, 62]. Even when a surface receive coil is 
used, a separate volume coil is often used for transmission, 
due to the importance in some pulse sequences of uniform 
and well-calibrated transmit B1, which can be particularly 
challenging to achieve with hyperpolarized measurements. 
Surface coils, conversely, produce strongly spatially vary-
ing transmit and receive B1 profiles [63], dependent on the 
distance from and size of the coil [64], which can reduce 
noise and amplify signal near the coil. This can be an advan-
tage when a superficial tissue or organ is being studied, such 
as preclinical studies of subcutaneous tumors [50, 65–67], 
brain [68, 69], heart [70–75], liver [37, 64], or kidneys [50], 
and clinical studies of the heart [76]. However, spatially var-
ying intensity from surface receive coils can substantially 
complicate interpretation of images, even when taking ratios 
of multiple metabolite signals. Additionally, endorectal coils 
have been developed for human prostate hyperpolarized 13C 
imaging [77–80].
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Quadrature coils [60, 81, 82] provide a theoretical √2 
increase in B1 over similar-geometry linear coils, but provide 
no independent receive or transmit channel capability. Mul-
tiple independent channel coil arrays enable pulse sequence 
optimizations for hyperpolarized measurements, which are 
not possible with single-channel linear and quadrature coils. 
Receiver arrays coils with 4, or 8 channels have been used 
for hyperpolarized 13C parallel imaging [83–85], including 
controlled aliasing for chemical shift separation [86]. An 
array with 32 channels has been used for hyperpolarized 
129Xe parallel imaging [87]. Multi-channel arrays are also 
advantageous for improved spatial coverage with good SNR 
in hyperpolarized imaging [88].

Cryogenically cooled coils can improve SNR through 
reduction of coil noise compared to coils operating at 
room temperature [51]. This can be particularly helpful for 
X-nuclei imaging, with lower Larmor frequencies than that 
of protons, as coil noise has a larger impact on SNR [52]. A 
threefold SNR enhancement has recently been demonstrated 
for a 30 × 40 mm2 13C cryocoil at 3 T [89].

Pre‑scan adjustments

Before MRI measurements, several pre-scan adjustments 
may be performed, including shimming the static magnetic 
field [90], sequence k-space trajectory measurement, and 
transmit B1 calibration. Although some gas imaging uses 
exogenous hyperpolarized gas for pre-scan adjustments, 
for most liquid-state hyperpolarized magnetization is non-
renewable, so pre-scan adjustments are not usually done 
with the same hyperpolarized magnetization that is used 
for subsequent measurement. Instead, because all nuclei are 
influenced by the same B0 field, shimming for X-nuclei is 
most often performed using signal from protons [60] in the 
subject, with shim current adjusted iteratively [90] or based 
on measured B0 field maps [91, 92]. k-space trajectories can 
similarly be measured with proton signal [49, 93, 94], with 
correction for the different gyromagnetic ratios between 
nuclei [95], or can be measured with a highly concentrated 
thermally polarized X-nuclei phantom. Techniques for trans-
mit B1 calibration are discussed below.

B1 calibration for X‑nuclei

Transmit B1 calibration is necessary to determine accu-
rate RF pulse amplitudes, which are necessary in many 
sequences to produce the desired contrast, optimal signal, 
and artifact-free images [96]. For lower-frequency coils with 
stable coil loading, transmit B1 calibration may be performed 
just once, and the same calibration used for all subsequent 
measurements. In other cases, calibration may be repeated 
separately for each new subject.

Sequences with higher flip angle pulses are in general 
more sensitive to flip angle accuracy, including non-adiaba-
tic inversions and refocusing pulses to produce spin echoes 
[97]. Flip angle accuracy is also important for the quantifica-
tion of metabolite concentrations [96]. Sequences with low 
flip angles, especially sequences with a series of variable 
(and low) flip angle pulses [98], as well as adiabatic RF 
pulses [99], are less affected by the B1 calibration.

For thermal proton MRI, several standard transmit B1 
calibration procedures are used on preclinical and clinical 
MRI systems [100–104], using signal from the subject. For 
X-nuclei, however, transmit B1 calibration is more challeng-
ing. Due to their low in vivo concentrations and smaller 
gyromagnetic ratio, natural abundance X-nuclei often pro-
duce too little signal to be used for thermally polarized B1 
calibration [105]. Furthermore, most hyperpolarized signal 
is non-renewable, and is thus often not suitable for use in B1 
calibration [73], with the exceptions of 3He and 129Xe lung 
imaging [62, 87]. Instead, a separate high concentration gas 
or liquid thermally polarized phantom is normally used to 
calibrate B1 before most X-nuclei hyperpolarized measure-
ments [106–108]. For coils with subject-dependent loading, 
such a phantom may be placed adjacent to the subject, near 
the region or structure of interest to ensure similar coil load-
ing and local B1, and may be removed or left in place for 
the subsequent hyperpolarized measurement. Alternatively, 
a phantom may be designed to simulate the presence of a 
subject [105].

Some pulse sequences additionally require receive coil 
B1 profiles for each independent channel of multiple-chan-
nel coils, independent of the transmit coil B1 profile. These 
include parallel reconstruction with sensitivity encoding 
(SENSE) [83, 109, 110]. Receiver coil B1 calibration has 
most of the same limitations for hyperpolarizing imag-
ing applications, relating to lack of signal for calibration 
measurements.

Several methods have been developed for calibration of 
the transmit B1 field in measurements using hyperpolarized 
X-nuclei. Some methods produce only a single B1 calibra-
tion factor for a given experimental configuration, which 
may only be accurate within a limited spatial region of the 
subject, particularly for surface transmit RF coils or subjects 
that extend outside a volume coil. Other methods produce a 
B1 map, which indicates the spatial variation of flip angles.

Pulse power incrementation

A thermally polarized phantom is placed next to the subject, 
and the non-selective or slice-selective FID signal is meas-
ured after excitation at varying RF power levels (or nominal 
flip angles). The resulting curve can be fitted with a sinusoid 
[111], or the flip angle calibration determined from the point 
where the spectral peak crosses zero (or its phase inverts) 
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[107], which corresponds to a 180° excitation pulse [105, 
112] at the location of the phantom. To produce an accurate 
calibration, the phantom must be limited in size and placed 
in a location with the same local B1 as the region of interest 
in the subject.

Scaling B1 for different nuclei

The B1 transmit calibration for X-nuclei can be estimated 
using the B1 calibration of another nucleus with a similar 
gyromagnetic ratio and Larmor frequency. This proportion-
ality will be different for any unique pair of coils, however, 
and will not account for local B1 variations. The B1 calibra-
tions of 1H and 3He have been shown to be proportional 
between separate single-nucleus volume coils [113]. The B1 
calibration for 13C can also be estimated with that of 23Na 
using a dual-tuned 23Na/13C coil with a scaling factor, which 
is useful because 23Na is present in most biological tissue at 
relatively large concentration, which simplifies the design 
and operation of such coils [96].

Repeated excitation with small flip angle

A series of RF excitation pulses or spoiled gradient echo 
images with constant power can be used to measure the B1 
calibration or generate B1 maps from the signal variation 
with number of excitations [114, 115]. This is similar to the 
variable power method, except that it requires approximate 
initial estimate of the B1 calibration and T1 relaxation time, 
but uses only small flip angles. The spacing between excita-
tion pulses may also be varied to simultaneously measure T1 
and the B1 calibration [116].

Magnetization inversion

Flip angle measurement by magnetization inversion can be 
applied to hyperpolarized gas. Magnetization is prepared 
with two RF excitation pulses, separated by a B0 field gradi-
ent to produce a spatially varying phase. The RF pulses have 
flip angle above 45°, so that magnetization is inverted (more 
than 90° effective flip angle) after both pulses, in a band 

where the gradient field is weakest. The flip angle of the RF 
pulses can then be determined from the width of the inverted 
band of magnetization, and is unaffected by oxygen-related 
relaxation, imperfect slice profiles, or diffusion [114].

Bloch–Siegert shift

The Bloch–Siegert method is a relatively fast method for 
B1 calibration and measuring B1 maps [117]. Magnetiza-
tion is excited, and then an off-resonant RF pulse is applied 
to produce a B1-dependent phase shift [118]. An example 
pulse sequence for mapping B1 using this method is shown 
in Fig. 1. The Bloch–Siegert method has been used for 
slice-selective B1 calibration with thermal 13C phantoms 
and hyperpolarized 3He in lungs [112], and for B1 mapping 
during dynamic in vivo 13C-pyruvate image acquisition [73] 
and triggered by bolus tracking immediately before dynamic 
in vivo 13C-pyruvate image acquisition (Fig. 2) [119].

Signal reduction

When two low-flip angle images or spectra are acquired in 
succession, of non-renewable magnetization that does not 
flow into or out of the excited volume, the second image’s 
intensity is reduced due to excitation losses and T1 relaxa-
tion. This has been applied for flip angle mapping in human 
lungs, with breath holding, of hyperpolarized 129Xe and 3He 
[62, 87]. Similar methods are also used for in vitro spectro-
scopic measurements [120].

Pulse sequence components

A wide variety of pulse sequences have been developed 
for measuring hyperpolarized nuclei, from simple NMR 
acquisitions to sophisticated optimized sequences. These 
sequences in general use some combination of (1) spectral 
encoding, (2) spatial encoding, and (3) excitation and con-
trast scheme. Various possible pulse sequence elements are 
listed below, within these categories. Not all variations can 

Fig. 1   Bloch–Siegert B1 map-
ping sequence diagram, with 
spectral-spatial RF pulse, off-
resonance RF pulse, and spiral 
readout gradients
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or have been combined, but each usable sequence will use 
one or more of the methods in each category.

Spectral encoding

Spectral encoding methods separate NMR signal by fre-
quency (chemical shift) of the nucleus being measured. 
Different chemical shifts of the same nucleus arise from 
different local magnetic fields at the sites of the nucleus, 
which are induced by the different chemical environments 
in different molecular species that incorporate the nucleus, 
by their different positions within a single molecular spe-
cies, or the solution, surface [121], or molecular cage [38] in 
which it resides. In cases with only one measurable chemi-
cal shift, no spectral encoding is required. If more than one 
distinct chemical shift is present, spectral encoding isolates 
the signals at those frequencies, and thereby measures their 
distinct amplitudes, distributions, or time-courses. This 
separation may be accomplished with frequency selective 
excitation, during signal readout from the phase evolution 
of a time-series of measurements, or a combination of these 
two methods.

Most measurements of hyperpolarized agents have 
relatively sparse spectra. Only one or a small number of 
distinct molecules are usually present in the administered 

hyperpolarized agent. These molecules may be chemi-
cally stable during the time course of measurement, may 
be rapidly metabolized into a small number of additional 
compounds, or may be present in a small number of distin-
guishable chemical environments. Furthermore, the design 
of a hyperpolarized experiment will usually ensure that the 
compounds of interest have relatively well-separated chemi-
cal shifts. This is in contrast to many in vivo proton NMR 
spectroscopic measurements, in which many endogenous 
compounds appear close together in the spectra. For such 
hyperpolarized signals with relatively easy to separate sparse 
spectra, a variety of spectral encoding schemes can be used.

Free induction decay (FID)

Signal is measured without applied gradients [4, 34, 
122–126]. The spectrum is the Fourier transform of the FID 
signal. This method can provide wide spectral bandwidth 
without placing high demands on the gradient hardware.

Multi‑echo model‑free

Multiple gradient echoes are acquired with evenly spaced 
echo times [127, 128]. The echo train at each k-space point 
may be treated similarly to an FID [129], depending whether 

Fig. 2   Results of hyperpolarized [1-13C]pyruvate studies on a healthy 
human volunteer using bolus tracking, Bloch–Siegert B1 mapping, 
and multi-slice dynamic imaging of 13C metabolites. a Proton image 

of slice 5. b Normalized 13C B1 maps. c Acquired frequency spectrum 
for center frequency calibration. d 13C results of slice 5 displayed in 
the order of time. Reprinted with permission from Tang et al. [119]
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the echoes are acquired with symmetric or flyback gradient 
shapes. The spacing of echoes should be sufficiently short to 
give spectral bandwidth that is adequate to separate the fre-
quency offsets of the compounds of interest, without prob-
lematic frequency wrapping of the spectrum [130].

Multi‑echo sparse

A relatively small number of gradient echoes are acquired 
[131]. At least one more echo than distinct spectral compo-
nents is needed [132], and the number and timing of echoes 
may be adjusted to optimize sensitivity to and separation 
of an expected number and distribution of frequency com-
ponents in the signal [133]. Images for expected frequency 
components are separately reconstructed from the phases 
of measured echoes and the known timing of the echoes 
using matrix inversion [125, 134] or iterative least-squares 
(IDEAL) [132, 135] methods.

Chemical shift offset separation

Images are acquired with frequency encoding during read-
out with sufficiently low receive bandwidth that multiple 
frequency components in the signal are chemically shifted 
to produce separate images [136], or partially aliased images 
that can be separated with parallel imaging reconstruction 
[86].

Frequency selective excitation

Frequency selective RF pulses excite or invert a single fre-
quency, a narrow range of frequencies [137], or alternate 
between frequencies [138].

Spectral‑spatial (SPSP) excitation

Specially designed RF pulses, in combination with spa-
tial encoding gradients, are used to excite within a band 
of frequencies that include only a single hyperpolarized 
compound and within a spatially limited region [65, 139] 
or which selectively excite multiple frequency bands [140, 
141]. Multiple alternating excitations also can be used to 
acquire images of multiple frequencies [70].

Spatiotemporal encoding

RF excitation or inversion pulses are swept in frequency 
(chirped or adiabatic) while an encoding gradient is active, 
and a decoding gradient is applied during signal readout 
[142, 143]. Spatially resolved spectral content of the result-
ing signals can be separated [142, 144].

No spectral encoding

Images are acquired with a non-spectroscopic MRI 
sequence. This method is used for hyperpolarized 129Xe 
imaging [9, 106, 145], 3He imaging [146–148], or other 
angiography imaging [34, 149, 150] for which spectroscopic 
separation of multiple chemical shifts is not needed.

Spatial encoding

Spatial encoding separates NMR signal by location in space. 
Most in vivo measurements require some form of spatial 
encoding in the pulse sequence or receive coil(s) to localize 
signal to an organ or other region of interest or to produce 
images that are spatially resolved in two or three dimensions. 
Conversely, most in vitro measurements use the total signal 
from the entire sensitive volume of the receiver coil, with no 
additional spatial localization than that from the limited size 
of the object and the coil’s sensitivity profile.

NMR signal spatial localization may be accomplished 
with the sensitivity profiles of receiver coils, spatially selec-
tive RF pulses, field gradients after excitation and before or 
during signal acquisition, or with a combination of these 
methods.

For imaging hyperpolarized agents with non-renewable 
magnetization, fast spatial encoding is required, as is keep-
ing the number of RF excitations used to acquire the image 
data minimal. This is particularly true for multi-frame acqui-
sitions, which need relatively short times between frames to 
follow signal dynamics, and also need to preserve magneti-
zation for later frames. Various trajectories and strategies 
for traversing k-space have been used for hyperpolarized 
imaging, mainly initially for thermal proton imaging and 
subsequently adapted. These include several techniques for 
accelerating the acquisition by under-sampling data in the 
spatial and spectral dimensions and recovering the missing 
information using parallel receiver coil arrays or by taking 
advantage of the sparsity of the spectral dimension.

Hardware‑sensitivity localized

The receiver and transmit radiofrequency (RF) coil hardware 
sensitivity profiles (B1 field) determine the measurement’s 
spatial sensitivity to the signal. The pulse sequence itself 
does not localize the origin of the signal [34].

Slice selective excitation

The excitation radio frequency (RF) pulse is applied while a 
linear gradient field is active [151, 152]. The excited volume 
is a thin 2D slice or thick 3D slab in space [65]. If more than 
one chemical shift is present in the object [121, 153], there 
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is a spatial offset between the slices corresponding to differ-
ent chemical shifts [68]. This offset leads to the so-called 
chemical shift displacement artifact, which can be reduced 
by using a high transmit bandwidth relative to the chemi-
cal shift offset, or avoided with spectral-spatial excitation 
pulses.

Voxel‑selective excitation

Three orthogonal slice-selective excitation and refocusing or 
inversion RF pulses restrict the excited volume to a cuboidal 
voxel [154, 155]. The resulting signal may be spin or stimu-
lated echoes, depending on the pulse phase and amplitude. 
Alternatively, slice-selective outer volume suppression [156, 
157] may be applied prior to excitation, to the volumes sur-
rounding a target volume. Outer volume suppression does 
not require echo generation using multiple slice-selective 
high-flip-angle excitation, refocusing, or inversion pulses 
applied to the target volume.

Phase encoding

Phase-encoding gradient blips are applied after excitation 
and before readout [122, 124] or repeatedly during readout 
[158, 159] to move between k-space points or lines.

Frequency‑encoded readout

Frequency encoding gradients are active and constant during 
signal readout [9]. This is typically combined with an initial 
dephasing blip, during phase-encoding, so that the phase of 
the image passes through the center of k-space in the fre-
quency encoding direction during the readout, producing a 
gradient-recalled echo.

Multi‑gradient echo

A train of gradient echoes is acquired to read multiple 
k-space lines [146] (EPI) or multiple echoes of the same 
line [128, 160, 161] (EPSI) per excitation or refocusing RF 
pulse. B0 field inhomogeneity can limit the use of long echo 
trains [12] or require correction algorithms [162].

Symmetric

Frequency encoding gradients during readout have alternat-
ing polarity, moving through k-space in opposite directions 
[134], also referred to as bipolar readout gradients. Chemical 
shift offsets and inconsistency in gradient response between 
directions can lead to differences between odd and even 
numbered echoes [163], for which bipolar gradient correc-
tions have been developed [164].

Flyback

Frequency encoding gradients are constant during readout, 
alternating with gradient pulses that use the maximum slew 
rate to rewind the encoding and prepare for the next readout 
[165, 166]. Compared with symmetric or non-frequency-
encoded readouts, encoding efficiency is lower, as data are 
not acquired during rewind pulses.

Cartesian k‑space trajectory

K-space points are acquired in a standard MRI pattern 
of orthogonal rows and columns (or also a third dimen-
sion). Grid spacing may be uniform or uneven depending 
on whether constant or ramped gradients are used during 
acquisition.

Centric encoding

K-space points or lines are acquired in a center-out order [4, 
147], rather than sequentially across k-space. This improves 
signal strength with non-renewable hyperpolarized magneti-
zation and is less sensitive to motion, but can increase spatial 
blurring artifacts [167].

Spiral k‑space trajectory

Gradients are continuously adjusted during readout to trace 
a spiral pattern from the center to the periphery of k-space. 
K-space may be covered in a single spiral, giving non-spec-
troscopic data [11, 70], or a series of spirals giving spectro-
scopic data [125, 131, 168]. Such a pattern will produce a 
non-Cartesian sampling of k-space, and thus will require a 
suitable reconstruction method [131, 169, 170].

Radial trajectory

Frequency encoding is applied radially out from the center 
of k-space [123]. This can give very short effective echo 
times for gas T2* measurement, or useful oversampling of 
the center of k-space, giving good sensitivity to contrast 
changes for dynamic imaging [171–174]. Alternating radial 
gradients to produce multiple echoes have also been used for 
13C-pyruvate spectroscopic imaging [175].

Concentric rings trajectory

Frequency encoding is applied in a series of retraced circles 
[176, 177]. This trajectory has timing, sampling efficiency, 
and gradient-demand advantages compared with spiral or 
Cartesian k-space sampling trajectories.
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Under‑sampling

Image data are under-sampled in the spatial and spectral 
dimensions during acquisition and the reconstruction com-
pensates for the missing information. Pseudo-random under-
sampling is referred to as compressed sensing [79, 158, 159, 
178–181]. Regular under-sampling, with fully sampled train-
ing data in the center of k-space, can be reconstructed with 
k-t principal component analysis, using a limited number of 
temporal basis functions that are derived and used to con-
strain the image reconstruction for each spatial location [74, 
182, 183].

Parallel imaging

A multi-receiver coil array is used during acquisition with 
a field of view that does not fully cover the subject [86]. 
Reduced field of view, and thus spatial aliasing of the image, 
is equivalent to omitting k-space lines during acquisition, 
which is corrected in reconstruction using information 
from the spatial distribution of the receiver array. Paral-
lel reconstruction methods include sensitivity encoding 
(SENSE) [83, 109, 110], autocalibrating parallel acquisi-
tion (GRAPPA) [12, 87, 184], and calibrationless parallel 
imaging [185–187]. Omitting k-space lines allows fewer 
excitations [87] and higher flip angles [12] to be used in 
sequences using multiple excitations, improving temporal 
resolution without loss of SNR, as would be the case with 
thermal polarization [188], or reducing overall scan time 
[12]. Alternatively, multiple slices are excited simultane-
ously, and signals are separated using coil sensitivity infor-
mation [189].

Partial Fourier

Symmetry in k-space is exploited to under-sample by omit-
ting acquisition of almost half of the k-space [84, 148, 190].

Spatiotemporal encoding

RF excitation or inversion pulses are swept in frequency 
(chirped or adiabatic) while an encoding gradient is active, 
and a decoding gradient is applied during signal readout 
[142, 143, 191]. The excited magnetization has a phase that 
varies quadratically in space, and the decoding gradient 
moves the vertex of the phase parabola, where magnetiza-
tion is in phase, during readout [192].

Excitation scheme and contrast

RF pulses and static magnetic field gradients are used to 
manipulate magnetization to produce signal and to control 

its contrast and sensitivity to various physical properties 
in the subject. Every NMR measurement has an excitation 
pulse, which tilts magnetization into the transverse plane, 
where its precession produces the RF signal that is acquired. 
Further RF and B0 field gradient manipulations may be 
applied prior to excitation, between excitation and readout, 
or during readout.

For hyperpolarized agents, non-renewable magnetization 
limits sequence timing and the use of contrast mechanisms 
that are common for thermally polarized measurements. 
Flip-back RF pulses and balanced gradients are of increased 
importance, rather than spoiling residual transverse magneti-
zation after readout. For refocusing and inversion, adiabatic 
RF pulses are preferred due to their relative insensitivity 
to transmit power calibration, as are non-spatially selec-
tive pulses, to avoid mixing of inverted and non-inverted 
magnetization and saturation effects adjacent to the targeted 
slice at high flip angles. Sequence repetition times are kept 
to a minimum, to avoid loss of hyperpolarized magnetiza-
tion due to relaxation, compared with thermally polarized 
acquisition, in which longer repetition times allow relaxa-
tion to increase the longitudinal magnetization available for 
subsequent excitations. For hyperpolarized gases, diffusion 
imposes further limits on sequence design.

Constant flip angle

Magnetization is excited at a constant flip angle RF pulse 
[9, 124].

Variable flip angle

Flip angle is varied between excitations or chemical shift. 
Angle may be increased with time to compensate for loss of 
magnetization due to previous excitations and T1 decay [25, 
130, 193–195]. The flip angle may also be varied between 
frequency-specific excitations, when one compound has 
much higher concentration than another, or to avoid deplet-
ing the substrate of a reaction being investigated (e.g. pyru-
vate being converted to lactate) [65, 140, 162, 178]. Angle 
may also be varied in a more complicated pattern over time 
and chemical shift to optimize estimate precision of a rate 
constant [196].

Spin echo

Magnetization is excited and then refocused with a second 
RF pulse or train of refocusing pulses [149]. Spin echoes 
are useful for hyperpolarized gases which have short T2* 
due to diffusion effects [146, 149], unless the sequence also 
involves intense gradient activity [145]. Spin echo sequences 
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can also rapidly deplete hyperpolarized magnetization [145] 
and are sensitive to flip angle calibration [146]. Inverted 
magnetization will also mix with non-inverted magnetiza-
tion through blood perfusion, resulting in opposite-polarity 
cancellation and loss of signal [128].

Adiabatic refocusing

Magnetization is excited at a low flip angle and then refo-
cused by a pair or train of adiabatic inversion [197] spatially 
non-selective RF pulses [140]. Adiabatic pulses are rela-
tively insensitive to flip angle calibration and off-resonance 
effects [198], and can produce good refocusing and low 
signal loss from dephasing [199]. By refocusing twice, the 
magnetization is effectively returned to the state it had after 
the initial low flip angle excitation, allowing an effective low 
flip angle to be used, preserving magnetization for subse-
quent acquisitions. A train of adiabatic refocusing pulses can 
produce a series of spin echoes, with signal acquired after 
each refocusing pulse [199]. Blood perfusion magnetiza-
tion cancellation issues are also avoided by inverting non-
selectively [128].

Free precession

Magnetization is repeatedly and rapidly (relative to the relax-
ation times T1 and T2) excited [200] and refocused with con-
stant [34, 150] or variable flip angles [195], with alternating 
phase, and without spoiling gradients. Typically, balanced 
gradients are used, which have zeroth gradient moment of 
zero between successive RF pulses [34, 134, 201–204]. Free 
precession sequences are often referred to as (balanced) 
steady-state free precession (bSSFP), although for hyperpo-
larized measurements, no measurable steady state is reached, 
due to the lack of magnetization recovery from T1 relaxation, 
as occurs in thermal proton measurements.

Stimulated echo

Magnetization is excited and tilted back into the longitudinal 
direction after a short dephasing time. The prepared mag-
netization is then excited by a third RF pulse after a mixing 
time. This produces a stimulated echo [205] with timing 
dependent on the timing of the RF pulses [206]. Stimulated 
echoes can be used to provide diffusion or perfusion weight-
ing [207, 208] for hyperpolarized 13C imaging. Stimulated 
echoes can be preferable to spin echoes for measurements 
using long echo times [209].

Saturation and inversion

Using a frequency-selective RF pulse, magnetization is 
saturated or inverted [138]. This can be useful to observe 

how metabolite signals exchange after selective saturation 
of 13C-labeled molecules [66], to investigate how selectively 
saturated magnetization of encapsulated 129Xe chemically 
exchanges with the hyperpolarized 129Xe pool in solution 
at a different chemical shift (HYPER-CEST) in [38], or 
to selectively destroy signal outside a region of interest to 
ensure that metabolites flowing into a region do not disturb 
the temporal relationship between metabolites [210]. Satura-
tion is also used in continuous flow (replenished) hyperpo-
larized 129Xe gas measurements of microstructural exchange 
properties in materials [211] and lungs [13].

Polarization transfer

Polarization transfers from one nucleus to another sponta-
neously due to heteronuclear cross-relaxation [212], or the 
transfer may be induced by RF pulses [213], such as with 
(reverse) insensitive nuclei enhanced by polarization transfer 
(INEPT) [35, 157, 214–216]. Hyperpolarizing 13C or 15N 
and then transferring the polarization to 1H before measure-
ment is useful due to their longer T1 relaxation times [217, 
218] and because nuclei with higher gyromagnetic ratios 
place lower demands on the gradient system for equivalent 
signal encoding. Furthermore, assuming efficient transfer of 
polarization and minimal losses due to other pulse sequence 
differences compared with direct X-nucleus polarization 
measurement, the higher gyromagnetic ratio (γ) of protons 
theoretically provides higher detection sensitivity [35, 46, 
215] and SNR, proportional to γ2.

Diffusion

Apparent diffusion coefficient (ADC) may be assessed 
with paired pulsed gradients [219, 220]. Varying strength 
and separation of the gradient pulses controls the diffu-
sion weighting b-value and thus the amount of motion-
dependent dephasing and signal intensity reduction [221]. 
Diffusion over longer distances can also be measured with 
spatial modulation of the longitudinal magnetization [222]. 
In vivo hyperpolarized diffusion imaging is used to assess 
lung microstructure [12, 223] with gases and liver fibrosis 
[224] with 13C. Most imaging sequences will also have some 
inherent diffusion weighting, dependent on the strength of 
gradients they use [145, 148].

Flow

Sensitivity to liquid flow or perfusion can be introduced with 
stimulated echo pulse sequences, which dephase magneti-
zation before the second RF pulse, and rephase it after the 
third RF pulse unless the magnetization has moved from its 
initial position [207, 208, 225]. Phase variation in vitro has 
also been used to image flowing hyperpolarized water [226].
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Static/single or dynamic/multiple excitations

A single image is acquired [4, 9], or multiple images are 
acquired over time, allowing a time-course of signal to be 
reconstructed [65, 146, 227].

Spoiling

After signal readout, substantial magnetization may remain 
in the transverse plane, although it will usually have been 
dephased by phase and frequency encoding. The transverse 
magnetization may be further dephased (spoiled), by again 
turning on a strong gradient [131, 150], so that it will not 
contribute directly to the signal after subsequent RF pulses 
or produce stimulated echoes.

Decoupling

NMR spectral peaks can split due to heteronuclear J-cou-
plings. Particularly at lower field strengths, this leads to 
separation of signal into multiple peaks, which may be 
independently less distinguishable from background noise. 
Continuous wave RF irradiation at the Larmor frequency 
of a nucleus, e.g. proton, that is coupled to an X-nucleus, 
e.g. 13C, suppresses the J-coupling evolution during the 
signal acquisition and removes the peak splitting. This has 
been used on clinical MRI scanners with hyperpolarized 
compounds, and produced narrower spectral line widths 
[228] and substantial sensitivity improvement [64] in vivo, 
and in non-imaging NMR measurements of hyperpolarized 
compounds [229]. In addition, off-resonance decoupling 
has been used to obtain heteronuclear chemical shift cor-
relations from hyperpolarized compounds [230–232].

Pulse sequences

Many pulse sequence variations have been proposed and 
demonstrated for hyperpolarized imaging and spectros-
copy, which make use of various combinations of the 
sequence components discussed above. Several important 
sequences or groups of sequences are discussed below, 
in rough order from less to more complicated, including 
non-imaging and imaging methods.

Non‑imaging spectroscopic methods

NMR spectroscopic methods omit spatial encoding gra-
dients during signal acquisition and (in most techniques) 
during RF excitation. The signal may still be localized 

with the sensitivity profiles of the RF transmit and/or 
receiver coils, or with gradients applied during excita-
tion and refocusing RF pulses to provide slice or voxel-
selectivity. These methods employ a wide variety of con-
trasts and spectral encoding schemes for hyperpolarized 
experiments.

Non‑localized spectroscopy

Non-localized spectroscopy originates with first nuclear 
magnetic resonance (NMR) experiments of Bloch [233] 
and Purcell [234]. RF pulses are used to invert, satu-
rate, refocus, and excite magnetization across, and signal 
is received from, the entire sensitive volume of the RF 
transmit and receive coil. For hyperpolarized nuclei, the 
most common acquisition scheme is free induction decay 
(FID) [2, 39]. Single high-angle or multiple low-flip angle 
iterative excitations are applied, typically spaced several 
seconds apart [137] to follow physical, physiological, 
or metabolic processes for up to several minutes [124]. 
Constant or variable flip angle schemes are used [235]. 
Material science applications include Xe gas adsorption 
on solids [121]. In vitro experiments include enzymatic 
assays [236], cell metabolism experiments [65], or whole 
resected organs [237], at a wide range of field strengths 
from 0.0487 T [43] to 14.1 T [238]. Because the entire 
sample is contained within the sensitive volume of the 
coil, inflow and outflow of hyperpolarized magnetization 
do not need to be accounted for, facilitating kinetic mod-
eling [239].

MRI systems are also used for non-localized in vivo 
spectroscopy [34, 124], when the subject fits within the 
RF coil. In any other case, signal will be localized by the 
sensitivity profile of the coil, even without any localization 
from the pulse sequence.

Localization by coil sensitivity

The B1 field profile of a surface coil [63, 65] can be 
exploited to isolate signal near the coil’s position. A small 
solenoid or volume coil [227] can similarly be placed over 
a region of interest to isolate signal within. Both the RF 
transmission and reception B1 profiles can be used, with 
transmission to limit the volume of excited magnetization, 
and with reception to limit the volume from which signal 
is received. When used to transmit, surface coils produce 
spatially varying effective excitation angle (less so with 
adiabatic pulses) which can complicate signal interpreta-
tion. Signal localization by coil sensitivity profile can also 
be combined with selective excitation and spatial encoding 
with magnetic field gradients.
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In vivo, surface receive coils are used for detection of 
signal from superficial regions and near-surface organs 
such as subcutaneously implanted tumors [21], heart, liver, 
or head [240]. Coil size is adapted to the application, from 
more than 13 cm diameter [241], down to 8 mm [242], and 
most commonly 20 mm in preclinical small animal experi-
ments [75, 243, 244].

Slice‑selective excitation

Slice selective or spectral-spatial pulses are used to excite 
magnetization in a slice, limited in one spatial dimension. 
Typical slice thicknesses for hyperpolarized experiments 
range from 5 mm [65] to 40 mm [245].

As with non-selective excitation, slice selective excita-
tion can be applied iteratively at low flip angles, preserving 
hyperpolarized magnetization during dynamic measure-
ments. For in vivo studies, however, in-flowing magnetiza-
tion can complicate quantitative modeling. Multiple slices 
may be interleaved with alternating excitations, in order 
to simultaneously measure separate body regions [153] or 
objects [246]. Slice excitation can also be combined with 
surface-coil localization [65]. This approach is well suited 
for single organs [25, 243] or subcutaneous tumors [65].

Voxel‑selective (echo) spectroscopy

An excitation pulse is followed by orthogonal-slice selec-
tive RF pulses to produce a spin or stimulated echo within a 
cuboidal voxel. Stimulated echo acquisition mode (STEAM) 
[247, 248] produces a stimulated echo with three 90° pulses. 
Point resolved spectroscopy (PRESS) [155, 249] produces 
a spin echo with an excitation pulse followed by two 180° 
refocusing pulses. Localization by adiabatic selective refo-
cusing (LASER) [197] produces a spin echo with a non-
selective excitation and three pairs of adiabatic refocusing 
pulses.

Both STEAM and PRESS, using shaped slice-selective 
pulses or spectral-spatial excitation, require accurate B1 
transmit calibration to produce effective refocusing pulses. 
Adiabatic pulses are less sensitive to B1 calibration. Adi-
abatic and spectral-spatial pulses provide improved robust-
ness to the chemical shift displacement artifact, which 
can complicate data interpretation [250] with simple slice 
selection. They can also produce low effective flip angles 
for dynamic acquisition, without saturation effects outside 
the target voxel, as can occur with high angle simple slice 
selective pulses [155]. These saturation effects can also be 
mitigated for single time-point sequential acquisition in mul-
tiple voxels by careful orientation and positioning of voxel 
edges to preserve magnetization in other regions [251]. Such 
multi-voxel approaches [252] can be an efficient alternative 

to imaging for isolating signal to a small number of discrete 
regions of interest [154].

Multi‑dimensional and exchange spectroscopy

Two-dimensional NMR spectroscopy traditionally involves 
multiple excitations with varying parameters, such as evolu-
tion or mixing times between excitations or excitation fre-
quencies [253].

Exchange spectroscopy (EXSY) employs stimulated 
echoes with varied evolution time between the first and 
second RF pulses and fixed mixing time between the sec-
ond and third RF pulses [254]. During the evolution time, 
the magnetization acquires a phase at a rate dependent on 
its chemical shift, which is separable from the chemical 
shift measured during the readout, allowing a 2D spectrum 
to be extracted that describes the distribution of exchang-
ing magnetizations before and after the mixing time. 
EXSY can be applied to renewably hyperpolarized mag-
netization in vitro, such as generated with SABRE [255].

For two-site exchange, MAD-STEAM [256, 257] can 
be applied with only a single encoding and acquisition, 
with slab selective excitation, making it more suitable for 
hyperpolarized measurements in vivo. MAD-STEAM pro-
duces a phase shift in magnetization that depends on the 
frequency difference between the two exchanging sites and 
the echo time. This technique allows signal of in-flowing 
metabolite to be separated from that arising from meta-
bolic conversion. Ultra-fast exchange spectroscopy (UF-
EXSY) [252] extends MAD-STEAM, with multiple ech-
oes and sparse sampling to separate multiple exchanging 
metabolites and voxel selective excitation.

Ultrafast two-dimensional spectroscopy uses a series of 
frequency-stepped slice selective excitations [258–260] or 
swept-frequency excitations [261] or inversions [262] and 
a multi-echo readout. Although the excitations are local-
ized, they are applied to a uniform object and are used 
to parallelize the evolution times. This method has been 
applied to hyperpolarized 13C and 15N in combination with 
polarization transfer to 1H before readout [46, 260, 263].

Diffusion spectroscopy

Diffusion weighting can be introduced with paired pulsed 
gradients with spin echo [219] or stimulated echo [209, 
256] acquisition. For hyperpolarized measurements, 
because the magnetization decays rapidly and non-renew-
ably, the mixing time [264] and echo time [265] are kept 
short and constant, with gradient strengths varied to con-
trol the diffusion weighting b-value, and higher diffusion 
weightings are acquired first to optimize SNR [221, 266]. 
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Saturation recovery sequences can also produce diffusion 
weighting in continuous flow experiments [267].

Diffusion weighting is used to characterize in vivo 
microstructures [221, 268], transgene expression [67], and 
transport processes [269]. Hyperpolarized in vitro diffu-
sion spectroscopy with 13C has been used to separate intra- 
and extra-cellular metabolites [264], in combination with 
non-diffusion-weighted spectra to separate signal decay 
from T1 or metabolic conversion [266].

Free induction decay chemical shift imaging 
(FID‑CSI)

Free induction decay (FID) chemical shift imaging (FID-
CSI) is the simplest spectroscopic imaging method and was 
used early for spectroscopic imaging of hyperpolarized 
13C compounds [4] and for 129Xe in gas and liquid phases 
[137]. It consists of 2D single-slice, multi-slice, or 3D slab 

selective low-flip angle excitation, 2D or 3D phase encoded 
spatial localization, and FID readout with no gradients 
active [122]. An example pulse sequence for mapping B1 
using FID-CSI is shown in Fig. 3, and an example pattern 
of k-space acquisition is shown in Fig. 4.

Because FID-CSI does not use any gradients during read-
out, it places relatively little demand on the gradient system 
and is minimally affected by non-ideal gradient response and 
eddy currents. It is also relatively robust to static field (B0) 
inhomogeneity, which is particularly helpful at higher field 
strengths, and can be used to measure B0 variations from 
spectral frequency shifts from voxel to voxel in the image. 
Furthermore, FID-CSI is able to acquire with broad spectral 
bandwidths [270], limited by the digitizer sampling rate, 
rather than the rate at which gradient echoes can be gener-
ated as in many other sequence types.

In the context of hyperpolarized imaging, FID-CSI uses 
magnetization relatively inefficiently because each k-space 
point is separately read out as an FID after phase-encoding 
[270]. Maximizing spectral resolution requires a readout 
long enough for the transverse magnetization to have mostly 
decayed, which requires a long TR, which can make the 
time to acquire a full k-space prohibitively long [271], dur-
ing which the longitudinal magnetization is also decaying. 
Shorter readout can be used, at the cost of limiting spectral 
resolution and wasting any remaining transverse magnetiza-
tion, which is then typically spoiled before the next excita-
tion. Even with short readout for each k-space point, spatial 
matrix sizes are limited [134]: typically 16x16 pixels for 
static dissolved 129Xe or 13C imaging [65, 124, 131, 271].

FID-CSI is relatively robust; it can be used with com-
pounds with multiple chemical shifts that are not precisely 
known prior to imaging (Fig. 5), and in cases with B0 varia-
tion, which leads to broader spectral line widths and varia-
tions in peak position across the field of view. Multi-frame 
FID-CSI is suitable when very limited spatial resolution and 
moderate spectral resolution are acceptable, and when the 
temporal resolution may be relatively poor (on the order of 
5 s per time frame). Multi-slice FID-CSI is also possible, 
with additional compromises on the temporal, spectral, and 
spatial resolutions. 3D FID-CSI is generally impractical for 
multi-frame, as even a minimal 8 × 8 × 8 matrix will require 
too many phase-encodes and excitations per frame to have 
meaningful time resolution and dynamic time-course infor-
mation with a hyperpolarized substance.

Echo‑planar spectroscopic imaging (EPSI)

Echo-planar spectroscopic imaging (EPSI) is an accelerated 
spectroscopic imaging sequence and is the most commonly 
used sequence for clinical hyperpolarized [13C]pyruvate 
studies [272, 273]. It uses an oscillating readout gradient 
to sample one line in k-space multiple times after each 

Fig. 3   FID-CSI pulse sequence with slice-selective excitation and 2D 
phase encoding, acquisition window without any gradients active, and 
post-acquisition spoiler gradients

Fig. 4   k-space acquisition pattern of a 2-spatial-dimensional FID-CSI 
pulse sequence. Phase encode gradients are applied simultaneously 
for all spatial dimensions before acquisition starts so that a single 
point in k-space is encoded for the duration of each acquisition. Sub-
sequent acquisitions are used to acquire additional k-space points
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excitation [160]. The spectral and one spatial dimension 
are thus sampled simultaneously. Additional spatial dimen-
sions [158] are phase encoded between excitation and read-
out (Figs. 5, 6).

EPSI uses hyperpolarized magnetization relatively effi-
ciently for spectroscopic imaging, in contrast with FID-CSI, 
because it acquires (the equivalent of) a full line of k-space 
after each excitation. Acquisition times can be on the order 
of a few seconds for fully sampled single images of hyper-
polarized compounds. EPSI can thus be used for dynamic 
sampling of biochemical pathways [270] (Fig. 6) with 13C in 
tissues, but may be impractical for gas imaging due to long 
effective echo times and diffusion-related dephasing while 
gradients are oscillating.

Particularly for non-proton nuclei with lower gyromag-
netic ratios, the gradient strength and slew rate determine 
the minimum echo spacing and thus the maximum spectral 
bandwidth [273], potentially limiting the metabolites that 
can be imaged without spectral aliasing with EPSI. Gradient 
strength also imposes limits on the minimum field of view 
and the maximum spatial resolution in the readout direc-
tion, which can be problematic for smaller subjects at higher 
static field strengths.

Several k-space encoding strategies are used with EPSI. 
Symmetric readout gradients [273] acquire data while mov-
ing in alternating directions through k-space, minimizing 
echo spacing. However, this may lead to odd–even echo 

inconsistencies and spectral ghosting related to static field 
inhomogeneity [274] and gradient-induced eddy currents 
[275]. Ghosting may be reduced by separately reconstruct-
ing the odd and even echoes at the cost of a reduced spectral 
bandwidth [273]. Flyback readout gradients acquire data in 
only one gradient readout direction [128, 166] and eliminate 
odd-even echo inconsistencies, but at the cost of higher echo 
spacing, lower spectral bandwidth [273], and lower sam-
pling efficiency [95] because data are not acquired during 
the flyback portion of the gradient shape. Ramped gradients 
during readout move through k-space at the maximum pos-
sible speed, but produce irregular and unpredictable spac-
ing of samples within k-space, exacerbating odd–even echo 
inconsistencies and complicating reconstruction. Irregularly 
sampled k-space data may be regridded [170, 273] based 
on a reference k-space trajectory measurement [95]. EPSI 
acquisition can also be accelerated using compressed sens-
ing, by sparsely sampling k-space and frequency informa-
tion by applying blipped phase-encode gradients during 
the EPSI echo train [79, 158, 159, 178, 179, 181], or using 
parallel imaging [276]. Example EPSI pulse sequences are 
shown below, with symmetric fully sampled readout (Fig. 7), 
and with flyback pseudo-randomly under-sampled readout 
(Fig. 8). A simplified model k-space trajectory, illustrating 
jumps between k-space lines, is shown in Fig. 9.  

Fig. 5    Hyperpolarized ZA in vivo pH measurements show three pH 
compartments in rat kidneys at 7 T. Representative kidney data from 
a hyperpolarized 13C measurement (colored) in an axial slice over-
layed on anatomical proton images (grayscale). A calibration phan-
tom containing 13C urea and the catheter used for injection are vis-
ible. The two simultaneously hyperpolarized and injected substances 
(a) ZA and (b) urea show high signal intensities in both kidneys of a 
healthy rat. (c) The mean pH map shows lower pH values in the kid-

neys compared to the surrounding tissue. (e) A voxel can contain up 
to three pairs of ZA peaks (red, green, blue) and a noticeable amount 
of PPH. The pH values group into three clusters (d, shown for one 
representative animal), consistently demonstrated in four animals (f, 
individual datapoints and mean ± s.d.). For all 13C images, inten-
sity windows are based on sufficiently high signal levels for either 
(intensity images) or both (pH images) ZA and urea. Scale bars, 1 
cm. Reprinted with permission from Düwel et al. [50]
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Spiral readout methods

Spiral sequences use continuously varying gradients during 
readout to move in a spiral trajectory from the center to the 
periphery of 2D k-space [277]. A third spatial dimension 
may be measured by acquiring multiple slices separately 
[70, 278], or by applying phase encoding before readout or 
between multiple spiral readouts [168, 199]. Example pulse 
sequences using spiral readouts are shown in Fig. 1, with 
a single spiral per excitation, and in Fig. 10, with multiple 
spiral gradient echoes per excitation. Projections of k–t space 
illustrating the trajectory of a multi-echo spiral readout are 
shown in Fig. 11.

Because they sample the center of k-space first and 
after every excitation, spiral trajectories give good signal 
to noise ratio (SNR), can be used to implement self-nav-
igating sequences [279], and can acquire with very short 
echo times. Spiral trajectories also sample k-space rapidly 
and efficiently [270], and can acquire one or more full 2D 
k-spaces in a single shot. These properties are beneficial for 
hyperpolarized imaging with non-renewable magnetization, 
particularly when acquiring dynamic image series [66, 280] 
(Figs. 12 and 13) or when the magnetization preparation 
unavoidably consumes all longitudinal magnetization. Spiral 
gradient trajectories are also relatively insensitive to motion 
and flow effects [278]. 

Fig. 6   Dynamic echo-planar spectroscopic images (EPSI) of hyper-
polarized 13C pyruvate to lactate conversion in clinical prostate tumor 
patient. a Anatomical and diffusion images. b Dynamic pyruvate 
and lactate time course within voxel indicated on anatomical image. 
c Flip-angle-corrected dynamic pyruvate and lactate time-courses 

in tumor and normal-appearing tissue. d Representative spectra at 
t = 36  s. e Pyruvate-to-lactate conversion kPL parameter map, with 
localized high values marked with arrows, which were later con-
firmed as Gleason score 4 + 3 prostate cancer by post-surgical histo-
pathology. Reprinted with permission from Chen et al. [79]
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A disadvantage of spiral trajectories is that they are 
prone to B0 non-uniformity related distortions [131, 279], 
and thus require good shimming, more so at higher field 
strengths, but less so for X-nuclei with lower gyromagnetic 
ratios, and less apparently with lower image matrix sizes. 
More complicated reconstruction is also required due to 
the non-Cartesian k-space sampling [168–170]. Irregular 
k-space sampling is also difficult to combine with parallel 
imaging [279].

When spectral encoding during readout is not required, 
due to there being only a single measurable compound, e.g. 
with hyperpolarized gases (Fig. 12) or after a spectrally 
selective excitation [70] (Fig. 13), single-shot [277] or inter-
leaved [11, 168, 278, 280] spiral readouts may be used. For 
imaging with spectroscopic acquisition (Fig. 14), the readout 
is repeated with multiple echo times, using a multiple-echo 
flyback trajectory or with shifting delays after excitations 
[125, 131, 168]. These echoes may be uniformly spaced 
and interpreted as a model-free multi-echo time series, or 
their timing may be varied to optimize separation of spectral 

peaks at expected chemical shifts using a sparse spectral 
sampling scheme [131].

Robustness to flow and motion makes cardiac imaging an 
important application of spiral readout sequences [70, 278, 
281]. Acquisition with very short echo times is beneficial for 
hyperpolarized gas imaging, which can have very short T2* 
and strong diffusion effects [11, 280].

Balanced steady‑state free precession

Balanced steady-state free precession (bSSFP, also known 
as TrueFISP, balanced FFE, or FIESTA) is fast, magnetiza-
tion efficient, and can provide a high SNR [282, 283]. The 
bSSFP sequence uses a spin echo train with repetition time 
(TR) much less than the transverse (T2) and longitudinal 
(T1) relaxation times, and balanced gradients with zeroth 
gradient moment equal to zero. For thermally polarized sam-
ples, a steady-state transverse magnetization is maintained 
[200] following an initial transient [282]. For hyperpolarized 
129Xe [62, 284] or, e.g. 13C in liquid, a pseudo steady-state is 
reached in which the hyperpolarized magnetization is gradu-
ally consumed [150] after inhalation or administration. In 
either case, an initial half-alpha half-TR preparation RF 
pulse [285] can help reach the (pseudo) steady-state much 
faster [150, 283].

Fig. 8   EPSI pulse sequence with slice-selective excitation pulse, fly-
back gradient pulses between signal acquisitions that all move in the 
same direction through k-space, and phase-encoding gradient blips 
in ky and kz between acquisitions, to move between k-space lines to 
accelerate acquisition by pseudo-randomly under-sampling the spec-
tral and k-space information

Fig. 9   Model flyback EPSI k-space trajectory with just two phase-
encodes. Pseudo-random phase-encoding jumps in ky occur simulta-
neously with rapid flyback to low kx (dotted green lines) between the 
signal acquisitions (solid green lines), which always move in the same 
direction through k-space, from low to high kx

Fig. 10   Pulse sequence using multi-echo spiral k-space trajectory, 
with slice-selective excitation followed by a series of gradient spirals 
during acquisition, and finally spoiler gradients

Fig. 7   EPSI pulse sequence with slice-selective excitation pulse, a 
single phase-encoding gradient blip after excitation, and symmetric 
bipolar readout gradients moving in alternating directions through 
k-space during a multi-echo acquisition
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Balanced gradients and refocusing each TR lead to char-
acteristic and well-defined banding artifacts for off resonant 
spins [286] that can also cause considerable signal and 
effective slice thickness variations across the imaging slice 
for spins near the stopbands [287]. For non-spectroscopic 
imaging, the central passband of this frequency response is 
centered on the RF transmission (B1) frequency by alternat-
ing the phase of the excitation pulses [283].

For imaging of multiple chemical shifts, careful consid-
eration of sequence timing is required. Bloch simulations 

[233] can be employed to determine TRs that place the 
hyperpolarized resonances of interest in the passbands of 
the bSSFP frequency response and undesired resonances 
in the stopbands [134, 282, 283, 288]. Various approaches 
based on combining acquisitions of different constant RF 
pulse phase increments [289] or varying the TR have been 
developed to alleviate or emphasize this frequency response, 
as desired. Multiple resonances can then be measured indi-
vidually and sequentially using an interleaved, single readout 
[288] (Fig. 15), or concurrently using a sparse multi-echo, 

Fig. 11   Spiral k-space trajec-
tory, left: kx–ky projection and 
right: kx–t projection

Fig. 12   Dynamic spiral readout 
hyperpolarized 3He lung images 
of patients demonstrating vari-
ations in lung ventilation with a 
severe asthma, b cystic fibrosis, 
c emphysema secondary to α-1 
antitrypsin deficiency. Repro-
duced with permission from 
Salerno et al. [11]

Fig. 13   In vivo short-axis 
pig heart multi-slice dynamic 
cardiac-gated images of 
hyperpolarized 13C pyruvate 
(top row) and bicarbonate 
(bottom row) acquired with a 
spiral k-space trajectory after 
single-metabolite-resonance 
spectral-spatial RF excitations. 
Reproduced with permission 
from Lau et al. [70]
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multi-readout approach [202]. Spectrally selective RF pulses 
are generally not used as refocusing pulses within the bSSFP 
due to their long pulse durations [288], but they have been 
used as a preparation [290].

High-resolution, temporally interleaved 3D time course 
metabolic imaging of co-polarized pyruvate and urea has 
been performed at 14 T with bSSFP, with metabolite separa-
tion enhanced by the use of optimized spectrally selective 
pulses [288, 291]. The same approach is feasible at 3 T, but 
saturation pulses prior to each image are required in order to 
suppress the alanine and pyruvate-hydrate resonances [290]. 
However, the use of such pulses reduces the rate at which 
metabolic images can be recorded.

Fig. 14   IDEAL spiral hyperpolarized 13C-labeled metabolite imaging in the healthy human brain in two subjects (a) and (b). Reprinted with per-
mission from Grist et al. [111]

Fig. 15   In vivo 13C rat abdomen bSSFP projection images of pyru-
vate and lactate acquired 20  s after start of injection of hyperpolar-
ized pyruvate, with spectral suppression of alanine and pyruvate 
hydrate resonances before slab-selective excitation and one gradient 
echo per α RF pulse, alternating between metabolite center frequen-
cies. a Pyruvate and b lactate at 2 × 2  mm2 acquired in-plane reso-
lution. d Pyruvate and e lactate at 3 × 3 mm2 acquired in-plane res-
olution. Pyruvate at c 2 × 2  mm2 and f 3 × 3  mm2 acquired in-plane 
resolutions. Reprinted with permission from Milshteyn et al. [290]

Fig. 16   Balanced steady-state free-precession pulse sequence with 
multiple symmetric bipolar gradient echoes and signal acquisitions 
per RF pulse. Spectral information is under-sampled due to the small 
number of acquired echo times, and is, therefore, reconstructed with 
an IDEAL approach. The initial α/2 pulse brings the magnetization 
quickly into a pseudo-steady state. All zeroth-order gradient moments 
equal zero
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Sparse multi-echo bSSFP may be used to separate multi-
ple chemical shift signals in a single measurement by acquir-
ing a short symmetric train of gradient echoes after each RF 
pulse, which sample the envelope of the spin echoes [292, 
293]. Based on the principle that each distinct resonance fre-
quency will have a distinct phase evolution, iterative least-
squares (IDEAL) reconstruction can be used to reconstruct 
separate images of multiple chemical shifts [135], such as 
hyperpolarized 13C pyruvate, alanine, and lactate [202]. This 
approach has been extended with bipolar gradient correction 
[164], and has been applied in tumor-bearing rats on a clini-
cal 3 T scanner [294]. An example multi-echo bSSFP pulse 
sequence with multiple gradient echoes per RF excitation is 
shown in Fig. 16, and an illustration of the kx trajectory is 
shown in Fig. 17.

Further applications of bSSFP in hyperpolarized imag-
ing include non-frequency selective hyperpolarized gas lung 
imaging in both 2D [284] and 3D [295, 296], single [150] 
and multi-compound [297] hyperpolarized 13C angiography, 
rapid imaging of the heart [298], and numerous metabolic 
imaging approaches [108, 134, 202, 288].

Spectral‑spatial excitation

Spectral-spatial (SPSP) radiofrequency (RF) pulses are 
simultaneously selective in both frequency and space. They 
were originally designed for separating fat and water reso-
nances [299], but have since proven particularly useful for 
imaging hyperpolarized 13C-labeled compounds and their 
metabolites [72]. In this application, SPSP pulses selectively 
excite individual metabolites, in contrast to multi-echo and 
free induction decay (FID) sequences that extract spectral 
information from a time-series of signal measurements. 
Single resonance SPSP pulses allow much faster encoding 
of k-space, because spectral encoding during readout is not 
required.

SPSP pulses consist of a series of shaped RF sub-pulses 
that are transmitted during a periodic oscillating magnetic 
field gradient. As a rough approximation, the shape of each 
sub-pulse determines the spatial profile, while the envelope 
of sub-pulses determines the spectral profile [72]. Important 
design parameters for SPSP pulses are the duration of sub-
lobes (determining the width of the spectral stop-band), the 
shape of the envelope (determining the width of the spectral 
passband), and the total length of the pulse (determining 
the width of the transition between passband and stopband). 
Several strategies have been proposed for optimized design 
of SPSP pulses [139, 140, 300], including a free online 
software-package that computes RF and gradient pulses for 
a given specification on spectral and spatial excitation range 
[301].

SPSP pulses can be designed to excite either a single 
resonance [139] or multiple resonances (multi-band) [140]. 
For the case of a single resonance excitation, the SPSP pulse 
is usually combined with a fast imaging readout in two or 

Fig. 17   Symmetric readout 
bSSFP sequence kx vs. time 
trajectory. Signal is read out 
during constant plateau portions 
of bipolar readout gradients

Fig. 18   1H anatomical (top) and 13C-pyruvate, bicarbonate, and lactate images in in vivo rat heart, acquired with a series of single-metabolite-
frequency spectral-spatial slab excitations and 3D EPI readouts. Reproduced from Miller et al. [302]
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three spatial dimensions, such as echo-planar imaging [85, 
141, 302] (Fig. 18) or single-shot spirals [66, 199, 303]. By 
shifting the excitation frequency of the SPSP pulse, different 
metabolites may be consecutively encoded.

Using multi-band SPSP excitation pulses, multiple 
selected metabolites can be excited with optimized individ-
ual flip angles, to more efficiently use the hyperpolarized 
magnetization [140, 301, 304]. In this case, chemical shift 
imaging techniques are required to separate the individual 
metabolite signals. A hybrid multi-echo spectral-spatial EPI 
sequence has been shown to achieve improved tolerance to 
off-resonance effects [85].

Due to their efficient and fast encoding, SPSP excitation 
acquisition schemes are advantageous when a high spatial 
resolution is required or when the acquisition needs to be fast 
because of motion, such as in the heart. Numerous studies 
have applied SPSP pulses for metabolic imaging in animals, 
in tumors, as well as in the heart, liver, and kidney (Table 1). 
Recently, they have also been used to study pyruvate metab-
olism in human subjects, focusing on healthy brain [305], 
healthy heart [76], and prostate and brain cancer [80].

Relaxometry

Relaxometry measurements of hyperpolarized agents can 
determine their longitudinal (R1 or T1) and transverse (R2 or 
T2 and R2* or T2*) magnetization relaxation rates or times. 
Several 13C labeled compounds’ T1 and T2 times, and 129Xe 
gas or in solution T1 times, are on the order of tens of sec-
onds in vivo, allowing a series of excitations to sample the 
T1 decay or a series of echoes to sample the T2 decay.

The transverse magnetization relaxation from atomic and 
molecular interactions (R2 or T2) can be measured using a 
multi-spin echo experiment with a train of refocusing pulses 
[198, 306, 307] after a single excitation. With hyperpolar-
ized compounds, this is often limited to slice selective [138, 
308] or voxel localized [309] experiments. When imaging 
T2, the results are dependent on echo spacing [310, 311], 
B1 calibration [312], and resonance-offsets [313], and are 
described as an effective T2 [107]. Transverse relaxation 
can be difficult to assess in hyperpolarized gas imaging due 
to their relatively high diffusion rates, which confound the 
relaxation signal change [145].

The transverse relaxation including static field (B0) 
inhomogeneity effects (R2* or T2*) can be derived from 
FID measurements [123, 147, 314]. In cases with minimal 
variation across the excited slice or volume, a simple non-
imaging FID can be fit. Alternatively, a FID-CSI reconstruc-
tion can be used to spatially localize spectral peaks, from 
which a peak width can be fit, with sensitivity only to local 
B0 variations from susceptibility variations. For very short 
T2* compounds, frequency-encoding with center-out radial 
[123] (Fig. 19) or spiral trajectories can be used to minimize 

the shortest echo times. Alternatively, multi-gradient echo 
images can be fit for T2* [315].

Longitudinal relaxation (R1 or T1) can be determined 
from the signal magnitude in a series of FID or image 
acquisitions [34, 147] when no substantial addition, 
removal, or conversion between hyperpolarized com-
pounds in the volume of interest is expected. Chemical 
reactions or exchange (e.g. pyruvate to lactate conversion) 
will alter the affected compounds’ signal magnitudes over 
time, but these processes can also be fit as part of a multi-
compartment kinetic modeling experiment [65, 120, 316] 
that includes one or more T1 relaxation parameters. Perfu-
sion or flow into or out of the volume of interest, and meta-
bolic conversion into compounds that are not measured 
in the experiment, are more challenging; additional free 
parameters may be added to a kinetic model to account for 
them, but extra degrees of freedom can lead to noisier fit 
results or even physically or physiologically implausible 
results. The magnetization lost to previous excitation RF 
pulses [34] and the differing signal after varying excitation 
angle [181] must also be accounted for.

In vivo imaging applications 
of hyperpolarized substances

Hyperpolarization allows for functional and metabolic 
in vivo imaging relying on a great variety of different 
probes. Noble gases as well as small inorganic and organic 
molecules bearing half-integer spin nuclei are commonly 
polarized with SEOP, PHIP and dDNP. This chapter sum-
marizes molecules polarized with these techniques and 
describes their in vivo applications and the respective 
acquisition strategies. In Table 1, five of the most promi-
nent in vivo acquisition strategies and in vivo applications 
of different metabolic probes that are labeled with 13C and 
polarized with dDNP are listed.

Spin exchange optical pumping (SEOP)

Noble gases are exclusively polarized by SEOP and are 
used to characterize gas-filled spaces such as the respira-
tory tract and the lung [317]. In its early stages, the field 
of hyperpolarized gas MRI mainly focused on the assess-
ment of lung ventilation and physiological parameters such 
as partial oxygen pressure [318, 319]. These techniques 
have been applied to asthma, apnea, cystic fibrosis, emphy-
sema, chronic obstructive lung pulmonary disease, and 
smoking-related aberrant changes of the lung [320, 321]. 
Analyzed model systems included small animals (mouse, 
rat, guinea pig), rabbits, and dogs. Additionally, because 
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Table 1   In vivo imaging strategies for 13C-labeled dDNP-polarized hyperpolarized probes, sequence details, respective applications and probed 
species

Strategy Additional specifics of acquisition strategy HP-probe Application Species

FIDCSI 3-Dimensional [373]
Compressed Sensing [374]
ECG-gated and respiratory-gated [241]
Parallel imaging [83]
Variable flip angle [375]

[1-13C]pyruvate Tumor
Brain
Heart
Inflammation
Kidney
Lung
Obesity
T2-mapping

M [65], R [343], D [376]
M [377], R [368]
R [378], P [167]
R [375]
R [379], P [380]
R [381]
M [382]
R [383]

[1-13C]acetoacetate Redox R [25]
[1-13C]bicarbonate pH M [5]
[1-13C]dehydroascorbate Redox M, R [373]
[1-13C, U-2H]ethanol Liver M [370]
[1-13C]ethyl pyruvate Brain R [368]
[1,3‐13C2]ethyl acetoacetate Tumor R [354]
[1,4-13C2]fumarate Necrosis M [6], R [358]
[U-13C, U-2H]glucose Tumor M [353]
[1-13C]α-ketobutyrate Heart, kidney R [363]
[1‐13C]2-ketoisocaproate Tumor M [357]
[2-13C]pyruvate Brain R [367]
[1,2-13C]pyruvate Heart, kidney R [363]
[1,5-13C2]zymonic acid pH R [50]

SPCSI 3-Dimensional [361]
Bipolar flow-sensitive gradients [384]
ECG-gated and respiratory-gated [385]
Compressed Sensing [372]
Multi-echo [344]
Multi-echo-SPARSE [125, 131]
Multi-slice [125]
Variable flip angle [344, 386]

[1-13C]pyruvate Tumor
Brain
Heart
Kidney
Liver
Pregnancy

R [125]
R [54], P [387], H [111]
P [386]
R [344],
R [388]
R [389]

[1-13C]acetate Kidney R [366]
[1-13C]acetoacetate Heart R [372]
[2-13C]dihydroxyacetone Liver R [372]
[1-13C]ethyl pyruvate Brain P [242]
[1,4-13C2]fumarate Necrosis

Kidney
R [359]
R [360]

[1-13C]ketoisocaproate Brain R [369]
[1-13C]lactate Heart R [361]
[13C]urea Perfusion R [350]
[13C,15N2]urea Perfusion R [359]

EPSI 3-Dimensional [390]
Absorptive mode [49]
Bipolar flow-sensitive gradients [391]
Compressed sensing [158, 159]
Double spin echo [128]
Flyback readout [128]
Parallel imaging [84]
Symmetric readout [273, 392]
WALTZ16-decoupling [228]
Variable flip angle [82]

[1-13C]pyruvate Tumor
Brain
Kidney
Liver

M [82], R [393], D [273], H 
[78, 79, 272, 305]

M [49]
R [128]
R [128]

[1-13C]bicarbonate pH M [394]
[1-13C]dehydroascorbate Kidney M [392]
[2-13C]fructose Tumor M [355]
[1-13C]lactate Kidney, liver R [371]
[13C]urea Perfusion M [346]
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3He and 29Xe are chemically inert and FDA approved, chil-
dren and adult patients were also examined [322, 323]. 
When encapsulated in microbubbles [324], microspheres 
[147], or as lipid emulsions [106], hyperpolarized noble 
gases can be delivered to the blood stream at fairly high 
concentrations and polarization levels, which allows for 
angiography, as well as brain and heart imaging. Although 
sparsely applied, hyperpolarized 83Kr has been shown to 
serve as imaging marker for lung emphysema, based on 
disease-related surface mediated quadrupolar T1 relaxa-
tion [325].

The most important in vivo acquisition strategies for 
hyperpolarized noble gases are based on spoiled gradient 
echoes [193], gradient recalled echoes (GRASS), echo pla-
nar (diffusion-weighted) imaging [146], and bSSFP [195]. 

FID-CSI has also been used to image blood-dissolved 129Xe 
in brain [326], heart, kidney, and lung [327].

Parahydrogen induced polarization (PHIP)

In contrast to noble gases, small inorganic or organic mol-
ecules can be polarized by brute force, PHIP, SABRE, and 
dDNP. However, brute force and SABRE polarized mole-
cules have so far not been used for in vivo MRI. PHIP, based 
on chemical addition of parahydrogen, relies on unsaturated 
precursor molecules, which limits the available probes and 
applications for this hyperpolarization technique. Several 
molecules such as [1-13C,D8]bis-1,1-(hydroxymethyl)-
cyclopropane (HP001) [150], [1-13C]maleic acid dimethyl 
ester [149], and [1-13C,2,3,3D3]2-hydroxyethylpropionate 
[328–330] were developed for 13C-angiography in rats, 

M mouse, R rat, P pig, D dog, NHP non-human primate, H human

Table 1   (continued)

Strategy Additional specifics of acquisition strategy HP-probe Application Species

SSFP 3-Dimensional [365]
Bolus tracking [348]
Compressed sensing [307]
Multi-echo-SPARSE [204, 292]
Multi-slice [346]
Spectral suppression [290]
Variable flip angle [290]

[1-13C]pyruvate Tumor
Heart
Kidney

M [307]
P [298]
P [292]

[1-13C, U–H2]tert-butanol Perfusion M [297], R [345]

HP001 Perfusion M [346], R [348]

[1-13C]lactate T2-mapping M [307]

[2-13C]pyruvate T2-mapping M [307]

[13C]urea Angiography
Kidney
Perfusion
T2-mapping

R [34, 395]
R [396]
M [297]
R [107]

[13C,15N2]urea Kidney
Perfusion
T2-mapping

R [364], P [365]
P [349]
R [107]

SPSP 3-Dimensional [139]
B1-mapping [73]
Bolus-tracking [397]
Compressed sensing [235]
Double spin echo [140]
ECG-gated [70]
FID-CSI [398]
Unpaired adiabatic pulses [199]
INEPT [216]
k–t Principal component analysis [74]
Multi-band radial frequency encoding [399]
Multi-echo-SPARSE SPCSI [362]
Mult-islice [70]
Parallel imaging [86]
Saturation recovery [66]
Selective non-excitation of pyruvate [400]
Multi-echo SPCSI [72]
Steady state free precession [291]
Flyback echo planar spectroscopic imaging [140]
Symmetric echo planar imaging [95]
Variable flip angle [140]

[1-13C]pyruvate Tumor
Brain
Diffusion
Heart
Obesity

M [139, 140], R [66], H [80]
NHP [401], H [119]
M [269]
R [402], P [70, 72], H [76]
R [403]

[1-13C]acetate Heart R [362]
[1-13C]bicarbonate pH R [404]
[2-13C]dihydroxyacetone Kidney, liver R [301]
[1-13C]glycerolcarbonate pH M [398]
[1-13C]α-ketoglutarate Tumor R [356]
HP001 Perfusion M [347]
[2-13C]pyruvate Liver

T2-mapping
R [405]

[13C]urea Angiography M [288]
[13C,15N2]urea
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rabbits, and pigs and measured with bSSFP-based acqui-
sition strategies. Probes like [1-13C]succinate and its ethyl 
ester have, respectively, been applied in malignant brain 
[331] and kidneys [332] of rodents, but as yet without 
imaging of their metabolic products. Recently, hyperpolar-
ized [1-13C]pyruvate was produced with PHIP-SAH (side 
arm hydrogenation) for the first time enabling PHIP-based 
in vivo metabolic chemical shift imaging [333].

Dissolution dynamic nuclear polarization (dDNP)

dDNP is the most applied hyperpolarization technique for 
in vivo MRI, mainly using 13C-labeled molecules, but is 
also applied to other spin-1/2 nuclei including 1H, 6Li, 15N, 
and 29Si. Hyperpolarized 29Si-nanoparticles were devel-
oped for tumor perfusion imaging in mice using fast spin 
echo imaging [334], while spatially localized hyperpolar-
ized 6-Li distribution was shown in rat brain using gradient 
recalled echo methods [28]. Hyperpolarized water served 
as an angiographic probe or as a heart and kidney perfusion 
marker in preclinical models of rats [335] and pigs [336, 
337], measured with gradient echo or bSSFP methods, 
respectively. With regard to in vivo 15N-applications, so far 
only α-trideuteromethyl[15N]glutamine, exhibiting a long T1 
for perfusion mapping with spiral sequences in rodents, has 
been demonstrated [338].

13C is the NMR active surrogate of NMR inactive 12C, 
which is one of the most important atomic components of 
metabolites in living species. The spin-1/2 nucleus has a 

fairly high gyromagnetic ratio, yields high polarization lev-
els, and has T1 values of several tens of seconds. In addition, 
the availability of commercial preclinical [2] and clinical 
DNP polarizers [339] boosted the development of a vari-
ety of hyperpolarizable 13C-labeled probes during the last 
two decades, allowing for real-time metabolic imaging 
in vivo. An overview of the most important in vivo imag-
ing strategies including sequence details, the hyperpolarized 
13C-labeled molecules, and respective in vivo applications 
is given in Table 1.

The most extensively DNP-polarized molecule is 
[1-13C]-pyruvate. Its 12C-equivalent is the end product of 
glycolysis, which is the key metabolic pathway to gener-
ate energy and CO2 via oxidative phosphorylation. Two 
alternative metabolic pathways of pyruvate are mediated 
by alanine-aminotransferase and pyruvate dehydrogenase, 
which produce alanine and CO2, respectively. In several 
disease states, the pyruvate metabolism has shown to 
be aberrant. As prominent example, many tumors show 
increased consumption of glucose, while switching from 
oxidative phosphorylation to aerobic glycolysis producing 
lactate, even under normoxic conditions. This is known 
as the Warburg effect [340, 341]. Besides this biological 
importance, [1-13C]-pyruvate reaches polarization levels 
up to 70% [342], and has one of the longest T1 values 
for 13C-labeled molecules, which is one main reason why 
almost every 13C imaging strategy was developed with it. 
A summary of applications, with representative references 
using 13C-pyruvate for in vivo imaging of healthy and dis-
eased states, is given in Table 1.

Five of the most important 13C-acquisition strategies are 
based on FID-CSI [65, 343], spiral CSI (SPCSI), [125, 344], 
bSSFP [292, 297], EPSI [128], and SPSP [140]. Applica-
tions of hyperpolarized pyruvate are very broad, includ-
ing solid tumor imaging, metabolic imaging of healthy or 
diseased states of the brain, heart, lung, or kidneys, and of 
obesity and pregnancy. Based on extensive work and opti-
mization of the imaging protocols in preclinical models 
including mice (M), rats (R), dogs (D), pigs (P), and non-
human primates (NHP), 13C-imaging is now being translated 
to patients. Examples of human (H) applications include 
imaging of the healthy heart [76], healthy brain [111, 119], 
prostate tumors [78, 79], as well as untreated [80, 272] and 
treated [305] brain tumors.

Hyperpolarized pyruvate can also be used as angio-
graphic agent or perfusion marker. However, because it is 
metabolically active, metabolically inert compounds exhibit-
ing fairly long T1 have been polarized with dDNP and sug-
gested as alternative perfusion markers. Prominent examples 
include [1-13C]butanol [297, 345], HP001 [346–348], [13C]
urea [34], and [15N–13C]urea [349], measured mainly with 
bSSFP and, when co-polarized with other markers, FID-CSI 
[50], SPCSI [350], or EPSI [346].

Fig. 19   T2-weighted non-slice-selective images of 3He in guinea pig 
lung at a TE = 0.26 ms, b TE = 7 ms, and c TE = 16 ms. The calcu-
lated T2* map is shown in (d). Reprinted with permission from Chen 
et al. [123]
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Another metabolic property of tumors resulting from 
the Warburg effect is the export of excess lactate to the 
extracellular space, which leads to an acidification of the 
tumor microenvironment. Extracellular pH can be probed 
by hyperpolarized pH sensors, whose NMR signals either 
exhibit a ratiometric ([13C]bicarbonate/[13C]CO2 pair [5]) 
pH-sensitivity or pH-dependent chemical shifts ([1,5-13C]
zymonic acid [50, 351]). Because chemical shift based pH-
sensors require high spectral resolution and exhibit chemical 
shifts that are not known prior to measurement, FID-CSI is 
often used as the imaging strategy [352].

Tumors do not necessarily exhibit the Warburg effect, 
but may instead show other metabolic abnormalities. There-
fore, tumor markers other than [1-13C]pyruvate, such as 
uniformly 13C-labeled and deuterated glucose [353], [1,3-
13C2]ethyl acetoacetate [354], [2-13C]fructose [355], [1-13C]
α-ketoglutarate [356], and [1-13C]2-ketoisocaproate [357], 
could also be helpful for precise and non-invasive charac-
terization of tissues.

[1,4-13C2]fumarate is a metabolic probe indicating cell 
death. In vivo, the molecule is converted to [1,4-13C2]malate 
by malate dehydrogenase when released from cells under-
going necrosis, such as after tumor therapy or acute kidney 
injury [6, 358–360].

Like tumors, other non-communicable diseases such as 
cardiovascular diseases and diabetes are imminent problems 
for humanity. [1-13C]lactate [361], [1-13C]acetate [362], and 
[13C]α-ketobutyrate [363] have been applied to probe abnor-
mal changes in the heart, while diabetic changes in the kid-
ney have been assessed with [13C,15N2]urea [364, 365]. In 
contrast, renal clearance as a physiological parameter was 
quantified with [13C]acetate [366] and gluconeogenesis, as 
an example of organ-specific metabolic processes, has been 
imaged with hyperpolarized [2-13C]dihydroxyacetone [301].

Finally, few probes other than [1-13C]pyruvate have been 
mentioned for imaging of brain and liver metabolism. For 
the brain, these are [2-13C]pyruvate [367], [1-13C]ethyl pyru-
vate [242, 368], and [1-13C]2-ketoisocaproate [369]. For the 
liver, uniformly deuterated [1-13C]ethanol [370] probing 
aldehyde dehydrogenase activity, and [1-13C]lactate [371] 
and [2-13C]dihydroxyacetone [372] to image liver metabo-
lism have been demonstrated.

Conclusion

Over the past 25 years, the field of hyperpolarized MRI 
has made tremendous progress, evolving from basic sci-
ence to preclinical and clinical studies based on multiple 
interdependent advances in polarization technologies, probe 
chemistry, imaging hardware, and acquisition methods. 
The need to use the dramatically enhanced hyperpolarized 

magnetization most efficiently—within a few tens of sec-
onds—and, at the same time, to separate more than one 
resonance during the image acquisition, has led to the 
development of novel imaging methods. Hyperpolarized gas 
applications for measurements of lung perfusion could be 
translated to humans early on, building upon standard pro-
ton imaging protocols. For hyperpolarized liquids, multiple 
acquisition strategies to achieve fast, robust, and efficient 
dynamic spectroscopic imaging in up to three spatial dimen-
sions have been presented, including chemical shift imaging 
techniques, spectral-spatial excitation, balanced steady-state 
free precession, and spiral imaging.

While realizing that there are innumerable possibilities 
in pulse sequence design, we have attempted to summarize 
the most commonly used pulse sequence components and 
their combinations for spectral encoding, spatial encoding, 
and excitation and contrast generation that have so far been 
presented in the context of hyperpolarized MRI. For the sci-
entist who tries to tailor a pulse sequence for his or her needs 
to image an individual hyperpolarized probe molecule for a 
certain application, this could provide helpful information.

However, besides optimizing a pulse sequence for sensi-
tivity, robustness and reproducibility of quantification are 
equally important for preclinical and clinical applications. 
The effect of individual pulse sequence components and 
parameters on the quantification of results as imaging bio-
markers, e.g. pyruvate-to-lactate conversion rates kpl, has 
been discussed recently [391]: A profound effect of sequence 
parameters on kpl was found for the cases of magnetization 
spoiling by RF pulses, flow suppression by crusher gradi-
ents, and intrinsic image weightings due to relaxation. Given 
the large variety of pulse sequence components used in 
hyperpolarized MRI, a major challenge for this field will be 
the standardization of acquisition protocols and data analysis 
procedures for comparison of results across different sites 
which, is especially important for the validation of biomark-
ers in clinical studies. A consensus has to be found within 
the hyperpolarized MR community on which acquisition 
and analysis strategies should be used for which applica-
tion. A standardized vendor-independent platform to share 
acquisition protocols as well as data analysis procedures for 
quantification of imaging measures such as kpl-maps would 
help to address this challenge.
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