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Recent advances in combating Nipah virus
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Abstract

Over the past 20 years, Nipah virus (NiV) has emerged as a significant, highly pathogenic bat-borne paramyxovirus causing severe 
respiratory disease and encephalitis in humans, and human-to-human transmission has been demonstrated in multiple outbreaks. 
In addition to causing serious illness in humans, NiV is a zoonotic pathogen capable of infecting a wide range of other mammalian 
species, including pigs and horses. While NiV has caused less than 700 human cases since its discovery in 1998/1999, the 
involvement of intermediate agricultural hosts can result in significant economic consequences. Owing to the severity of disease, 
capacity for human-to-human transmission, zoonotic potential, and lack of available approved therapeutic treatment options, NiV 
has been listed by the World Health Organization in their Blueprint list of priority pathogens as one of the eight most dangerous 
pathogens to monitor and prepare countermeasures to prevent a pandemic. Here, we discuss progress towards the development of 
therapeutic measures for the treatment of NiV infection and disease.
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Introduction
Nipah virus (NiV), and the related Hendra virus (HeV), are 
highly pathogenic, emerging zoonotic bat-borne RNA viruses  
belonging to the henipavirus (HNV) genus within the Para-
myxoviridae family. NiV was first identified in 1998/1999  
in Malaysia in an outbreak of encephalitis in pig farmers1,2, 
resulting in the culling of more than 1 million pigs, which con-
tributed to controlling the outbreak but ultimately had a sig-
nificant economic impact3. Subsequently, NiV has caused  
nearly annual outbreaks in Bangladesh and India2,4–9. Two 
genetically divergent strains of NiV have been identified, NiV  
Malaysia (NiV-M) and NiV Bangladesh (NiV-B), with the  
latter being the currently circulating strain10. In humans, infec-
tion with NiV is associated with severe, acute respiratory ill-
ness, as well as acute, relapsed, or late-onset encephalitis, and  
case fatality rates range from 40 to 100%11,12. Treatment of 
patients is mainly reliant on supportive care, with mainte-
nance of airways, breathing, and circulation as well as fluid and  
electrolyte balance. To date, only an agricultural subunit  
vaccine for the related HeV is licensed13. While primarily  
associated with spillover events from the natural fruit bat res-
ervoir host, frequent human-to-human transmission has been  
reported4,14,15. Because of the extreme pathogenicity and pan-
demic potential of NiV, the lack of approved human treatments 
and vaccines, and its potential for use in (agro)bioterrorism, 
it is crucial to develop vaccines and therapeutics for NiV3,16.  
This review outlines recent advances in the development of  
therapeutics and treatments for NiV infection.

Monoclonal antibodies
Currently, the human cross-reactive monoclonal antibody 
(mAb) m102.4 is the most promising monoclonal antibody  
therapeutic treatment for NiV infection. This antibody was  
affinity matured to strongly neutralize both NiV and HeV attach-
ment glycoprotein G by blocking the interaction of G with the 
host cellular entry receptors Ephrin B2 and B317,18. m102.4 
has demonstrated protection against HNV infection in both 
ferret and non-human primate (NHP) models of infection.  
A single intravenous (IV) infusion of m102.4 10 hours after 
intranasal infection with NiV afforded full protection in a fer-
ret model of disease19. Post-exposure studies in the African 
Green Monkey (AGM) model were even more promising.  
Here, m102.4 was fully protective in AGMs when treat-
ment was initiated up to 3 days post-infection with HeV and  
5 days post-infection with NiV-M, even after onset of clini-
cal symptoms and viremia20,21. In both studies, a second dose 
was administered 2 days after the initial one. Interestingly, a 
study comparing pathogenicity of NiV-M and NiV-B in the  
AGM model indicated that the treatment window for NiV-B  
may be shorter as compared to NiV-M. Commensurate with 
an accelerated onset of severe disease in NiV-B compared to 
NiV-M, m102.4 was protective only when administered up 
to 3 days post-infection with NiV-B. Infected animals receiv-
ing initial treatment at 5 days post-infection succumbed to  
disease22.

Results from these studies justified the usage of m102.4 in  
humans for compassionate use as well as a phase I clinical  

trial. To date, m102.4 has been administered 14 times for com-
passionate therapy following high-risk exposure to HNVs23,24.  
No treatment-related adverse effects were reported in any of 
these cases. Additionally, no recipients of the antibody devel-
oped disease, although it is impossible to determine whether  
this was related to m102.4 treatment. The combination of com-
passionate therapy for post-exposure treatment in patients 
and the promising preclinical data from animal studies led to 
the assessment of safety, tolerability, and immunogenicity of  
m102.4 in healthy adults in a phase I clinical trial23. This 
study found that the dosages tested were safe and well tol-
erated. Also, no serious adverse effects resulting in partici-
pant withdrawal were reported. Pharmacokinetics evaluations  
concluded that m102.4 remained active at levels capable of 
virus neutralization for at least 8 days post-administration.  
Immunogenicity tests found that no anti-m102.4 antibodies  
were generated. Although this trial was small (30 partici-
pants) and unable to evaluate protective efficacy, the safety  
and tolerability demonstrated in this study make m102.4 one 
of the most promising therapeutic options for the treatment of  
patients with HNV exposure.

Another potential antibody therapy currently under investiga-
tion is h5B3.1, a humanized, cross-reactive, neutralizing mAb  
that targets the fusion glycoprotein F of NiV and HeV, block-
ing the conformational change required to facilitate membrane 
fusion and virus infection25,26. Previous studies had demonstrated 
protective efficacy of anti-F mouse polyclonal antibodies or 
mAbs against NiV and HeV challenge of hamsters, supporting  
development of the humanized h5B3.1 mAb as a potential thera-
peutic for use in humans27,28. Intraperitoneal administration of 
h5B3.1 at days 1 and 3, as well as 3 and 5 post-infection, dem-
onstrated protective efficacy against lethal challenges with  
either NiV or HeV in ferrets. The authors of the study also  
proposed a combination treatment of h5B3.1 and m102.4  
antibodies, targeting both viral surface glycoproteins, as a 
therapeutic strategy moving forward to minimize the chances  
of the emergence of escape mutants. However, as in vivo char-
acterization of h5B3.1 is currently limited, more studies are 
required before potential introduction in human patients alone  
or in combination with m102.4.

Antiviral drugs
In humans
The only therapeutic option that has been utilized clini-
cally in NiV patients is ribavirin, a broad-spectrum nucleoside  
analogue2,29,30. Ribavirin is currently licensed for the treatment  
of respiratory syncytial virus infection, hepatitis C, and viral 
hemorrhagic fevers and is included on the WHO essential  
medicines list31–34. During the initial 1998/1999 outbreak  
in Malaysia, an open-label trial of ribavirin was conducted in 
which 140 patients received treatment. Patients treated prior to 
the trial or who refused ribavirin treatment served as the con-
trol group (n = 54)29. In this study, administration of ribavirin  
was associated with a 36% reduction in mortality and fewer 
neurological deficits in survivors. In an earlier description  
of the clinical features presented during that outbreak, it was  
stated that there appeared to be no significant difference in 
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outcome with ribavirin treatment2. More recently, ribavirin 
was utilized during the 2018 outbreak in Kerala, India, which  
consisted of a total of 23 cases and only two survivors4,30. 
Both survivors had received oral ribavirin, out of a subset of  
six patients who received ribavirin therapy30,35,36. This cor-
responds to a 20% reduction in mortality, compared to the 
100% mortality observed in a group of six patients not receiv-
ing ribavirin. However, the sample size was too small to  
draw a conclusion on the efficacy of ribavirin against NiV.  
Ribavirin was also administered as a post-exposure prophylac-
tic to eight healthcare workers who were exposed to infected 
patients without sufficient PPE during the 2018 outbreak30.  
None developed NiV disease; however, most experienced 
mild to moderate adverse side effects from the treatment.  
Overall, ribavirin’s efficacy in the 2018 Kerala outbreak was 
inconclusive. Moreover, studies of NiV infection in animal mod-
els were not promising. Ribavirin administered either alone 
or in combination with chloroquine (an antimalarial drug)  
was not protective in the hamster model37,38.

In animal models
No other therapeutics have been utilized for the treatment of 
NiV infection in patients, and only a few others have been eval-
uated in animal models. Remdesivir (GS-5734; Veklury®), a  
nucleotide analog that has demonstrated broad-spectrum anti-
viral activity against filoviruses, paramyxoviruses, and coro-
naviruses, is one of them39–41. In a lethal challenge AGM  
model for NiV-B, remdesivir led to 100% survival when intra-
venously administered daily starting 24 hours after infec-
tion and continued for 12 days41. Two out of the total four  
NHPs involved in the study developed only mild respira-
tory signs of disease that resolved by day 14 post-infection. 
At termination of the study at 92 days post-infection, viral  
RNA was found in the brain of one animal. While these results 
are highly encouraging, future studies need to be performed 
to further evaluate remdesivir’s antiviral efficacy. Remdesi-
vir was also recently included in a clinical trial evaluating  
Ebola therapeutics in the context of the 2018 Democratic  
Republic of Congo outbreak42. Although this study found it 
to be less effective against Ebola virus disease compared to  
mAb treatments, remdesivir did appear to be safe. Recently, 
remdesivir has been utilized as a compassionate therapy  
for the treatment of patients with SARS-CoV-2, although the 
efficacy is still unclear43–45. Multiple clinical trials are currently  
ongoing46.

Additional antivirals with promising efficacy have been evalu-
ated for the treatment of NiV infection in small animal models.  
Favipiravir (T-705; Avigan®) is a small molecule purine ana-
log antiviral that is licensed for the management of emerg-
ing pandemic influenza infections in Japan47. In the Syrian  
golden hamster model, favipiravir demonstrated full protec-
tion against lethal infection with NiV-M when administered 
immediately after infection and continued daily for 14 days48.  
None of the treated animals developed any clinical signs 
of disease throughout the course of the study, and no viral  
RNA or pathological changes in tissues were observed. Future  
studies need to evaluate the post-exposure antiviral efficacy of 

favipiravir. Griffithsin (GRFT), a homodimeric high-mannose  
oligosaccharide-binding lectin, is currently being evaluated  
in clinical trials as a topical microbicide against human immu-
nodeficiency virus 1 (HIV-1)49,50. In cell culture studies, 
GRFT, as well as a synthetic trimeric tandemer (3mG) and an  
oxidation-resistant GRFT (Q-GRFT), demonstrated antiviral 
activity against NiV in the nanomolar range51. The prophylac-
tic potential of 3mG and Q-GRFT was evaluated in the Syr-
ian hamster model for NiV-B and resulted in overall survival  
rates of 15% and 35%, respectively. Future studies are needed 
to further evaluate and develop Q-GRFT for the treatment  
of NiV infection.

In vitro
4’azidocytidine (R1479), a cytidine analog shown to have broad-
spectrum antiviral activity against flaviviruses and a pneumo-
virus, exhibited strong antiviral effects against NiV in vitro  
in the low micromolar range52–55. However, balapiravir, the pro-
drug of R1479, did not show promising results in clinical tri-
als treating flavivirus infections; the trials were discontinued 
owing to poor prodrug efficacy and negative side effects53,56,57. 
Derivatives of R1479 resulted in more encouraging results com-
pared to R1479. The 2’-monofluoro- and 2’difluoro-modified  
deriva.tives of R1479 (2’F-4’N3-C and 2’diF-4’N3-C) exhib-
ited up to 20-fold increased antiviral effects on NiV than 
R1479 in vitro and revealed less cytotoxicity58. The greater 
antiviral efficacy and lower cytotoxic effects of 2’F-4’N3-C  
and 2’diF-4’N3-C make the R1479 derivatives a more prom-
ising therapeutic avenue compared with R1479 for future  
evaluation.

4’-chloromethyl-2’-deoxy-2’-fluorocytidine (ALS-8112) is 
another antiviral cytidine analog and the parent nucleoside of 
lumicitabine, which has undergone phase I and phase II clini-
cal trials to treat respiratory syncytial virus infections59–61.  
ALS-8112 displayed strong antiviral effects against NiV in 
vitro in the low micromolar range, with minimal cytotoxic 
effects in multiple cell lines except for human peripheral blood 
mononuclear and lymphoblastoid cells59. However, caution 
must be taken in optimizing ALS-8112 dosage to prevent neu-
tropenia and lymphopenia if further evaluated as a potential  
antiviral against NiV infection in animal models.

In addition to targeting the viral replication machinery, pep-
tide fusion inhibitors aimed at inhibiting viral fusion with the  
host cellular membrane have been evaluated as well. Optimized 
lipopeptide fusion inhibitors (with cholesterol or tocopherol 
conjugated to the polypeptide using dPEG) exhibited protec-
tion against lethal NiV infection in Syrian golden hamsters  
(50% survival) and AGMs (33% survival) after prophylactic 
administration62,63. Enfuvirtide (FuzeonTM) is an FDA-approved  
analogous therapeutic for HIV-1 and is also a lipopeptide  
fusion inhibitor which has the potential to move forward 
as an effective antiviral64,65. Future development of potent  
lipopeptide inhibitors for NiV infection is needed.

One other strategy that has demonstrated potential is the  
use of defective interfering particles (DIPs), which contain 
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defective genomes that alter the dynamics of a viral popula-
tion to inhibit NiV replication. In vitro assays demonstrate 
that naturally occurring and in silico-designed DIPs decrease 
viral titer 100-fold and reduce cytopathic effects in Vero  
cells66. While currently exploratory as a form of treatment 
for NiV, DIPs should undergo future animal studies. Studies  
using DIPs for influenza A virus have been promising67–70.

Discussion
NiV remains a pathogen of significant concern because of its 
high pathogenicity, demonstrated potential for human-to-human  
transmission, and lack of approved treatments. From the 
range of antivirals tested so far against infectious NiV, only  
two have demonstrated therapeutic efficacy in the NHP model: 
the m102.4 monoclonal antibody and the nucleotide ana-
logue remdesivir. m102.4 is the only potential therapeutic that 
has been evaluated in humans specifically for the treatment  
of NiV. Currently, m102.4 is perhaps the most promising 
therapeutic option from an efficacy standpoint; however, the  
requirement for cold chain storage and the intravenous route 
of administration may not make it the most practical for use 
in field outbreaks. Ribavirin has been utilized as a compas-
sionate therapy and a post-exposure prophylactic in humans, 
but its efficacy remains unclear. Small molecule antivirals,  
specifically nucleoside analogues, have demonstrated good effi-
cacy in blocking NiV infection and need to be further evalu-
ated for their therapeutic potential. However, evaluation of 
antiviral efficacy against NiV in patients is complicated by the 
infrequency of cases, and alternative pathways to licensure  
may be necessary. As many of the currently characterized anti-
viral treatment candidates appear to have a limited window 
for treatment efficacy in animal models, timely diagnosis and 
initiation of treatment will be crucial. Additionally, combina-
torial therapy of mAbs and small molecule antivirals might  
be an effective treatment strategy, as well as the develop-
ment and approval of a vaccine for NiV and the prevention 

of spillover events. In addition to the antiviral therapeutics  
discussed in this review, four vaccine candidates that dem-
onstrated effectiveness in disease-relevant animal mod-
els have received funding through the Coalition of Epidemic  
Preparedness Innovation (CEPI) to be further evaluated in 
phase I and II clinical trials71. These include a HeV glyco-
protein subunit vaccine for the prevention of NiV infec-
tion, which is currently in phase I clinical trials72,73, and three 
recombinant viral vector vaccines, which are in preclinical  
development74–77. Additionally, with the recent rise to promi-
nence of mRNA vaccines during the SARS-CoV-2 pandemic, 
this technology may be useful in the future as a potential  
strategy for NiV vaccines. In one study, a single dose of a lipid 
nanoparticle nucleoside-modified messenger RNA vaccine  
encoding the soluble HeV glycoprotein protected up to 70% 
of Syrian hamsters from lethal NiV challenge, indicating 
the promise of this particular platform for future prevention  
of NiV disease78.

It should also be noted that a large number of novel HNVs 
and henipa-like viruses have recently been identified. The  
expanding diversity of HNVs raises some questions about pre-
paredness for the potential for new spillovers and the emer-
gence of new pathogenic HNVs, which may be important to 
consider in the context of therapeutic and vaccine develop-
ment. While m102.4 and h5B3.1 demonstrate cross-protection  
for pathogenic HNVs, NiV and HeV, it has recently been 
reported that antibodies elicited by G proteins of NiV and 
HeV have very limited cross-reactivity and no cross-protection  
for new members Mojiang virus (MojV) and Ghana virus 
(GhV)79. This study proposed a fusion protein strategy con-
taining epitopes from NiV, HeV, MojV, and GhV as a  
broad-spectrum vaccine that elicited cross-protection against 
all four viruses. It may be important to identify strategies 
for the generation of pan-HNV treatments in the event of the  
emergence of new pathogenic HNVs.
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