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Antipsychotic medications are critical to child and adolescent psychiatry, from the

stabilization of psychotic disorders like schizophrenia, bipolar disorder, and psychotic

depression to behavioral treatment of autism spectrum disorder, tic disorders,

and pediatric aggression. While effective, these medications carry serious risk of

adverse events—most commonly, weight gain and cardiometabolic abnormalities.

Negative metabolic consequences affect up to 60% of patients and present a major

obstacle to long-term treatment. Since antipsychotics are often chronically prescribed

beginning in childhood, cardiometabolic risk accumulates. An increased susceptibility

to antipsychotic-induced weight gain (AIWG) has been repeatedly documented in

children, particularly rapid weight gain. Associated cardiometabolic abnormalities include

central obesity, insulin resistance, dyslipidemia, and systemic inflammation. Lifestyle

interventions and medications such as metformin have been proposed to reduce

risk but remain limited in efficacy. Furthermore, antipsychotic medications touted to

be weight-neutral in adults can cause substantial weight gain in children. A better

understanding of the biological underpinnings of AIWG could inform targeted and

potentially more fruitful treatments; however, little is known about the underlying

mechanism. As yet, modest genetic studies have nominated a few risk genes that

explain only a small percentage of the risk. Recent investigations have begun to explore

novel potential mechanisms of AIWG, including a role for gut microbiota and microbial

metabolites. This article reviews the problem of AIWG and AP metabolic side effects

in pediatric populations, proposed mechanisms underlying this serious side effect, and

strategies to mitigate adverse impact. We suggest future directions for research efforts

that may advance the field and lead to improved clinical interventions.

Keywords: child psychiatry, pediatrics, antipsychotics, antipsychotic-induced weight gain, adverse drug effects,

metabolic syndrome

INTRODUCTION

In the 1950s the first antipsychotic (AP) medication, chlorpromazine, became available for adults.
These first-generation antipsychotic (FGAs) drugs made it possible to stabilize severe mental illness
that previously required long-term institutionalization. While FGAs revolutionized the practice of
psychiatry, serious motor adverse effects were common (1). This prompted the introduction of
the first atypical antipsychotic (second-generation antipsychotic, SGA), clozapine, in 1990. SGA
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prescriptions soon dominated due to their reduced motor side
effects and benefit in treating negative symptoms compared
to FGAs (2, 3). SGAs also cause considerable morbidity,
however, predominantly through antipsychotic-induced weight
gain (AIWG) and metabolic dysfunction (1). Nevertheless,
SGAs continue to represent the standard of care (93% of
AP prescriptions as of 2008) (4), including for children and
adolescents (age ≤ 19) (5).

The already dire prevalence of pediatric obesity and metabolic
syndrome (6) is compounded by increasing global trends in
pediatric AP prescribing, with children potentially accumulating
risk over decades of pharmacotherapy. The mechanisms
underlying these adverse effects are poorly understood, and
consequently, few mitigating or alternative options are available
to clinicians. This review will first outline AP exposure in the
pediatric population, metabolic health consequences of pediatric
AP treatment, and moderators of risk for adverse events (AEs).
Next, an overview of proposed mechanistic pathways will be
provided. Finally, we will summarize strategies to mitigate
adverse impacts of these necessary therapeutics and synthesize a
decision support algorithm for clinicians. We will conclude with
future directions for research and treatment. An understanding
of the biological underpinnings of metabolic AP effects is crucial
to preventing negative physical and mental outcomes of youth
in need of AP therapy and to designing new targeted treatments
without burdensome side effects.

SEARCH STRATEGY, SELECTION
CRITERIA, AND DEFINITION OF TERMS

In this narrative review, we attempted to limit bias and
ensure comprehensiveness through broad search strategies.
We searched PubMed, using the search terms “antipsychotic-
induced weight gain,” “metabolic syndrome,” “cardiometabolic,”
“pediatric OR adolescents OR child OR children,” “obesity,”
“diabetes,” “second generation antipsychotics,” “neurohormone,”
and “neuroendocrine.” Our search included articles published
on PubMed through October 30th 2020. Publications were
selected based on relevance, with priority given to publications
from human research on antipsychotic-induced weight gain and
metabolic effects from the past 10 years. We prioritized data
from pediatric populations and provided adult data when this
was lacking. With regard to treatment studies, we prioritized
randomized controlled trials, systematic reviews and meta-
analyses. With regard to genetic studies, we prioritized unbiased
genome-wide studies. We also searched the reference list
from articles and reviews identified by this strategy to select
additional relevant titles. We supplemented the search with
reviewer recommendations.

We use the following terms as defined by the American
Association of Child and Adolescent Psychiatry (AACAP):
“child” or “children” will refer to patients ages 5 to 12 years (or
zero to 12 when specified), “adolescent(s)” to those between the
ages of 13–17 years (inclusive) and “youth” to patients between
ages 5 and 18 (7).

ANTIPSYCHOTIC EXPOSURE IN YOUTH

Prescription rates of psychotropic medications vary by country,
with US utilization exceeding that in Europe (8). A 2019
analysis of international data revealed that the highest prevalence
estimates (∼3%) for AP prescriptions in children and adolescents
(age ≤ 19) occur in Taiwan and the US (9). A 2014 survey
revealed that AP prescription rates are higher in publicly (2%)
vs. privately (0.7%) insured US children and adolescents (0–19
years) (10). In the outpatient setting, the SGA most frequently
prescribed to children aged 0-13 is risperidone (42.1%), followed
by aripiprazole (28.0%), quetiapine (19.2%), and olanzapine
(4.4%) (11).

Despite their name and primary use in treating psychosis, AP
treatment is supported by evidence for a range of psychiatric
disorders. Aggression, and not psychosis, is the most common
symptom targeted by AP administration to youth (12–17). The
National Ambulatory Medical Care Survey reported that from
2005–2009, APs were prescribed in 31.3% of outpatient visits
for youth (age ≤ 20, n = 527) with mood disorders (11). The
Food and Drug Administration has approved SGAs for use in
children and adolescents with schizophrenia, type I and II bipolar
disorder, Tourette disorder, and irritability related to autism
spectrum disorder. Prescribing trends have shown an increase
in SGA prescriptions for younger children (5, 18–24), including
off-label use for childhood ADHD and depression for which AP
therapy has limited evidence-base (22).

The typical reported duration of pediatric AP treatment varies.
In a cohort of Australian patients <15 years of age prescribed
APs (n = 901), the average duration of overall AP use was 2.4
years (25). The AP with the longest duration of use for this
cohort was haloperidol followed by risperidone, chlorpromazine,
olanzapine, quetiapine, aripiprazole, and lastly amisulpride. The
most prescribed AP for this age group, risperidone, had a mean
use of 2.25 years. In a Canadian Cohort of pediatric patients
prescribed an SGA the most common diagnosis was ADHD,
Mood Disorder, Conduct Disorder, or Psychotic Disorder. The
median duration of risperidone, the most prescribed SGA for
this cohort, was 179, 334, and 408 days for children aged 1–
6 (n = 1,341), 7–12 (n = 17,356), and 13–18 (n = 32,604),
respectively (26). A Medicaid-insured birth cohort examining
trends in psychotropic prescription rates and medication use
found that among 7-year-old children prescribed APs, 50.6%
continued use for 6 months or more (27). Median duration of AP
use increased with age, from 57 days in children aged 3 (n = 9)
to 193 days in children aged 7 (n= 193). In this cohort only 15%
of those prescribed an AP had a diagnosis of autism spectrum
disorder, schizophrenia or bipolar disorder, revealing a trend of
off-label AP prescriptions.

Weight gain is commonly reported by patients and
physicians as an important factor in non-adherence (28–
30). Discontinuation of pediatric AP treatment is common and
determining the long-term severity of AEs after discontinuation
is a concern (28–33). Both a naturalist study of (29) first-episode
psychosis (n = 110, age range = 9–17, mean age = 15.3) treated
with olanzapine, clozapine, or quetiapine and a controlled study
(28) of early-onset schizophrenia spectrum disorder (n = 116,
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age range = 8–19) treated with olanzapine, risperidone, or
molindone found that discontinuation of AP use within 12
months is the norm. In both studies, the main reasons cited by
patients for discontinuation were insufficient response and AEs
such as weight gain.

METABOLIC EFFECTS OF
ANTIPSYCHOTICS IN YOUTH

Metabolic syndrome is a cluster of signs and symptoms, including
insulin resistance, dyslipidemia, and hypertension, that increases
subsequent risk of type 2 diabetes, heart disease, and stroke
(Figure 1). APs can adversely impact metabolic function through
direct effects on lipids and insulin sensitivity and indirect
effects on these parameters as a result of AIWG and obesity
(34–36). AIWG can be substantial, with average weight gain
over a 12-month period measured at 5 kg, corresponding to
a BMI increase by 1.5 in children and adolescents (mean
age = 12, age range = 6–18, n = 200) (37). Importantly,
AIWG increases the risk of obesity, which is predictive of both
adult type 2 diabetes and adult metabolic syndrome (38). The
International Childhood Cardiovascular Cohort Consortium
consisting of 5,803 participants found a 2.4-fold increased risk for
adult metabolic syndrome in children that are overweight with
metabolic metrics above the 75th percentile from 5 years of age
onward (39). Additionally, this study found increased risk (risk
ratio= 2.6–4.1) for type 2 diabetes for children 8 years and older
that were overweight and met 2 metabolic syndrome criteria.

Several studies have indicated that SGAs are associated
with increased risk for metabolic symptoms. Results of a
2018 systematic review of 126 studies report AEs of APs in
pediatric populations showed that compared to placebo, SGAs
were associated with elevated triglyceride levels, weight gain,
increased risk of type 2 diabetes, and unfavorable lipid changes
(34). While this included only subjects under 18 years of age,
the mean age across the studies was > 8 years, reducing its
applicability to younger children. The SATIETY cohort (age
range 4–19, mean age = 13.9, n = 205) study observed mean
level increases in serum total cholesterol (15.6 mg/dL: both low-
density lipoprotein, high density lipoprotein) and triglyceride
(24.3mg/dL) levels to increase with just a median of 10.8 weeks of
exposure to SGAs (40). Further, patients developed dyslipidemia
(17.1%), insulin resistance (8.6%), and metabolic syndrome
(1.6%). In a mixed diagnosis comparison study of metabolic
changes in adolescents (N = 179, age range = 12–18, mean age
= 15.8) vs. adults (N = 4,280) receiving at least 24 weeks of
olanzapine treatment, adolescents were found to have greater
mean increases in fasting total cholesterol, LDL and triglyceride
levels as compared to adults, while increases in fasting glucose
levels were similar (41). Despite greater vulnerability, children
and adolescents are less likely than adults to have their metabolic
parameters monitored during AP treatment (37).

Type 2 diabetes has been implicated as a long-term AE of AP
treatment in children and adolescents (42–45), as well as in adults
(42, 43, 46). Studies examining this association are inconsistent.
A retrospective study (47) evaluated South Carolina medical

and pharmacy claims of children/adolescents receiving AP
monotherapy (n= 30) or AP plus antidepressant treatment (n=

274) with type 2 (ormisclassified type 1) diabetes did not attribute
psychotropic medication as an explanatory factor of diabetes;
however, causality cannot be inferred with a retrospective design
and final group sizes are underpowered for most comparisons.
Another retrospective cohort study (48) of outpatients (mean age
41.9, SD = 21.5) administered SGAs (n = 10,265), FGA (n =

4,607), antidepressants (n = 60,856), or antibiotics (n = 59,878)
and a systematic review (n = 258,597 aged 0–5, n = 294,722
aged 6–11, and 331,339 aged 12–17) attributed risk of diabetes to
non-specific factors given similar rates of diabetes with both APs
and antidepressants (48, 49). A final retrospective national cohort
study (age range = 10–18, 59.8% age 10–14, 40.2% age 15–18, n
= 107,551) of youth receiving AP treatment reported higher risk
of type 2 diabetes when antidepressants are used concomitantly
with APs (45). Studies are also contradictory with regard to
the relationship between risk for diabetes and age, with some
reporting greater risk in older adolescents (44, 50) and others
in younger patients (42). Although, there have been inconsistent
findings for pediatric AP treatment and subsequent type 2
diabetes, data is strong enough to warrant regular physician
monitoring of glucose levels (42, 44, 51).

RISK FOR ANTIPSYCHOTIC-RELATED
METABOLIC EFFECTS

Negative metabolic consequences and AIWG affect up to 60%
of patients receiving APs, with the highest risk to children
(40, 52–57). A multicenter naturalistic observational study
(ETAPE) performed a 12-month follow up of AEs for 200
youth (mean age = 12, 92% prescribed SGAs) and found
that the overall AE incidence rate was 11.52 AEs per person-
years (37). For the AEs attributable to APs, 12.2% were
related to metabolic or neuroendocrine parameters and included
elevated cholesterol (>170mg/dl) and triglycerides (≥100mg/dl)
(36.3%), hyperprolactinemia (>25 ng/ml) (38.5%), vitamin D
deficiency (<30 ng/mL) (36.6%), hyperphagia (67.4%), and
diabetes (7%). For the AEs recorded, more than half had
incidence during the first 3 months of treatment. Moreover,
children are more vulnerable to both the adverse physical and
emotional effects of SGAs (24). As a result of this increased
vulnerability, non-adherence in youth is prompted by changes in
their physical appearance leading to body image issues (58) and
negative peer perception (59).

Studies have shown that adverse health effects in youth
increase with duration of treatment (60, 61) and that a
younger age of AP use is associated with increased AIWG
vulnerability (62), as well as AEs associated with obesity such as
cardiovascular and metabolic complications (62–65). As research
shows that most pediatric AIWG occurs within the first 12
weeks of administration (40, 65, 66), even relatively short-
term treatment can result in considerable weight gain. First-
episode psychosis is also a risk factor for greater weight gain,
likely due to multiple factors (40, 67–69) such as younger age,
lack of previous antipsychotic exposure, and less established
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FIGURE 1 | The associated burden of pediatric antipsychotic treatment. Antipsychotic use is associated with weight gain, increased fasting lipids (total cholesterol,

LDL, and triglyceride levels), and impaired glucose tolerance in pediatric patients. Subsequently, this population is at an increased risk of obesity, metabolic syndrome

and type 2 diabetes. Although pediatric patients are more vulnerable to these adverse side effects, they are less likely to have their metabolic parameters monitored

during AP treatment.

participation in psychiatric treatment. Regular monitoring of
adverse cardiometabolic effects for pediatric patients prescribed
APs is standard of care (21, 70–77). Given accumulating risk
over time and earlier age of initiation, longitudinal studies for
pediatric AP use are highly warranted.

Propensity for weight gain and metabolic effects varies among
AP agents. A 2018 network meta-analysis of 28 studies of
pediatric AIWG (mean age = 14.41, 58% male) (78) found that
molindone, lurasidone, and ziprasidone were relatively benign
while clozapine, quetiapine, and olanzapine resulted in the
greatest weight gain. Paralleling the adult literature, clozapine
demonstrated both the greatest efficacy and side effect burden in
youth. Importantly, medications touted to be weight neutral in
adults behave differently in children. Aripiprazole, for example,
has been noted to produce weight gain equivalent to or greater
than risperidone in 2 pediatric studies (79, 80). The relationship
of AP dose to AIWG remains unclear and may vary with time
and across specific APs (81–83). Concomitant medications can
also alter risk in either direction; for example, stimulants have
been associated with attenuated (83) and mood stabilizers with
compounded (84) risk for AIWG.

Diagnostic differences in weight gain have also been
examined. A systematic review of children receiving AP
treatment (n= 3,048) found that children diagnosed with autism
spectrum disorder had higher propensity for weight gain, but
this could be a result of younger age at treatment or lack of
previous exposure to APs (66). Additionally, in a cohort of youth
with schizophrenia or schizoaffective disorder, the Treatment
of Early-Onset Schizophrenia Spectrum Disorders Study found

that schizoaffective diagnosis predicted greater weight gain for
risperidone prescribed youth (n = 119, age range = 8–19, p =

0.004) (85).
Considerable variability in weight gain and metabolic effects

exists between individuals (86), though this variability is poorly
understood. As previously discussed, young and antipsychotic-
naïve patients are at particularly high risk, gaining 3–4-fold more
weight irrespective of the specific AP (67). Few other patient-
specific moderators of AIWG have been confirmed. Both higher
and lower baseline BMI have been reported to predict AIWG
in children (83, 87), which is complicated by confounding with
age, AP exposure, and the expectation that extreme BMI values
will regress toward the mean (83, 88). Reports of sex effects
are also inconsistent, with studies claiming female (46, 89–
91), male (63, 92), or equal (80) predominance of weight gain;
though boys are prescribed APs more frequently than girls,
paralleling male preponderance of many indications for AP
administration (autism, Tourette, aggression). While AIWG and
metabolic AEs appear to be a worldwide phenomenon, ethnicity
and socioeconomic status may influence risk magnitude (92–94).
APs are disproportionately prescribed more frequently to those
in foster care (95) and to those with public insurance (96, 97).

Only a few studies have addressed the reversibility of AIWG
(30–33). Two of these studies reported that AIWG in children
and/or adolescents was reversible but are limited by small sample
size (n = 14, mean age = 11.5; and n = 18, mean age = 9.68)
and the inclusion of subjects who did not gain weight during
AP treatment (31, 33). More moderately-sized studies showed
contradicting results (30, 32). In a secondary analysis of AIWG
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in a pediatric placebo-controlled, cross-over study (age range =
5–17, mean age = 11.1, n = 527) of risperidone treatment of
disruptive behavior disorders, those receiving placebo after 12
weeks of treatment underwent an average decrease of 0.2 kg (SD
= 2.2 kg) over 6-months compared to an average of 3.2 kg (SD
= 2.49 kg) gained during the treatment period (32). Upadhyay
et al. (30) performed the most robust study to date, which
showed only a fraction of weight gained during AP treatment
is lost (average of +7.85 kg during treatment and−3.39 kg after
12-months discontinuation). This study limited its analysis to
individuals who experienced any weight gain after AP treatment
for a bipolar diagnosis before the age of 18 (n = 146). To date,
it is unclear the extent to which pediatric AIWG is reversible. It
is essential that future studies investigate the persistence of long-
term metabolic outcomes in the context of AP discontinuation.

MECHANISMS UNDERLYING
ANTIPSYCHOTIC-RELATED METABOLIC
SYNDROME AND AIWG

Multiple mechanisms have been hypothesized to influence
pediatric AIWG and metabolic effects of APs. It is likely that
AEs are due to a combination of these mechanisms including
AP influence on neurohormone receptor signaling and hormone
mediation of APs, predisposition due to genetic risk factors, and
AP effects on the gutmicrobiome. This reviewwill summarize the
main aspects of these mechanisms, as each has been thoroughly
reviewed by other authors.

Neurotransmitter Receptor Signaling
APs bind, with various affinities, to serotonin (5-HT), dopamine,
histamine, adrenergic, and muscarinic cholinergic receptors (98–
102). Several extensive reviews are available on neurotransmitter
signaling as a potential mechanism in AIWG (Table 1) and
metabolic effects of APs (101, 102, 112).

Serotonin Signaling
Compared to FGAs, SGAs have greater affinity for 5-HT
receptors than for dopamine receptors, conferring their reduced
extrapyramidal side effects and superior efficacy in treating
negative psychotic symptoms (2, 3) leading to preferential
use in children (101, 113). Of the 5-HT receptors, SGA
blockade of the serotonin 2C receptor (5- HT2CR) has been
the most comprehensively studied. Rat models have shown
reduced mRNA expression of 5- HT2CRs in the hypothalamus,
striatum, nucleus accumbens and amygdala with long-term
clozapine administration (114). SGAs have shown high 5-HT
receptor occupancy in neuroimaging studies (115), and there
is longstanding evidence for the association of increased 5-
HT levels and satiety (116). SGAs act to block 5-HT receptors
including those in the hypothalamus, which play a central role
in satiety signaling, and thus have been implicated as a candidate
mechanism in AIWG (102, 112). Olanzapine and clozapine act
as inverse agonists at the 5- HT2CR (117, 118) with lower affinity
than aripiprazole, a partial agonist (119), but show greater AIWG

(101). This evidence highlights the likely complex role of multiple
mechanisms in AIWG.

Histamine Signaling
Three histamine receptors are expressed in the brain (H1, H2,
and H3). Histaminergic neurons originating in the posterior
hypothalamus project throughout the brain and the H1 receptor,
specifically, has been described to have a role in feeding behavior.
In a study screening FGAs and SGAs, AP binding to the H1
receptor was most strongly associated with weight gain (99). In
animal studies investigating clozapine and olanzapine, weight
gain is associated with H1 receptor blockade, whereas agonist
such as betahistine reduced olanzapine-induced weight gain (120,
121) Further, H1 antagonism by olanzapine and clozapine is
proportional to the activation of AMP-activated protein kinase
(AMPK) (122, 123), which has been shown to reduce the
anorexigenic effects of leptin (124). These associations should be
interpreted with caution, as both clozapine and olanzapine have
high affinity for multiple receptors.

Other Neurotransmitter Signaling
SGAs result in lower occupancy of dopamine D2 receptors (D2R)
as compared to FGAs but still bind these receptors as antagonists
(98–100, 125). AP administration results in decreased striatal
D2R availability (102, 126) and it has been hypothesized that
overeating compensates for reduction of D2-regulated reward
circuits resulting in increased caloric intake (126–128). SGAs also
act as antagonists at D4 and agonists at D1 receptors (98). Many
APs have strong affinity for adrenergic receptors which have been
more heavily implicated in metabolic effects of APs due to α1
and α2 receptor association with glucose control (101) and the
ratio of α2 to β3 in adipocyte hyperplasia (129, 130). SGAs have
high affinity for cholinergic muscarinic receptors and blockade of
M3 has been proposed to disrupt insulin homeostasis (131), but
there is lack of data for a role in AIWG. Of the early hypotheses
related to AP effects on neurohormone signaling based on genetic
candidate gene data, none of the genetic associations with AIWG
have been strengthened by concurrent evidence from unbiased
genome studies.

Neuroendocrine Signaling
Metabolic effects associated with APs could result from direct
changes to neuroendocrine signaling or occur secondary to
weight gain. AP effects on adiponectin, ghrelin, insulin, and
leptin (Figure 2) have been examined as potential mediators of
AP-related changes in energy homeostasis (132). These signaling
molecules impact various levels of energy balance including
appetite and feeding, energy expenditure and metabolic rate.
Insulin and leptin modulate expression of neuropeptides in
the hypothalamus, which regulate feeding behavior and are
considered the most important agents in regulating weight gain
and energy homeostasis (133).

Leptin Signaling
A review published by Endomba et al. (134) provides an
excellent overview of the potential influence of APs on leptin
metabolism. In brief, leptin acts on neurons of the lateral arcuate
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TABLE 1 | Second generation antipsychotic neurotransmitter receptor binding profiles.

Second generation antipsychotic

Receptor ZPD LRD APZ ASN RSP PPD QTP CLZ OLZ

5-HT1A +++ +++ +++ +++ + + ++ + –

5-HT1B +++ + +++ ++ ++ + +

5-HT2A ++++ +++ ++ ++++ ++++ ++++ ++ ++ +++

5-HT2C + + ++ + ++ + + ++ ++ ++ + ++ ++

5-HT6 ++ + ++++ – – + ++ +++

D1 + + +++ + + + + ++

D2 + + + + + + + + + + + + + + + + + + + + ++

D3 +++ +++ ++++ +++ +++ + + ++

D4 ++ + +++ +++ +++ ++ ++

M1 + +++ ++

M3 – – – – – + ++ ++

H1 ++ – ++ + + + + + + ++ + + + + + + + + +

H2 +++ + + + ++

H3 +

α1 ++ ++ ++ +++ +++ +++ ++ +++ ++

α2A + ++ ++ + + + ++ + + + + ++ +

α2B ++ ++ ++++ ++ +++ + ++ ++

α2C ++ +++ ++ +++ +++ +++ ++ ++ ++

Inhibition constants (Ki) indicated as follows: + + ++ (1 > Ki), + + + (1 < Ki < 10), ++ (10 < Ki < 100), + (100 < Ki < 1,000), –(1,000 < Ki), gray box indicates lack of data; data

derived from (98–100, 103–111). Second Generation Antipsychotics are listed from left-to-right in order of increasing antipsychotic-induced weight gain; data derived from (78). This

table does not provide an exhaustive receptor profile but focusses on receptors hypothesized to relate to metabolic effects. Those with the most evidence are bolded. ZPD, ziprasidone;

LRD, lurasidone; APZ, aripiprazole; ASN, asenapine; RSP, risperidone; PDD, paliperidone; QTP, quetiapine; CLZ, clozapine; OLZ, olanzapine.

nucleus within the hypothalamus inhibiting the expression of
neuropeptide Y (NPY) and agouti-related peptide (AgRP) and
stimulating proopiomelanocortin (POMC) (135–137). POMC
is modified to α-melanocyte-stimulating hormone, which can
then stimulate melanocortin receptor 3 (MC3R) and 4 (MC4R),
suppressing food intake (137). Mouse models have shown that
structural MC4R alterations and decreased MC3R expression
are associated with leptin resistance and obesity (137, 138). In
addition to NPY and AgRP, leptin also acts to inhibit neurons
in the ventromedial arcuate nucleus that express gamma-amino
butyric acid (GABA), which induce feeding (139). Thereby,
reduced leptin signaling can lead to obesity by the loss of pro-
satiety signals or the lack of feeding inhibition (135). Yet, the
overall effects of APs on leptin remain unclear despite extensive
investigation. For example, increased leptin levels have been
associated with SGA treatment in patients with schizophrenia
(140). It has been proposed that leptinmetabolism can be affected
by AP treatment independent of AIWG (141–146), or conversely,
only secondary to AIWG rather than by direct effects (147–152).

Insulin Signaling
APs have been shown to increase insulin resistance (40). Insulin
is produced in the pancreas by beta cells and binds to receptors
in the arcuate nucleus aiding in energy homeostasis. Insulin
resistance occurs when the activity of insulin is blunted in liver,
muscle and adipose tissue and is linked to intra-abdominal fat

(153). Childhood-onset insulin resistance increases risk for type
2 diabetes and cardiovascular disease (154, 155). AP actions on
histamine and muscarinic receptors have been shown to reduce
acetylcholine-induced insulin secretion (156, 157) and result
in the failure of leptin signaling (158), which may contribute
to insulin resistance. More recently, the hypothalamus has
been shown to have a high concentration of insulin receptor
expression and insulin concentration in vitro (159). In post-
mortem studies receptor expression has been revealed to be
greatest in the cerebellum and hypothalamus (160). Insulin has
been shown to play an anorexigenic role in the brain and brain
imaging studies have revealed a reduced neural response in
patients with obesity upon exogenous insulin administration
(160, 161). Insulin produced by the pancreas enters the brain via
the bloodstream through an insulin-receptor mediated pathway
initiating the phosphoinositide 3-kinase pathway that plays
a crucial role in controlling metabolism (160). Additionally,
insulin is involved in the stimulation of leptin secretion (162),
and reciprocally, leptin plays a role in the regulation of

circulating insulin (153). Human imaging studies have revealed

that central insulin modulates the activity of mesocorticolimbic
dopaminergic circuitry (163–165). In psychiatric patients, the

development of type 2 diabetes and adverse metabolic effects
may be facilitated by insulin resistance in the brain (166).
Figure 2 depicts aspects of insulin’s role in the CNS. For a
more comprehensive review of the role insulin plays in the
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FIGURE 2 | Possible mechanisms of antipsychotic adverse metabolic effects. The energy homeostasis pathway is complex and provides numerous possible

mechanisms that might explain AP-related weight gain and metabolic effects. Arrow at end of line indicates activation of pathway and perpendicular bar denotes

inhibition. Neuroendocrine signaling molecules are bolded. Potential AP inputs are italicized and represented by dotted lines. ARC, arcuate nucleus; LH, lateral

hypothalamus; NPY, neuropeptide Y; AgRP, agouti-related peptide; POMC, pro-opiomelanocortin; NPYR, neuropeptide Y receptor; MC4R, Melanocortin 4 Receptor;

α-MSH, alpha-Melanocyte-stimulating hormone.

central nervous system as it relates to metabolism see Kullmann
et al. (160).

Other Neurohormone Signaling
Adiponectin is secreted by adipose tissue and increases
fatty acid oxidation and glucose uptake in muscle thereby
contributing to weight regulation (167). Decreased adiponectin
serum levels have been associated with insulin resistance,
dyslipidemia, obesity and type 2 diabetes (168, 169). Meta-
analysis found that SGA-treatment in patients with schizophrenia
was associated with decreased levels of adiponectin (170).
Ghrelin is a peptide hormone secreted in the stomach that has
orexigenic effects by increasing food intake and fat deposits.
Insulin has been evidenced to decrease ghrelin levels (171).
Paradoxically, meta-analysis has provided some evidence that

olanzapine-associated weight gain is associated with reduced
ghrelin levels but associations with increased ghrelin in the
context of SGA treatment has been reported as well (172–
174). The circadian and immune regulator, melatonin, also
plays a role in energy metabolism (175). Increased weight
and visceral adiposity in olanzapine-treated rats is inversely
proportional to nocturnal circulating melatonin (176) and
daily melatonin supplementation ameliorates this effect (176,
177). More longitudinal studies with greater sample size are
necessary to determine the relationship of AP treatment and
these neurohormones.

Genetic Predisposition
Genetic risk factors likely play an important role in the extent
to which an individual experiences AIWG. In a study of
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monozygotic twins and siblings receiving SGAs, the influence of
genetic factors on AIWG was reported to be between 60 and 80%
(178). Candidate gene studies have focused on neurotransmitter
receptors including 5-HT2CR (HTR2C) (142, 148, 179–183), D2R
(DRD2) (184–188), α2-adrenergic receptor (ADRA2A) (189–193)
and cannabinoid 1 receptor (CNR1) (194–197); energy balance
regulators including MC4R (198–201), leptin (LEP) (145, 202–
205) and transcription factor SREBP (206–209); and growth and
synaptic genes like brain-derived neurotrophic factor (BDNF)
(210–215) and synaptosomal associated protein SNAP25 (216).
For a comprehensive review of the candidate gene studies
associated with AIWG and metabolic effects of APs see Li
et al. (217).

Candidate gene studies have exploratory value but are
weakened as they are based on functional hypotheses with
inherent bias (218–220). The genetics field has agreed that
candidate gene studies should be interpreted with extreme
caution (221). Large unbiased genome-wide studies, such as
genome wide association studies (GWAS), are thus necessary
to reveal replicable genetic risk factors for complex phenotypes.
The common variation model postulates that susceptibility to
complex disease is driven by a combination of common alleles
that each carry a small disease risk, such as can be revealed
in large-scale GWAS analyses. For example, genetic risk for
AIWG at MC4R was first identified in the only GWAS study
of weight gain in pediatric patients (age ≤ 19, n = 139) taking
quetiapine, risperidone, olanzapine, or aripiprazole for any
diagnosis (222). This GWAS study revealed a single nucleotide
polymorphism (SNP) at locus rs489693 located downstream
from the MC4R gene. Independent studies investigating SNPs
near MC4R subsequently replicated this finding (198–201).
MC4R plays a central role in energy balance. As described above,
leptin stimulates hypothalamic POMC neurons, resulting in the
production of α-MSH, which in turn stimulates anorexigenic
effects by binding MC4R and inhibiting AgRP, an MC4R
antagonist (102). 5-HT2CR has upstream inputs to this pathway
(223), and BDNF has been suggested to have effects downstream
of MC4R, as its infusion in MC4R-deficient mouse models
reduces food intake (224).

Several GWAS of AIWG have been performed in adult
samples receiving APs to treat schizophrenia. Two studies
utilized data from the Clinical Antipsychotic Trials of
Intervention Effectiveness (CATIE) (225), both failing to
detect genome-wide significant signals. The first also reported
trends in SNPs upstream of opioid growth factor receptor
OGFRL1 (226), and the second highlighted enrichment of
nominally associated SNPs in energy balance pathway genes
by hypothesis-driven pathway enrichment analysis (227). A
SNP (rs10977144) located in the protein tyrosine phosphatase,
receptor type D gene (PTPRD) (228) was associated with AIWG
in a GWAS of Chinese patients with schizophrenia (n = 524,
mean age = 26.4). PTPRD deficient mice were shown to have
insufficient weight gain postnatally due to feeding difficulties,
arguing for a role in energy balance (229). A replication GWAS
of European and African ancestry (n = 201, mean age = 37)
treated primarily with clozapine or olanzapine did not confirm
the lead SNP, which may be explained by unmatched ancestry,

but notably did detect nominal significance at other SNPs within
the PTPRD gene (230). This same GWAS found only marginal
association (p < 0.05) at a SNP located near the MC4R gene.
In an additional study of this cohort, a SNP (rs1525085) in
the lipid biosynthesis gene, diacylglycerol kinase beta (DGKB),
was found to be significantly associated with AIWG (231).
The study notes that DGKB variants have been associated with
insulin clearance (232) and, by interaction with insulin secretion,
increased risk for type 2 diabetes (233). When limiting analyses
to the European subset, a SNP (rs62097526) downstream of
CIDEA, a regulator of lipolysis and thermogenesis in mice,
was nominally associated with AIWG (231). CIDEA variants
have also been shown to associate with metabolic syndrome in
Swedish, Japanese and Chinese population cohorts as well as
obesity risk in a Han-Chinese cohort (234, 235). The most recent
GWAS (236) examining AIWG analyzed 339 subjects (Age
Range = 15-45, mean age = 26.4) with first-episode psychosis
derived from The Optimization of Treatment and Management
of Schizophrenia in Europe (OPTiMiSE) (237) cohort. This study
identified the intergenic SNP rs78310016 near SEPP1, a hepatic
protein involved in selenium transport, and growth hormone
receptor (GHR) that was significantly associated with AIWG but
not replicated in follow-up analyses. Providing face validity to
this finding, SEPP1 and GHR have been implicated in metabolic
phenotypes (238–243). Another possible functional link was
identified by in silico analysis, which predicted a chromatin
interaction of the lead SNP with the HMG-CoA synthase 1 gene
(HMGCS1). HMGCS1 is highly expressed in the brain and liver
and involved in the regulation of cholesterol biosynthesis (244).

Overall, while candidate gene studies may provide
mechanistic clues in pediatric AIWG and metabolic effects
of APs, large GWAS studies are required to definitively identify
risk genes. Currently, a few GWAS samples exist but are
underpowered and difficult to harmonize given different ages
and ancestries. Moreover, only one study examined pediatric
participants (222). Existing studies are derived almost entirely
from treatment studies of schizophrenia, which due to time and
expense are generally limited to hundreds of patients. Sample
sizes consisting of thousands of patients will be necessary to
comprehensively capture genetic contributions of common
variants to AIWG. Data from electronic medical records,
national registries, and commercial genetic profile industries
may represent fruitful avenues for future study.

The Microbiome
SGAs have been associated with perturbations of the gut
microflora that may contribute to weight gain (245–248). The
mechanism underlying alterations in the microbiome during
SGA treatment and the link between these changes and weight
gain are only beginning to be explored.

Several distinct observations have emerged from recent work
including evidence that microbiome changes are necessary for
AIWG rather than the reverse. AP administration in rodents and
humans (249–252) results in an increase in the ratio of Firmicutes
to Bacteroidetes (F:B), two common bacterial phyla. This
observation parallels findings in obesity; however, systematic
reviews in pediatric (253) and adult (254) populations identify
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inconsistencies. Preclinical studies have demonstrated that gut
bacteria are necessary for AIWG (245, 249–251). In fact, AIWG
is absent in germ-free mice but can be induced by microbiome
transplant (251). Similar F:B changes, increased adiposity, and
inflammation were reported in olanzapine-treated rats (249).
In a follow-up study, these effects could be prevented by co-
administration of an antibiotic cocktail that effectively sterilized
the gut (250). Similarly, mice receiving risperidone developed
AIWG, an effect that was mediated by decreased energy
expenditure and transferrable by fecal transplant (245). Small
studies investigating risperidone treated children substantiated
these preclinical findings. Risperidone treated children (n = 18,
age range = 9–15, mean age = 12.2) were observed, cross-
sectionally, to have an elevated F:B ratio and a host of differences
in the metabolic potential of the gut microbiota (252). In an
independent longitudinal study published in the same report,
children (n = 5, age range = 9–13, mean age = 11.7) were
enrolled within days (mean = 3.2, SD = 5.2) of starting
risperidone (252). Within 1–3 months of risperidone initiation,
the F:B ratio had begun to increase, appearing to plateau by
about 5–6 months. Importantly, the F:B ratio was positively
correlated with the magnitude of AIWG. An overall increase in
putative “obese gut microbiota” was seen for these adolescents,
and interestingly an enrichment in microbiota genes related
to serotonin signaling and short chain fatty acid metabolism
was reported.

Additional microbiota alterations associated with AP
treatment include changes in Actinobacteria, although both
increases (245, 255) and decreases (249) in the phylum has been
reported. Risperidone-treated mice display increased abundance
of the Erysipelotrichaceae (256) family and Mollicutes (257) class
but decreases in Alistipes and Akkermansia species, which are
considered lean gut microbiota (258, 259). Reduced diversity
and stability of the microbiome of children compared to adults
could explain the increased sensitivity to AIWG seen in youth
(65, 260, 261). Lower microbiota species diversity is associated
with obesity (255) dysbiosis in youth may mediate subsequent
adult obesity (65). Childhood microbiota composition has also
been shown to be instrumental for brain and immune system
development and function (262). Therefore, given their lower
baseline microbiota population diversity, long-term disturbance
of brain and immune system development as a result of SGA-
associated with changes in gut microbiota should be examined.
Lastly, a study that investigated 117 adult patients with bipolar
disorder (n = 49 treated with an AP, n = 68 non-treated) a
greater AP-related reduction in bacterial diversity was seen in
females vs. males treated with an AP (263), suggesting that sex
differences must also be considered.

PHARMACOLOGICAL AND LIFESTYLE
INTERVENTIONS TO ADDRESS
METABOLIC AEs OF APs

Current strategies to prevent or treat AIWG and the metabolic
effects associated with AP use are inadequate. Unfortunately,
the two most effective SGAs on the market, clozapine and

olanzapine, also have the highest reported AIWG (78). Clinicians
should understand and weigh the benefits and risks of SGA
treatment for each individual patient. In some situations, it may
be possible to avoid APs if behavioral strategies or medications
with less AEs are implemented. Nevertheless, in children with
acute psychosis or mania, there are often few other appropriate
options. In cases where benefit outweighs risk, it is crucial to
warn patients and families about AIWG and metabolic effects
and useful to discuss strategies to reduce harm. The most
conservative approaches to metabolic side effects, which can
also be safely employed for prevention, are non-pharmacologic
interventions, which include lifestyle modification and dietary
supplementation, including pre- and probiotic supplements.
When these approaches are insufficient, switch to an AP with
less propensity for weight gain may be warranted or adjunctive
medications may be added to manage weight gain. The most
effective pharmacologic interventions, however, will likely be
supported by a healthy lifestyle.

Non-pharmacological Treatments
There is a paucity of data examining lifestyle interventions for
AIWG in children (264). A 52-week study found that standard
(n = 102) or intense behavioral weight interventions (n =

103) did not reduce AEs of APs for adolescents (age range
= 13–17, mean age = 15.8) with schizophrenia or bipolar
I disorder receiving olanzapine (265). A 16-week intensive
weekly family-based behavioral weight loss intervention in AP-
treated youth (n = 19, mean age = 13.35), compared to
treatment as usual, resulted in decreased adiposity (p = 0.01)
and hepatic fat (p = 0.04) that could support beneficial impacts
on AIWG with long-term behavioral intervention (266). There
is a need for large-scale pediatric studies to determine the most
effective lifestyle interventions for weight gain and metabolic
symptoms. As childhood obesity continues to present a major
health challenge, a robust research literature exists on effective
lifestyle interventions for obese youth. A comprehensive review
of such integrative approaches was recently published (267)
describing potential dietary, physical activity, sleep, and stress
management interventions. Nutritional supplements with data
in pediatric obesity, though not yet tested in the context of
AP treatment, are also reviewed. The interventions with the
best support in reducing childhood obesity and subsequent
metabolic symptoms include an increased level of physical
activity, improved sleep, and a diet consisting of fruits, vegetables,
whole grains, and fish oil supplementation (267). Generalizing
from healthy populations must be done with caution, however,
as psychiatric diagnoses and psychosocial stressors may result in
poorer outcomes of lifestyle interventions. Future development
of lifestyle programs targeting AIWG should be designed for and
tested in relevant psychiatric populations. Mixed data supports
the effectiveness of lifestyle interventions in adults receiving
AP treatment. A recent meta-analysis, however, reported a
significant reduction in body weight after exercise initiation with
a large effect size (SMD = −0.96), concluding that lifestyle
interventions remain the most effective method to improve
physical health outcomes in patients with schizophrenia (268).
Compared to adults, pediatric patients present some unique
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challenges and advantages. Youth may not cognitively appreciate
risk, may be less self-motivated to comply with prevention
measures, and may be resistant to lifestyle interventions. On the
other hand, caregivers are in a position to exercise considerable
influence over diet, nutrition, and lifestyle factors.

As SGAs may directly affect gut microbiota populations (245,
249–252, 269, 270) probiotics, prebiotics, and fecal transplants
have been proposed as potential therapies to reduce adverse AP
effects. Prebiotics have been shown to promote the growth of
beneficial microbiota in humans resulting in suppressed appetite
in youth (n = 42, age range = 7–12) (271), and probiotics are
associated with improved gastrointestinal function in patients
with schizophrenia (272, 273). While a promising and novel
strategy, further research efforts are necessary to explore specific
gut microflora that could alleviate AP side effects. Animal
models have aided in this effort. Probiotics were able to reverse
weight gain andmetabolic dysfunction resulting from olanzapine
treatment in mice (247). The prebiotic B-GOS prevented weight
gain in rats (274), and a prebiotic mixture reduced weight gain
and decreased the putative obesogenic F:B ratio in mice (246).
Fecal transplants from mice treated with risperidone have also
been shown to reduce basal metabolic rate and increase weight
gain in control mice (245). Nevertheless, to develop effective and
safe interventions, preclinical studies and clinical trials in human
subjects will be crucial. An exploratory study comparing children
(n = 30, age range = 4–17) with extreme risperidone-induced
weight gain vs. those without AIWG uncovered bile acid changes
resulting from AP treatment and distinct bile acid profiles in
subjects with vs. without weight gain (275, 276). Preliminary
evidence suggests a potential link between bile acid changes
and the gut microbiota. Interestingly, a similar mechanism was
suggested by studies of metformin effects in diabetes (277).

Pharmacological Treatments
Metformin, the most commonly used adjunctive medication
targeting AIWG, is supported by the strongest evidence, but
several other strategies have shown promise including glucagon-
like peptide 1 receptor and histamine 1 receptor agonists.
Unfortunately, most studies have been small and follow-up
periods rarely exceed 6 months. Medications used to treat
obesity in the general population have also been tried, and
represent reasonable options, but these are often limited by
intolerability of unpleasant side effects in psychiatric populations
(278). In youth with metabolic abnormalities, insulin resistance,
hyperglycemia and dyslipidemia, these medical sequelae are
typically bemanaged by a pediatrician or endocrinologist. Studies
have shown benefits of standard treatments, such as metformin
and statins, in adults with antipsychotic related metabolic
syndrome (279).

Metformin
Metformin, an anti-diabetic, has been studied extensively
as a potential alleviator of AIWG and metabolic effects.
Metformin has been shown to reduce metabolic effects in
patients with schizophrenia spectrum disorders by decreasing
hepatic gluconeogenesis, insulin resistance (i.e., improving
insulin sensitivity) and total cholesterol (264, 268). Regulation

of leptin sensitivity and hypothalamic signaling are also affected
by metformin (280). Therefore, metformin may play a role in
reducing caloric intake and fat storage (280). A 2014 meta-
analysis of 40 studies on pharmacological interventions to
combat adverse AP effects concluded that metformin should
be the first choice for pharmacological treatment if non-
pharmacological interventions have failed and switching to an
AP with reduced potential for AIWG is not feasible (281).
This meta-analysis was not focused on pediatric populations,
but there have been several studies that have examined
metformin adjunctive treatment in youth. In the Improving
Parameters in Antipsychotic Child Treatment (IMPACT) trial
of AIWG interventions, overweight youth (n = 127, age range
= 8–19, mean age = 13.7) with a primary diagnosis of
bipolar spectrum disorder, schizophrenia spectrum disorder, or
psychotic depression were randomized to metformin treatment;
AP switch to aripiprazole, perphenazine, or molindone; or
continued current AP treatment (264). Both the metformin
(moderate to large effect size 0.68) and AP switch (large effect size
0.81) group had significant reductions in BMI z-scores compared
to the continued treatment control. More gastrointestinal
complaints, however, were reported in the metformin group than
the AP switch and control groups. Several additional studies
support the benefit of metformin for pediatric SGA treatment.
A randomized controlled trial (n = 61, age range = 6–17, mean
age = 12.8) reported that metformin attenuated weight gain but
did not affect metabolic measures (282), though given that no
metabolic abnormalities were observed in either group, this is
not surprising. Two small open label metformin trials reported
weight loss in 5 out of 11 (age range = 10–18, mean age =

14) (283) and 15 out of 19 (age range = 10–18, mean age =

14.1) (284) patients. An open-label extension of one of the trials
(282) found that this effect on anthropometric measures but not
metabolic measures persists over long-term treatment, although
they did note a non-significant decrease in hemoglobin A1c in
both trial phases (285). One Iranian study failed to demonstrate
a significant impact of metformin on AIWG prevention over a
12-week treatment period but did note significant effects over
the first 4-weeks of treatment and a positive trend at 12 weeks
(n = 49, mean age = 10.1) (286). Authors acknowledge that
lower doses of metformin were used compared to other studies,
which may explain conflicting results. Metformin may be more
effective in first-episode psychosis patients in comparison to
those receiving chronic treatment (287). Some have proposed
that timing is critical and early use of metformin may improve
outcomes through prevention rather than correction of weight
gain (288). Lessons learned from metformin’s modest efficacy
may spur the testing and development of new approaches in
the future.

Glucagon-Like Peptide 1 Receptor
Agonists (GLP1RA)
GLP1RAs, another medication class borrowed from diabetes
treatment and associated with weight loss, have been examined
as potential adjuncts to reduce AIWG and metabolic dysfunction
(289). This approach is supported by evidence that serum GLP1
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increases with SGA treatment (290) and is associated with both
hyperglycemia as well as insulin resistance (291). Ameta-analysis
of 3 trials of adults receiving adjunctive GLP1RA along with
an AP demonstrated reduced HbA1c, fasting blood glucose and
BMI (292). This meta-analysis only consisted of 164 patients,
underscoring the need for larger trials. Pediatric trials of efficacy
in AIWG are lacking but warranted given promising effects
of GL1RA treatment in adolescents with severe obesity (293).
Until recently, GLP1RAs have been limited by a subcutaneous
formulation, but the 2019 approval of an oral agent, semaglutide,
could drive an expanded role for this medication class in
the future.

Betahistine
Betahistine, an agonist of the H1 histamine receptor has been
shown to reduce or attenuate olanzapine-induced AIWG in
adults (121, 294, 295), as discussed previously. Many APs
are antagonists at the H1 receptor, especially those with high
propensity to cause AIWG. To our knowledge, only one study
(296) has included pediatric patients (n = 12 of 51 total patients,
age range 12-17). In this sample, betahistine tempered weight
gain in participants receiving the strongly antihistaminergic APs
olanzapine and clozapine, but not for those taking other APs
with lower H1 potency. The study found no moderating effect of
age (i.e., adolescent vs. adult) but did not analyze the adolescent
population separately. Mechanistic queries of protective effects
against AIWG conferred by potent H1 antagonists have been
explored in several animal models (294, 297–302). The exact
mechanism underlying beneficial effects is unclear, however,
since adjunctive treatment with betahistine attenuates H1-NPY,
H1-AMPK, and H1-POMC signaling and increases H3-mediated
release of histamine. Further, in a rat model, betahistine was
shown to reverse the upregulated dopamine D2R expression
that typically results from olanzapine treatment, while not
interfering with AP effects at serotonergic receptors in brain
regions associated with AP efficacy (302). Thus, betahistine
may reduce the increased D2 sensitivity associated with AP
treatment but its potential interference with AP efficacy requires
thorough investigation.

Other drugs that have been tested to reduce AIWG, largely
in adults, include reboxantine, topiramate, and amantadine.
When combined with betahistine, reboxantine, a norepinephrine
reuptake inhibitor was shown to be effective in attenuating
olanzapine-induced weight gain (294) and appetite (24) in adults.
A meta-analysis of 10 studies of adjunctive topiramate (an
antiepileptic drug known to reduce appetite) for AIWG, found
topiramate mitigated weight gain in AP-treated adults (303).
In a medical record review, there was an overall reduction in
BMI for 47 child and adolescent psychiatric patients (mean
age = 13.4) receiving topiramate and another anticonvulsant,
zonisamide (304). Future efforts are needed to investigate
these anticonvulsant adjunctive treatments to combat AIWG in
pediatric patients.

The “natural,” over-the-counter supplement with the best
evidence to mitigate AIWG and metabolic effects is melatonin.
As discussed previously, melatonin plays a key role in energy
homeostasis as well as central and peripheral insulin action (305).

Reduction in melatonin production has been associated with
insulin resistance, glucose intolerance, and metabolic disease
(305). A recent meta-analysis of both adult and adolescent
studies supported clinical use of melatonin and melatonin
receptor agonists as adjuncts to mitigate AIWG and metabolic
effects (175). In adolescents (n = 38) diagnosed with bipolar
disorder receiving olanzapine and lithium combination therapy,
melatonin as compared to placebo attenuated increases in
cholesterol level and systolic blood pressure (306). In a smaller
cohort (n = 19, mean age ∼14), although not reaching
significance, melatonin as compared to placebo reduced weight
gain in the context of olanzapine and lithium combination
therapy (307). Because of its role in the regulation of circadian
rhythms (308), it is possible that positive metabolic effects may
be secondary to beneficial effects on sleep, which has been show
to play a role in obesity (309). Interestingly, co-administration
of melatonin appears more effective with risperidone and
quetiapine, agents with intermediate risk of AIWG, compared
to olanzapine and clozapine, agents with the highest risk (175).
If confirmed in larger studies, melatonin represents a relatively
benign pharmacological intervention for youth.

CLINICAL GUIDELINES FOR THE
ASSESSMENT, PREVENTION, AND
TREATMENT OF METABOLIC ADVERSE
EFFECTS OF ANTIPSYCHOTIC
MEDICATIONS IN YOUTH

Clinical practice guidelines are published by various groups,
organizations, and experts. We present an overview of those
guidelines most relevant to pediatric psychiatry, the AACAP
Practice Parameters for Schizophrenia (7) and Aggression
(14), supplemented with additional recommendations from
the American Psychiatric Association (70, 82) and other
adult sources (86, 278). The AACAP guidelines emphasize
a comprehensive baseline assessment and treatment plan
(Figure 3A) followed by responsible regular monitoring and
follow-up (Figure 3B).

If initial psychiatric evaluation prompts the consideration
of AP therapy, further baseline assessment should include
expanded history (personal and family history of diabetes,
hyperlipidemia, or previous response or adverse events associated
with APs), physical exam (vital signs including blood pressure
and heart rate, weight and BMI with determination of
pediatric growth chart percentiles, and waist circumferences) and
baseline laboratory measurements (fasting lipids, glucose and
hemoglobin A1C).

The risks, benefits and alternatives of an AP should
be assessed, weighed, and discussed (and informed consent
obtained) with the guardian(s) and child/adolescent if possible.
Even if an AP is a first-line treatment for the patient’s
diagnosis, behavioral treatments, psychosocial interventions, and
medication alternatives should be considered. Behavioral and
psychosocial approaches can improve outcomes and potentially
reduce AP burden. Expected duration of therapy may also
influence treatment planning, as it may be possible to minimize
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FIGURE 3 | Continued
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FIGURE 3 | (A,B) Clinical guideline and decision support for the assessment, prevention, and treatment of metabolic adverse effects of antipsychotic medications in

youth. Adapted from the American Academy of Child and Adolescent Psychiatry (7) and American Psychiatric Association and American Diabetes Association

Guidelines (70). (A) Initial Assessment and Plan. (B) Follow-up Assessment and Plan.
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long-term AP use by switching to a safer medication or non-
pharmacological treatment once an acute crisis has passed. If it
is determined that benefits of an antipsychotic outweigh risks,
the use of an AP with lower AIWG potential may be appropriate
depending on diagnostic and patient-specific factors.

Once an AP is selected, a standard “start low and go slow”
approach should be implemented. The administration of
multiple concomitant psychotropic medications should be
minimized, especially avoiding the concurrent use of multiple
APs. Education and counseling on healthy lifestyle choices as
preventive measures against weight gain and metabolic effects
should be provided. Formal referral to a dietician or healthy
lifestyle program may be warranted in higher risk or already
overweight patients. An AACAP Facts for Families Sheet on
“Weight Gain from Medication: Prevention and Management”
is available on the AACAP website at https://www.aacap.org/
AACAP/Families_and_Youth/Facts_for_Families/FFF-Guide/
Preventing-and-Managing-Medication-Related-Weight-094.
aspx.

Given the high risk of AIWG in youth taking APs,
frequent monitoring of AEs must occur. Monitoring for AIWG
in psychiatric patients using self-reported awareness is less
effective than objective measurement (310). AACAP advises
following the joint consensus recommendations of the American
Diabetes Association and the American Psychiatric Association
(Figure 3B) tomonitor BMI quarterly and blood pressure, fasting
blood glucose and fasting lipid profiles at 3 months and then
annually thereafter (70). Since BMI distribution varies over
typical development, BMI should be normed with respect to age
and translated to percentiles. Developmentally normed growth
charts can be found at the Center for Disease Control website
(www.cdc.gov/growthcharts), and/or percentile calculators can
be found online or in mobile app form. Despite strong guidelines,
a 2016 review estimates that 70% of patients taking APs in the
US fail to be screened or treated for metabolic AEs (311). The
continued need for AP treatment should be regularly evaluated,
as the appropriateness of long-term use will vary based on the
severity of symptoms, psychosocial environment, availability of
safer evidence-based options, and the natural course of the illness
being treated.

Consideration of weight management interventions and
increased regularity of blood glucose and lipid levels should be
implemented if AIWG exceeds 90th percentile BMI for age, or a
change occurs of 5 BMI units in patients already obese at baseline.
Other contributors to weight gain and metabolic syndrome
should be explored (312). A review and troubleshooting of
lifestyle interventions may be adequate to curb weight gain,
but in cases where lifestyle modification is insufficient, 2 main
strategies exist for pharmacological intervention. First, a switch
from an AP with higher to lower weight gain potential may
be appropriate with careful attention to the risk of psychiatric
relapse. The effectiveness of the current AP is an important
factor. As reviewed previously, an AP switch strategy is supported
by studies in both youth (264) and adults (313, 314); however,
methodological problems, including high incidence of drug
discontinuation and study attrition compounded by the use
of per protocol data analysis, confound many of these trials

and limit their application. Prior to switching, patients/families
should be informed of the potential risk of relapse. Gradual
cross-taper over several weeks is recommended to minimize
this risk. If a switch to a lower risk AP is not appropriate or
preferred, addition of an evidence-based adjunctive medication
is a reasonable option with relatively low risk. As discussed
above, metformin is currently the agent with the best support;
however, several promising leads and novel alternatives are being
developed and tested.

CONCLUSIONS AND FUTURE
DIRECTIONS

SGA prescription has become the standard of care for
children and adolescents with psychotic disorders as well as a
frequent therapeutic employed, both with FDA-approval and
off-label, for a range of psychiatric disorders. These APs have
proven to be effective to reduce psychiatric symptoms but
result in AEs, chiefly AIWG and metabolic effects. Despite
robust research efforts to reveal underlying mechanisms, it is
unclear how to maintain AP efficacy while reducing serious
side effects.

The pharmacological interventions that have been proposed
and investigated to date are limited. Interventions such
as anti-diabetic and anti-convulsant medications are not
biologically targeted treatments but rather repurposed based
on incidental observations of weight loss or metabolic
improvement when these medications are used for other
conditions. Thus, these serendipitous positive effects may simply
balance metabolic dysfunction rather than directly correct
the underlying lesion driving these AEs. Additionally, drugs
targeting obesity in the general population may be relevant
to AIWG. Promising drugs that warrant further testing in
AIWG include 5-HT2CR agonist lorcaserin (315), fat absorption
blocker orlistat (316), and melanin concentrating hormone
receptor 1 antagonists (317), as well as combination treatment of
naltrexone and bupropion to curb craving (318). While obesity
drugs are a Big Pharma priority, lack of mechanistic clarity
underlying obesity and frequent prohibitive AEs have stalled
progress. Future studies should take care to use high-quality
study designs, including randomized controlled trials with
intent-to-treat analysis, and provide effect sizes in addition
to significance measures to convey the clinical utility of
potential treatments.

Efforts to reduce AEs for pediatric patients undergoing SGA
treatment will require mechanistic studies that illuminate a
clearer, definitive conception of their biological underpinnings.
Progress in neuroendocrine, genetic, and microbiome related
mechanisms of AIWG lay a foundation for developing
interventions to combat unwanted AEs. Manipulation of energy
balance pathways in animal models can reveal potential avenues
for human translation. Large-scale genomic and microbiome
studies in both adult and pediatric patients can also yield
links to biology. Further understanding of a healthy gut
microbiome and effective manipulation strategies may expand
psychotherapeutic modalities. Epigenetic changes produced by
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AP exposure, exploration of which remains rudimentary, may
also contribute to compounding of genetic and environmental
risk. A mechanistic appreciation of metabolic AEs will not
only inform interventions to reduce or prevent side effects, but
ultimately drive the design of specific therapies that can target
psychiatric symptoms without inflicting harm.

The ever-expanding development of new technologies has
the potential to considerably advance both discovery and
intervention. Computational analysis of electronic medical
records and machine learning approaches will generate and
test new data-driven hypotheses. Similarly, wearable devices can
collect objective data, such as patterns of activity, speech, sleep
and biological metrics, that will facilitate clinician monitoring
and feed big data approaches. Wearable devices and mobile apps
can also be used to enhance patient engagement and motivation
with lifestyle interventions and improve treatment adherence.

These diverse approaches can eventually explain the large,
individual variability in risk for AIWG and metabolic effects

and fuel precision medicine algorithms. The precision psychiatry
model of the future seeks to incorporate demographic, genetic,

epigenetic, biomarker, psychosocial, and other information to
achieve a molecular diagnosis and a personalized risk assessment.
This approach can match the individual patient with a data-
driven treatment plan, thus boosting adherence, preventing AEs,
and optimizing patient outcomes.
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