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Abstract

We previously demonstrated that APP epigenetically regulates Egr1 expression both in cultured neurons and in vivo. Since
Egr1 is an immediate early gene involved in memory formation, we wondered whether other early genes involved in
memory were regulated by APP and we studied molecular mechanisms involved. By comparing prefrontal (PF) cortex from
wild type (APP+/+) and APP knockout mice (APP2/2), we observed that APP down regulates expression of four immediate
early genes, Egr1, c-Fos, Bdnf and Arc. Down regulation of Egr1, c-Fos and Bdnf transcription resulted from a decreased
enrichment of acetylated histone H4 on the corresponding gene promoter. Further characterization of H4 acetylation at
Egr1 and c-Fos promoters revealed increased acetylation of H4K5 and H4K12 residues in APP2/2 mice. Whereas APP
affected Egr1 promoter activity by reducing access of the CREB transcription factor, its effect on c-Fos appeared to depend
on increased recruitment of HDAC2 histone deacetylase to the gene promoter. The physiological relevance of the
epigenetic regulation of Egr1 and c-Fos gene transcription by APP was further analyzed following exposure of mice to
novelty. Although transcription of Egr1 and c-Fos was increased following exposure of APP+/+ mice to novelty, such an
induction was not possible in APP2/2 mice with a high basal level of expression of these immediate early genes.
Altogether, these results demonstrate that APP-mediated regulation of c-Fos and Egr1 by different epigenetic mechanisms is
needed for their induction during exposure to novelty.
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Introduction

One of the first steps involved in memory formation is the rapid

induction of immediate early genes (IEGs) transcription in the

brain. Egr1 is an IEGs member of early growth response family of

zinc fingers transcription factors, widely studied for its role in

reconsolidation of memory and its ability to establish long term

spatial localization memories [1,2]. In mouse, Egr1 is needed for

late-phase LTP, is involved in long-term memory formation and

controls neuronal function in the hippocampus [3,4].

Expression of c-Fos protein in neurons is induced by a wide

range of sensory stimuli [5,6] and several studies have demon-

strated the role of c-Fos in the establishment of neuronal plasticity

by regulating downstream gene expression [7,8]. c-Fos deficient

animals show spatial and associative learning deficits correlated

with decrease in synaptic plasticity [9]. Although expressed at low

levels in the brain, transcription of c-Fos gene sharply increases

after exposure to novelty. Both Egr1 and c-Fos mRNA levels are

significantly increased 30–45 minutes after exposure to novelty, in

particular in the CA1 and CA3 regions of the hippocampus as well

as in the PF cortex [10].

Contrary to Egr1 and c-Fos, Arc protein is not a transcription

factor but an effector synaptic protein involved in multiple

neuronal pathways [11]. Arc induction occurs in the hippocampus

and the cortex following exploration of a novel environment [12].

LTP and synaptic activation also induce Arc expression both at the

mRNA and protein levels [13].

Bdnf is a member of neurotrophin family involved in neuronal

growth and survival [14], in the development of dendritic network

modulating synaptic transmission [15] and in the regulation of

synaptic plasticity and memory formation [16]. In rodents, at least

22 different Bdnf mRNA are produced by alternative splicing of a

primary transcript, and 9 alternative promoters control Bdnf gene

transcription, but exon IV promoter is preferentially induced by

neuronal activity [17,18]. Chromatin remodeling also controls

Bdnf gene transcription in neurons [19].

We previously demonstrated that the amyloid precursor protein

(APP) of Alzheimer disease regulates, at the epigenetic level, the

transcription of the Egr1 gene [20]. Induction of IEGs expression is

closely related to a final change in chromatin remodeling that

allows gene expression [21]. Recruitment of CREB on the Egr1

and c-Fos gene promoters induces an increase in histones
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acetylation mediated by the CBP/P300 acetyltransferase, and the

concomitant depletion of HDACs [19].

Here we show for the first time that APP fosters a low level of

Egr1 and c-Fos expression in mouse PF cortex, by inhibiting CREB

recruitment and improving HDAC2 recruitment on the corre-

sponding gene promoters. A low constitutive level of Egr1 and c-Fos

expression mediated by APP is needed for their induction during

exposure of mice to novelty.

Materials and Methods

Animals
Five months old mice C57Bl/6J APP+/+ and APP2/2 were

used in this study. Mice were obtained from The Jackson

laboratory and backcrossed for more than five generations in the

CD1 genetic background. All animals had access to food ad libidum

and were housed under controlled temperature (22uC) and with a

12 h light cycle (starting at 7 am). One week before experiments,

mice were moved to the experimental platform. As previously

described, the behavioral test of exposure to novelty was

performed in a square openfield (60660640 cm) with gray plastic

walls. Mice were able to explore this environment during

15 minutes and sacrificed by CO2 inhalation after a resting

period of 30 minutes. Another group of mice were directly

sacrificed without exposure to the open field. After brain

dissection, PF cortex and hippocampus were directly placed in

liquid nitrogen, frozen at 280uC or directly crushed and used in

further experiments. All manipulations on mice have been

approved by the local ethics committee of the catholic University

of Louvain and follow the European legislation.

RNA Extraction and Quantitative Real Time PCR
Total RNA was purified using Trizol method (Tripure, Roche).

Reverse transcription (RT) and quantitative (q) real time PCR (q-

RT PCR) were performed with the iScript cDNA synthesis Kit

and the iQ SYBR Green supermix using a iCycler MyIQ2

multicolor Real-Time PCR detection system (Biorad). The relative

amplification of cDNA fragments was calculated by the 2-DDCt

method. q-RT PCR primer sequences used were as follows: Egr1

Forward: TCCTCTCCATCACATGCCTG, Egr1 Reverse:

CACTCTGACACATGCTCCAG, c-Fos Forward:

GATGTTCTCGGGTTTCAACG, c-Fos Reverse: GGAGAAG-

GAGTCGGCTGG. GAPDH Forward: ACCCAGAA-

GACTGTGGATGG, GAPDH Reverse: ACACATTGGGGG-

TAGGAACA, Arc Forward:

GCTGAGCTCTGCTCTTCTTCA, Arc Reverse:

GGTGAGCTGAAGCCACAAAT Bdnf Forward: GCGGACC-

CATGGGACTCT, Bdnf Reverse: CTGCTGCTGTAGT-

GACCGA.

Chromatin Immunoprecipitation (ChIP)
ChIP was performed using the EZ-ChIP Assay kit (Millipore)

according to manufacturer instructions and as described previ-

ously [20]. Chromatin was isolated and pooled from the two PF

cortices of a single mouse. ChIP experiments were performed

using a minimum of 3 mice per group. Chromatin was sheared in

an ice bath by a 25 cycles of 30 sec on/off sonication using the

‘‘Bioruptor UCD-20’’ sonicator (Diagenode). Samples were kept

on ice during 30 s between two pulses. An aliquot of precleared

chromatin was collected as the input. The samples were incubated

overnight at 4uC with the antibodies of interest: 5 mg anti-H4Ac

(Millipore), 5 mg anti-H3Ac (Millipore), 5 ml anti-H2BAc (Abcam);

10 ml anti-Tip60 (SantaCruz), 5 ml anti-HDAC2 (Abcam), 10 ml

anti-CREB total (Millipore), 3 ml of acetylated H4K5, K12, K16

(Active Motif). The immunoprecipitated chromatin was analyzed

by quantitative PCR with primers designed to amplify short

regions of the promoters of genes of interest.

qPCR primers were as follows: Egr1 Forward: GTGCCCAC-

CACTCTTGGAT, Egr1 Reverse: CGAATCGGCCTCTATTT-

CAA, c-Fos Forward: GAAAGCCTGGGGCGTAGAGT, c-Fos

Reverse: CCTCAGCTGGCGCCTTTAT, Arc Forward: CAG-

CATAAATAGCCGCTGGT, Arc Reverse: AGTGTGG-

CAGGCTCGTC, Bdnf exIV Forward: GCGCGGAATTCT-

GATTCTGGTAAT, Bdnf exIV Reverse:

GAGAGGGCTCCACGCTGCCTTGACG. GAPDH Forward:

AGAGAGGGAGGAGGGGAAATG, GAPDH Reverse: AA-

CAGGGAGGAGCAGAGAGCAC. The quantification method

used is based on the ratio between immunoprecipitated chromatin

and input chromatin.

Figure 1. APP regulates IEGs expression in mouse PF cortex. A)
Egr1 mRNA levels were quantified by q-RT PCR in APP+/+ and APP2/2
PF cortex (n = 9), and in the hippocampus (n = 6). B) q-RT PCR method
was used to quantify mRNA levels of c-Fos, Arc and Bdnf in APP+/+ and
APP2/2 PF cortex (n = 6). Values were normalized to the GAPDHmRNA,
and expressed as percentage of APP+/+, mean 6 SD. Student’s t-test:
***p,0.001,**p,0.01, *p,0.05.
doi:10.1371/journal.pone.0099467.g001
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Protein Analysis
Nuclear extracts of mouse PF cortex were prepared in 0.25 M

sucrose buffer (sucrose 0.25 M, Tris 50 mM, EDTA 1 mM,

imidazole 3 mM, pH 7.0 + proteases inhibitor cocktail). Samples

were centrifuged 10 min at 250 g and nuclear fraction was

resuspended in Laemmli buffer. All samples were sonicated before

protein assay (BCA Pierce, Thermoscientific) and Western blotting

was performed on 20 mg of protein lysates. Membranes were

incubated overnight at 4uC with the primary antibodies; anti-

HDAC2 1:1500 (Abcam), anti-H3 1:10000 (Millipore), anti-

tubulin 1:4000 (Sigma), anti-CREB and phospho-CREB 1:1000

(Millipore). Washes with PBS-Tween (0.005%) were followed by

incubation with secondary antibody (1:10 000 anti-mouse or anti-

rabbit IgG) (GE Healthcare) coupled to horseradish peroxidase

and revealed by ECL. For quantification, the membranes were

stripped and reincubated with an anti-tubulin or an anti-H3

antibody. Immunoreactive bands were quantified with an

electrophoresis Gel Doc 2000 imaging system coupled to a

Quantity one software (Bio-Rad).

Statistical Analysis
All results were expressed as mean 6 standard deviation (SD)

values. Statistical significance was determined by student’s t-test

for two-group comparisons or one-way analysis of variance

(ANOVA) followed by Bonferroni’s multiple comparisons test for

multi-group comparison.

Results

1. APP Decreases the Transcription of 4 Different IEGs in
the Mouse PF Cortex

RNA was prepared from the hippocampus and PF cortex of

APP+/+ and APP2/2 mice, and qRT-PCR were performed to

quantify IEGs mRNAs. Results presented in figure 1A indicate a

2.5 increase in Egr1 mRNA levels in PF cortex of APP2/2 mice,

confirming our previous results [20]. We wondered whether

transcription of other IEGs involved in memory formation could

also be regulated by APP. Results presented figure 1B indicate a

significant increase in c-Fos, Arc and Bdnf mRNA levels in

APP2/2 mice. Levels of IEGs mRNA were normalized to

GAPDH mRNA levels, which were not regulated by APP, as 3

other housekeeping genes (Actin, peptidylprolyl isomerase A, and b-
glucuronidase) (Figure S1). In addition, expression of 2 other IEGs (c-

Jun and Homer-1a) was not affected by APP (Figure S1).

These results therefore suggest that APP is able to regulate

transcription of several IEGs involved in memory formation.

Figure 2. Analysis of histone acetylation by ChIP assays on IEGs promoters. ChIP experiments were performed with chromatin obtained
from APP+/+ and APP2/2 PF cortex. Immunoprecipitation was completed with antibody recognizing normal mouse IgG as negative control, or anti-
H3Ac, H2BAc and H4Ac antibodies. The quantification of immunoprecipitated chromatin and the normalization versus total chromatin (input) was
assessed by real-time qPCR with primers designed on A) Egr1, B) c-Fos, C) Arc and D) Bdnf exon IV promoters; *p,0.05. All results were obtained from
at least 3 mice per group and per antibody, and are expressed as mean 6 SD.
doi:10.1371/journal.pone.0099467.g002
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2. APP Affects Enrichment of Acetylated Histone H4 on
Genes Promoters

We previously observed that the control of Egr1 gene

transcription by APP is independent of the APP intracellular

domain (AICD) but occurs at the epigenetic level [20]. Therefore,

we wondered whether APP could control transcription of other

IEGs by the same mechanism. To that aim, ChIP experiments

were performed using anti-acetylated histones antibodies. Results

presented in figure 2A clearly demonstrated a specific enrichment

of acetylated H4, but not H3 and H2B, on the Egr1 promoter in

APP2/2 mice, confirming our previous results [20]. Interestingly,

the same specific enrichment of acetylated H4 was measured on

both the c-Fos (Figure 2B) and Bdnf (Figure 2C) gene promoters in

APP2/2 mice. No modification in H3Ac, H2BAc and H4Ac

enrichment on the GAPDH gene promoter was observed in

APP+/+ and APP2/2 experimental conditions (Figure S2).

Enrichment of acetylated H4 was not observed on the Arc gene

promoter in APP2/2 mice (Figure 2D), indicating that a different

molecular mechanism is involved in the APP-mediated regulation

of Arc gene expression. This conclusion, together with a much

weaker up regulation of Bdnf expression in APP2/2 mice

(Figure 1) led us to focus on the molecular mechanisms involved

in the regulation of Egr1 and c-Fos expression by APP.

3. APP Specifically Regulates Acetylation of Histone H4 at
Lysines 5 and 12

Acetylation of histone H4 can occur at different positions

including lysines 5, 12 and 16. To identify the positions that are

acetylated on H4 enriched on the Egr1 and c-Fos gene promoters in

APP2/2 mice, ChIP experiments were performed using anti-

H4K5Ac, -H4K12Ac and -H4K16Ac specific antibodies. Results

presented in figure 3A indicate that histones H4 enriched on the

Egr1 gene promoter in APP2/2 mice were acetylated on

positions K5 and K12, but not on K16. Interestingly, the same

profile of acetylation was found for histone H4 enriched on the c-

Fos gene promoter in APP2/2 mice (Figure 3B). These results

suggest that APP regulates Egr1 and c-Fos gene transcription by

similar molecular mechanisms.

4. Regulation of Egr1 Gene Transcription by APP is CREB
Dependent

A schematic representation of the Egr1 gene promoter is given

in figure 4A [22]. The histone acetyltransferase Tip60 is able to

acetylate histone H4 at positions H4K5 and H4K12 [23] and

interacts with AICD [24]. Therefore, an interaction between

Tip60 and APP could inhibit H4K5 and H4K12 acetylation in

APP+/+ mice. To test this hypothesis, ChIP experiments were

performed using anti-Tip60 antibodies. Tip60 is able to bind to

the promoter of KAI1 gene and regulates its transcription [25,26].

In Chip experiments, we indeed demonstrated an enrichment of

Tip60 on the promoter of the KAI1 gene (Figure S3). However,

results presented in figure 4B do not show any enrichment of

Tip60 on the Egr1 gene promoter in APP2/2 mice, allowing us

to rule out the implication of Tip60 in this regulation. On the

other hand, acetylation of H4K5 and H4K12 is mediated by

CBP/P300, which associates with phosphorylated CREB DNA

binding protein [27]. In addition, the Egr1 promoter contains two

CREB responsive elements (CRE) (Figure 4A). Therefore we

attempted to immunoprecipitate CREB on Egr1 promoter and we

confirmed that this transcription factor was significantly more

enriched on the Egr1 gene promoter in APP2/2 mice (figure 4C).

To test whether APP was able to down regulate CREB expression

or to inhibit its phosphorylation, nuclear extracts from APP+/+
and APP2/2 mice were analyzed in Western blotting using anti-

CREB and anti-S133PhosphoCREB specific antibodies. Results

presented in figure 4D indicate the same CREB/PhosphoCREB

ratio in APP+/+ and APP2/2 mice, ruling out modification of

CREB expression and phosphorylation by APP. The recruitment

of CREB on a gene promoter is often followed by local depletion

of several HDACs [28,29]. As HDAC2 epigenetically regulates

transcription of several IEGs including Egr1 [30], we also

performed ChIP experiments using HDAC2 antibodies. Results

presented in figure 4E do not show any significant enrichment of

HDAC2 on the Egr1 gene promoter in APP2/2 mice.

Altogether, these results indicate that APP fosters low level of

Egr1 expression in mouse brain by inhibiting recruitment of CREB

without affecting enrichment of HDAC2 on the Egr1 gene

promoter.

5. Regulation of c-Fos Gene Transcription by APP is
HDAC2 Dependent

The c-Fos gene promoter also contains a single CRE site

(Figure 5A). The same profile of acetylation of histone H4

Figure 3. H4K5 and H4K12 are enriched at Egr1 and c-Fos gene
promoter in APP2/2 mice. ChIP method was used to evaluate the
enrichment of H4K12Ac, H4K5Ac, and H4K16Ac. A) Egr1 promoter. B) c-
Fos promoter. Data represent the level of enrichment normalized as
percentage of APP+/+. ***p,0.001. All results derive from at least 3
mice per group and per antibody, and are expressed as mean 6 SD.
doi:10.1371/journal.pone.0099467.g003
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enriched on c-Fos and Egr1 gene promoters in APP2/2 mice

(Figure 3B) suggested that APP might regulate Egr1 and c-Fos gene

transcription by similar molecular mechanisms. Therefore, we first

measured recruitment of CREB on the c-Fos gene promoter in

APP+/+ and APP2/2 mice. Results of ChIP experiments

(Figure 5B) show an enrichment of CREB on c-Fos promoter,

but no difference between APP+/+ and APP2/2 mice,

suggesting that basal regulation of c-Fos gene transcription by

Figure 4. CREB is better recruited on the Egr1 gene promoter in APP2/2 mice. A) Schematic representation of the structure of Egr1 gene
promoter containing several binding sites for transcription factors and localization of primers utilized for q-PCR (CREB: cAMP response element, CRE:
cAMP response elements SRF: Serum Response factor, SRE: Serum Response Element, SP1: specificity protein). B) Tip60 binding to Egr1 gene
promoter in APP+/+ and APP2/2 PF cortex was assessed by ChIP using anti-Tip60 antibody. C) CREB binding to Egr1 promoter in APP+/ and
APP2/2 mice. IgG was used as negative control. Equal amounts of ChIP and input DNA were used for qRT-PCR analysis on the Egr1 gene promoter.
Results show a significantly lower enrichment of CREB in APP+/+ mice, *p,0.05. Enrichment values were normalized to input values and represented
the average of three or more experiments per group. Results are expressed as mean 6 SD. D) Ratio between total and phosphorylated CREB was
detected by western blot analysis of nuclear extracts from PF cortex of APP+/+ and APP2/2 mice, 5 months of age (n = 5). Typical blot is shown,
CREB/P-CREB ratio were quantified, and expressed as percentage of the APP+/+ mice. Data are expressed as mean 6 SD. E) ChIP assay on Egr1
promoter using HDAC2 antibody.
doi:10.1371/journal.pone.0099467.g004
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Figure 5. HDAC2 is enriched on the c-Fos gene promoter in APP2/2 mice. A) Schematic representation of the structure of c-Fos promoter
containing only one CREB binding site and the localization of the primers utilized for q-PCR. (CREB: cAMP response element, CRE: cAMP response
elements SRF: Serum Response factor, SRE: Serum Response Element, AP1: Activator protein 1, SIE: sis-inducible element, STAT: Signal Transducer and
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APP is not CREB dependent although c-Fos is regulated by CREB

[31]. Since HDAC2 was previously demonstrated to inhibit c-Fos

gene transcription [30], we performed ChIP experiments using

anti-HDAC2 antibodies. Results presented in figure 5C clearly

indicate a significant enrichment of HDAC2 on the c-Fos gene

promoter in APP+/+ mice. Western blot analysis of nuclear

extracts prepared from the PF cortex of APP+/+ and APP2/2

mice with anti-HDAC2 antibodies did not show any modification

of HDAC2 nuclear or cytoplasmic content, indicating that APP

does not modify neither HDAC2 expression nor its nuclear

localization (Figure 5D). Altogether, these results indicate that APP

fosters a low level of c-Fos expression in mouse brain by increasing

enrichment of HDAC2 on the c-Fos gene promoter.

6. Exposure of Mice to Novelty Induces IEGs Transcription
in APP+/+ but not in APP2/2 Mice
Egr1 and c-Fos are inducible transcription factors that are

needed for synaptic plasticity and establishment of long term

memory. We reasoned that induction of IEGs transcription needs

a constitutive low level of expression, as measured for Egr1 and c-

Fos in APP+/+ mice. APP+/+ and APP2/2 mice were exposed

to novelty during a spatial exploration of an open field, in an

experimental protocol that was previously described to enhance c-

Fos and Egr1 mRNA levels in mouse PF cortex [10,32]. After a

short period of exploration of 15 min and a resting period of

30 min, the mRNA levels of IEGs were quantified in APP+/+ and

APP2/2 mice. Results presented in figure 6 clearly demonstrated

that induction of both Egr1 and c-Fos gene transcription was

possible in APP+/+ but not in APP2/2 mice. These results

suggest that the low level of IEGs transcripts measured in APP+/+
allow their induction during exposure of mice to novelty, while

such an induction is not possible in APP2/2 mice showing a high

basal level of IEGs expression.

Discussion

The main finding of this study is that APP fosters low expression

of c-Fos and Egr1 in mouse PF cortex, in which induction of several

IEGs is involved in memory formation [33–35]. APP-mediated

down regulation of c-Fos and Egr1 by two distinct epigenetic

mechanisms is needed to induce properly transcription of these

IEGs upon exposure of mice to novelty.

We extended our observation of the epigenetic regulation of

Egr1 gene transcription by APP to c-Fos, Bdnf and Arc. All of those

genes belong to the IEGs family of transcription or neurotrophic

factors needed for memory formation [2,7,36,37]. The ability of

APP to increase gene transcription by an AICD dependent

mechanism has been previously demonstrated, although still

debated [38–43]. Here, we show for the first time that APP

represses transcription of a group of genes, all related to synaptic

plasticity. The moderate effect of APP on IEGs expression that we

measured could explain why these IEGs have never been reported

as APP target genes in microarray experiments in which the cut off

of differences in gene expression is usually higher.

Induction of IEGs through acetylation of histones H3, H4 and

H2B is well documented [44], and acetylation of histone H3K14,

H4K12 or phosphorylation of H3S10 via ERK activation are

associated with chromatin relaxation leading to IEGs transcription

and memory formation [45–47]. We have previously demonstrat-

ed that trichostatin A, a specific HDAC inhibitor, was able to

induce Egr1 gene transcription in both APP+/+ and APP2/2

neurons, although induction was significantly higher in APP2/2

neurons, in agreement with higher H4 acetylation at the Egr1 gene

promoter in these cells [20].

Although induction of IEGs has been widely studied, little is

known about basal regulation of IEGs transcription in the

hippocampus and the cortex. Basal expression of IEGs in the

brain is referred as an expression induced by physiological synaptic

input [48]. We demonstrate here that APP fosters a low level of

expression of the four IEGs studied. APP represses transcription of

Egr1, c-Fos, and Bdnf by decreasing enrichment of acetylated H4,

but not H3 nor H2B histones on the corresponding gene

promoters. APP-mediated repression of Arc gene transcription

appears to be controlled by other molecular mechanisms. SAHA,

a nonspecific HDAC inhibitor, was demonstrated to up regulate c-

Fos and Bdnf expression, while Arc induction was much more

moderate [49], indicating that Arc expression should be regulated

by other mechanisms than histone modification.

We observed a very similar acetylation profile of H4K5 and

H4K12, but not H4K16, on Egr1 and c-Fos gene promoters, which

suggested that APP might regulate both genes by similar

mechanisms. H4K5 and H4K12 are known to be acetylated by

Tip60 and CBP/P300 histone acetyltransferase activities [23]. As

Tip60 interacts with AICD and the adaptor protein Fe65 [24],

APP could inhibit H4K5 and H4K12 acetylation in APP+/+ mice.

Activator of Transcription). B) Study of CREB binding to c-Fos gene promoter in APP+/and APP2/2mice. C) ChIP assay on c-Fos gene promoter using
anti-HDAC2 antibody. Results show a significant lower enrichment of HDAC 2 in PF cortex of APP2/2 mouse, Student’s t-test: **p,0.01. IgG was
used as negative control. Equal amounts of ChIP and input chromatin were used for qRT-PCR analysis on the c-Fos gene promoter. Enrichment values
were normalized to input values and represented the average of three or more mice per experiment. Results are expressed as mean 6 SD. D) HDAC2
protein expression was detected by western blot analysis of nuclear (N) or cytoplasmic (C) extracts obtained from PF cortex of APP+/+ and APP2/2
mice, 5 months of age (n = 5). Typical blot is shown with anti-histone H3 and anti-tubulin used as a loading control. Data are normalized against
histone H3 to assess the level of nuclear HDAC2 and expressed as mean 6 SD.
doi:10.1371/journal.pone.0099467.g005

Figure 6. APP+/+ but not APP2/2 mice induce Egr1 and c-Fos
expression after exposure to novelty. A) Effect of exposure to
novelty on the levels of Egr1 and c-Fos transcripts. qRT PCR were
performed on mRNA extracted from APP+/+ and APP2/2 mice
exposed (Novelty) or not (Home cage) to the open field (n = 6 or more
per group). All values were normalized to the GAPDH mRNA, and
expressed as percentage of the APP+/+. Results are expressed as mean
6 SD. Student’s t-test. (***p,0.001).
doi:10.1371/journal.pone.0099467.g006
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We analyzed a possible interaction of Tip60 with Egr1 promoter

but failed to detect any significant interaction or any enrichment in

APP2/2 mice. Therefore, the contribution of CBP/P300 in the

acetylation of H4K5 and H4K12 present on the Egr1 and c-Fos

gene promoters was further investigated.

CBP and p300 are two highly related histone acetyltransferases

that share many biological functions and interact with phosphor-

ylated cAMP response element binding protein (CREB) [50]. CRE

sites are present on Egr1 and c-Fos gene promoters, and regulation

of Egr1 and c-Fos gene transcription by CREB is well established

[19,21,31,51]. We demonstrate that regulation of Egr1 gene

transcription by APP is CREB dependent. In APP2/2 mice,

CREB is better recruited on the Egr1 gene promoter, arguing for a

CBP/P300-mediated increase in H4K5 and H4K12 acetylation of

H4 present on the Egr1 promoter. The presence of CREB on a

gene promoter has been associated with the removal of HDACs

[28]. HDAC2 deacetylates H4K5 and H4K12, and is described as

a negative actor in memory formation and synaptic plasticity [30].

Even if we were able to detect enrichment of HDAC2 on Egr1

gene promoter, the level of HDAC2 detected was the same in

APP+/+ and APP2/2 mice.

Surprisingly, regulation of c-Fos gene transcription by APP

occurs by a different mechanism, since the same recruitment of

CREB on the c-Fos gene promoter was measured in both APP+/+
and APP2/2 mice but less HDAC2 was found on the c-Fos gene

promoter in APP2/2 mice. APP decreased CREB recruitment

on Egr1 gene promoter and increased HDAC2 recruitment on c-

Fos gene promoter, without any modification of either CREB and

HDAC2 expression or CREB phosphorylation. The presence of

two CRE sites in the Egr1 gene promoter could explain why APP-

mediated regulation of this gene is more dependent on CREB

recruitment.

Our results indicate that APP fosters a low expression of a group

of IEGs involved in memory formation. Consequently, overex-

pression of APP could have important consequences on memory

formation. Interestingly, it was previously demonstrated that in

APP transgenic mice, overexpression of mutated APP decreases

the basal levels of IEGs mRNA and impairs the proper induction

of IEGs transcription upon exposure to novelty [32]. Similarities in

the cognitive declines observed in both APP2/2 and APP

transgenic mice [52–54] could be related to their impairment in

inducing properly IEGs transcription. Moreover, impairment of

LTP observed in APP transgenic mice have been associated with

dysregulation of histone H4 acetylation [55,56].

Basal expression of IEGs is important for normal synaptic

activity, but their rapid induction is needed to activate transcrip-

tion of many genes playing a key role in establishment of long term

memory [7]. An important function of APP is to epigenetically

foster low level of expression of IEGs, allowing rapid induction of

their transcription.

Supporting Information

Figure S1 Housekeeping genes and other IEGs expres-
sions are not regulated by APP. GAPDH mRNA levels were

quantified by q-RT PCR in APP+/+ and APP2/2 PF cortex

(n = 6) and normalized versus Actin B) q-RT PCR method was

used to assess mRNA levels of the housekeeping genes Actin,

peptidylprolyl isomerase A (Ppia) and b-glucuronidase (Gusb) in APP+/+
and APP2/2 PF cortex (n = 6). C) mRNA levels of the IEGs c-Jun

and Homer-1a were quantified by q-RT PCR in in APP+/+ and

APP2/2 PF cortex (n = 6). Values were normalized to the

GAPDH mRNA, and expressed as percentage of APP+/+, mean

6 SD. Primers sequences used were as follows: Ppia FOR:

CAGACGCCACTGTCGCTTT; Ppia REV:

TGTCTTTGGAACTTTGTCTGCAA, Gusb FOR: ACTGA-

CACCTCCATGTATCCCAAG, Gusb REV: CAGTAGGT-

CACCAGCCCGATG, c-Jun FOR:

TGAAAGCTGTGTCCCCTGTC; c-Jun REV: ATCACAGCA-

CATGCCACTTC, Homer 1a FOR: GAAGTCGCAGGAGAA-

GATG, Homer1a REV: TGATTGCTGAATTGAATGTG-

TACC.

(TIF)

Figure S2 Analysis of histone acetylation by ChIP assays
on GAPDH promoters. ChIP experiments were performed on

chromatin obtained from APP+/+ and APP2/2 PF cortex.

Immunoprecipitation was completed with antibody recognizing

normal mouse IgG as negative control, anti H3Ac, H2BAc and

H4Ac. The quantification of immunoprecipitated DNA and the

normalization versus total DNA (input) was assessed by real-time

qPCR with primers designed on GAPDH. All results were

obtained from at least 3 or more mice per group and per

antibody, and are expressed as mean 6 SD.

(TIF)

Figure S3 Tip60 is enriched in KAI1 promoter. Tip60

binding to KAI1 gene promoter in APP+/+ and APP2/2 PF

cortex was assessed by ChIP using anti-Tip60 antibody, with

primers designed in KAI1 promoter region. Primers sequences

used were as follows: KAI1 FOR: ACCGTTAGG-

CAGCGCCGTGAG; KAI1 Rev:

CTTGGGAAGGCGGTGCGCTC. IgG was used as negative

control. Results show a significant enrichment of Tip60 in

APP+/+ mice, **p,0.01. Enrichment values were normalized to

input values and are the average of three or more experiments per

group. Results are expressed as mean 6 SD.

(TIF)
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