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A B S T R A C T   

Staphylococcus aureus is one of the most prominent nosocomial, community and farm acquired bacterial in
fections among animals and human populations. The main purpose of our study was to identify and characterize 
antimicrobial resistance (AMR) among Staphylococcus aureus isolated from livestock, poultry and humans and to 
further identify the associated genes. Staphylococcus aureus isolates from human, bovine, swine and poultry were 
collected from different laboratories across the United States collected between 2003 and 2016. Antimicrobial 
susceptibility testing for 13 antimicrobials was performed and conventional PCR was used to detect the presence 
of the nuc gene, mec gene, and to detect int1 gene. Associations between the presence of mec and intl and specific 
AMR profiles were determined. Antimicrobial resistance was detected in all four host categories, with the highest 
overall rates found in swine, 100% resistant to tetracycline, 88% to penicillin and 64% clindamycin. The next 
highest was found among humans with 81.6% of isolates resistant to penicillin followed by 44% to clindamycin 
and 43% to erythromycin. Among beef cattle isolates, 63.2% were resistant to penicillin, 15.8% resistant to 
clindamycin and 15.8% to erythromycin. No isolates from any of the hosts were resistant to linezolid. Among 
poultry isolates, the highest AMR was found to clindamycin, followed by erythromycin and penicillin. Among 
dairy cattle, highest resistance was found to penicillin, followed by chloramphenicol and gentamicin. Dairy cattle 
were the only host category with isolates that are resistant to trimethoprim-sulfamethoxazole. Of the 220 isolates 
detected by latex agglutination, 217 were confirmed to be S. aureus via PCR of the nuc gene, 21.4% were positive 
for the mecA gene. Swine had the highest prevalence of the mecA gene, followed by humans, poultry and beef 
cattle. This study has demonstrated a high occurrence of penicillin resistance among all S. aureus isolates. There 
were differences observed between host species with tetracycline resistance being the highest among swine 
isolates and clindamycin being highest in poultry isolates. No detection of oxacillin resistance was found in 
isolates from dairy cattle but was found in isolates from all of the other host species, 94% of which contained the 
mecA gene.   

1. Introduction 

Emerging and existing antimicrobial drug resistance (AMR) is a 
major public health concern with global relevance to overall animal 
health, specifically livestock. AMR is often only detected following 
treatment failure, during which time the potential to spread disease to 
susceptible species is high. Although the development and spread of 
AMR is multifactorial, it has been shown that AMR definitively increases 
the severity of foodborne illness [1,2] and other clinical infections in 
people [3–5] as well as animals. 

Among all staphylococci, S. aureus is the most invasive species and an 

etiological agent of diverse human and animal maladies, including skin 
infections, abscesses, food poisoning, toxic shock syndrome, septicemia, 
endocarditis, and pneumonia [6–8]. Additionally, S. aureus is one of the 
most prominent causes of nosocomial- and community- acquired bac
terial infections worldwide [9–11] enhancing the need to determine if 
the AMR of isolates from humans and other species is significant. 

Penicillin was the first antibiotic mass produced for use in humans. 
Although initially it was highly effective for treatment of S. aureus in
fections, today over 90% of human S. aureus strains are resistant to this 
antibiotic. Antimicrobial resistance genes, including those genes 
encoding penicillin resistance, can be found on mobile genetic elements 
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such as plasmids, transposons, integrons [12,13]. Mobile genetic ele
ments (MGEs) constitute only 25% of the staphylococcal genome [14], 
and they encode many putative virulence factors and antimicrobial 
resistance mechanisms. Thus, MGEs have an important role in bacterial 
adaptability and survival [15]. 

The main objective of our study was to phenotypically and geno
typically identify AMR in Staphylococcus aureus isolates from livestock, 
poultry, livestock environment (swine and poultry) and humans. The 
findings from this study increases our understanding of host differences 
so surveillance for AMR bacteria in humans and food-producing animals 
could be improved. 

As per the U.S. Department of Health and Human Services [16], 
investing in advanced diagnostics and increasing surveillance for 
antibiotic-resistant zoonotic and animal pathogens is needed, especially 
as a means to strengthen detection and control of antibiotic resistance. 
This study directly addresses the White House AMR initiative by clas
sifying disease-causing Staphylococcus aureus infecting both humans and 
livestock according to their AMR patterns and molecular markers. The 
results of this study could be used to address dangerous AMR infections, 
including S. aureus, originating from livestock as well as from the human 
hospitals. 

In the past decades, indiscriminate use and abuse of existing anti
biotics has led to proliferation of antibiotic resistance in microbes [17] 
and consequently an increasing number of clinical failures in bacterial 
mediated diseases [18–20]. Several genetic carriers are responsible for 
the emergence and prevalence of AMR, such as plasmids and trans
posons. One way of detecting AMR is through detection and character
ization of integrons. Integrons are genetic elements that acquire and 
incorporate gene cassettes that code for antibiotic resistance. Integrons 
are linked to mobile DNA elements (i.e. transposons and/or conjugative 
plasmids) and are horizontally transmissible [18,21–24]. Integrons 
associated with AMR have been detected in many bacterial species, 
including methicillin-resistant S. aureus (MRSA) [25]. In addition to 
MRSA, methicillin susceptible S. aureus (MSSA) have been found to 
contain integrons and can be resistant to at least 6 other antibiotics [26]. 
MSSA strains are capable of acquiring the methicillin resistance coding 
mecA gene cassette from MRSA [27]. 

There are five different classes of integrons, each encoding a distinct 
integrase gene [28], class 1 integrons being the most common type in 
clinical isolates of the Enterobacteriaceae [29]. The S. aureus strains that 
carried class 1 integrons was highest in those found to be multi-drug 
resistant S. aureus (MDR-SA) [30]. They were found in 72.6% of 
S. aureus clinical isolates [31]. 

In a study of S. aureus isolated from US meat and poultry samples, 
96% were resistant to at least one antibiotic [32] and 78.4% of 
integrase-positive strains were multi-drug resistant. In the US, livestock- 
associated S. aureus can also be found in humans; likewise, human 
strains of S. aureus have also been found in US livestock [33]. Similar 
findings have been reported in the Netherlands [34]. This indicates a 
need to assess characteristics shared between S. aureus isolates derived 
from both humans and animals. Thus, understanding the host differ
ences of AMR as well as AMR gene carriage will be an essential step to 
effectively manage pathogen transmission, especially within enclosed 
farm environments and hospitals and thus, reduce the number of new 
cases among humans, livestock, and poultry. 

This work reveals an innovative way of improving detection of 
antibiotic-resistant zoonotic and animal pathogens nationwide. The di
versity of hosts from which S. aureus AMR strains can be isolated sug
gests that much can be learned to improve our current approaches to 
mitigate the spread of multi-drug resistant pathogens. 

2. Materials and methods 

Ethical approval: Live animals were not used for the study. 

2.1. Sample collection and culturing methods 

Staphylococcus aureus isolates from human, bovine, swine and 
poultry hosts were collected from various repository laboratories across 
the United States representing time period between 2003 and 2017. 
Three-hundred and four isolates were initially collected from the labo
ratories located in Colorado, Pennsylvania, Washington, Ohio and Iowa. 
Only 254 isolates indicated appropriate host metadata. Of those, 220 
isolates were identified as S. aureus by latex agglutination [35,36]. 
Single isolates were grown overnight in brain heart infusion broth at 35 
◦C. After overnight incubation, a 1 ml aliquot was removed, added to 1 
ml of glycerol and frozen at − 80 ◦C for further testing. 

Molecular amplification of the nuc, mecA and integron cassette genes 
using multiplex PCR: 

If an isolate was tested positive by latex agglutination, PCR of the nuc 
gene was used to confirm S. aureus [37]. PCRs were also conducted for 
the methicillin resistance gene (mec) [37] and for class 1 integron gene 
cassettes [22]. 

A portion of each S. aureus stock isolate was scraped into a separate 
microcentrifuge tube, thawed, and centrifuged for 5 min at 5000 xg. The 
supernatant was removed, and each pellet was resuspended in molecular 
grade water in a 1:3 ratio (10 μl cell pellet suspended in 30 μl water). A 
total of 5 μL of each washed, resuspended isolate was used as template 
and added to the following multiplex PCR master mix reaction to detect 
nuc gene. A total of 5 μL of each resuspended isolate was used as tem
plate in the following multiplex PCR mastermix for a 25 μl total reaction 
volume: 12.5 μl 2× Qiagen Multiplex PCR master mix (Qiagen, Valencia, 
CA), 2.0 μM primer mix (containing 2 μM of each primer: nuc forward 
primer sequence: 5′- AGC CAA GCC TTG ACG AAC TAA − 3′; nuc reverse 
primer sequence: 5′- GCG ATT GAT GGT GAT ACG GTT - 3′; mecA for
ward primer sequence: 5′- GTA GAA ATG ACT GAA CGT CCG ATA A −
3′; mecA reverse primer sequence: 5′- CCA ATT CCA CAT TGT TTC GGT 
CTA A - 3′; integron forward primer sequence: 5′- GGC ATC CAA GCA 
GCA AGC -3′; integron reverse primer sequence: 5′- AAG CAG ACT TGA 
CCT GAT - 3′), 2.5 μl Q-Solution (Qiagen, Valencia, CA), and 2.5 μl 
molecular grade water. Each 25 μl reaction was overlaid with 30 μl Chill 
Out wax (Bio-Rad, Hercules, CA) to prevent evaporation and placed into 
an MJ Research 60 place thermal cycler (Bio-Rad). Thermal cycling 
conditions consisted of an initial incubation at 95 ◦C for 10 min to 
activate the polymerase, followed by 35 cycles of 94 ◦C for 30 s, 56 ◦C for 
2 min, 72 ◦C for 1.5 min, and a final extension incubation at 72 ◦C for 10 
min. Following amplification, samples were run on a 1.5% agarose gel. 
Samples containing 279 bp products were recorded as nuc gene positive, 
samples containing 310 bp were recorded as mecA gene positive, and 
samples containing 1000, 1200, or 1600 bp amplicons were recorded as 
containing one or more class I integron gene cassette. 

Two positive control samples for class I integrons with sizes of 1,000, 
1,200, and 1,600 bp were included (5 pg total) with each PCR [22]. 
Staphylococcus aureus ATCC 25923 was included with each PCR as a 
positive control for the nuc gene product. 

2.2. Antimicrobial susceptibility testing 

To demonstrate and characterize antimicrobial resistance, antibiotic 
susceptibility testing (AST) was conducted on the 220 isolates by the 
Kirby Bauer (disk diffusion) method according to the Clinical Laboratory 
Standards Institute (CLSI) guidelines [38]. Isolates were plated on 
Mueller Hinton II agar. Antibiotics tested included ceftaroline (CPT-30), 
chloramphenicol (C-30), ciprofloxacin (CIP-5), clindamycin (CC-2), 
erythromycin (E-15), gentamicin (GM-10), linezolid (LZD-30), cefoxitin 
(FOX-30; surrogate for oxacillin per CLSI), penicillin G (P-10), rifampin 
(RA-5), tetracycline (TE-30) and sulfamethoxazole/ trimethoprim (SXT- 
23.75/1.25). Quality control was performed using a S. aureus positive 
control for beta-lactamase resistance (ATCC 29213), a S. aureus positive 
control for methicillin resistance (ATCC 43300), and a general S. aureus 
AST control for Mueller Hinton agar standardization (ATCC 25923). 
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Antimicrobial resistance patterns were deduced using NARMS (National 
Antimicrobial Resistance Monitoring System) panels and breakpoints 
selected according to CLSI recommendations. 

In addition, reduced susceptibility to vancomycin was determined by 
plating three 10 μl drops of a standardized concentration of bacteria (0.5 
McFarland), on brain heart infusion agar containing 6 μg/ml vanco
mycin and counting colonies. Disk approximation testing or D-zone re
actions (erythromycin-inducible clindamycin resistance) were also 
recorded. This was conducted by placing an erythromycin and clinda
mycin disk 15 mm apart on an agar plate after isolate plating. All 
erythromycin resistant and clindamycin sensitive isolates were sub
jected to D-zone test using erythromycin (15 μg) and clindamycin (2 μg) 
according to Clinical and Laboratory Standards Institute [39]. If there 
was flattening of the zone of inhibition between the 2 disks and the zone 
resembles the letter “D,” the test result was interpreted as positive for 
induction of clindamycin resistance. Enterococcus faecalis (ATCC 51299) 
was included as a positive control for vancomycin resistance. Reduced 
susceptibility to vancomycin was recorded if >1 colony per 10 μl drop 
was observed following 24 h incubation at 37 ◦C. 

2.3. Statistical analysis 

The data on AMR results of each antimicrobial were classified into 
susceptible, intermediate and resistant. The AMR data was considered as 
a binary variable (resistance or susceptible) for each drug tested. Those 
isolates which demonstrated an intermediate resistance to antibiotics 
were considered resistant for analyses. All data was visually represented 
using a heat map to depict the host variations on the patterns. The AST 
data on intermediate results was combined with resistance pattern to 
evaluate host differences using a logistic regression analysis for the 
comparisons with appropriate number of observations. All analyses 
were performed using SAS v9.4 (SAS Inc., Cary, NC). 

3. Results 

3.1. Antimicrobial resistance profiles of Staphylococcus aureus across 
host species 

Seventy five percent of all S. aureus isolates were resistant to at least 
one antimicrobial drug and 40% were resistant to at least three anti
microbial drugs. The percentage of isolates found to be resistant to at 
least one antimicrobial drug among various hosts were: 68% of beef 
cattle, 42% of dairy cattle, 86% of human isolates, 64% of poultry, and 
100% of swine isolates. Antimicrobial resistance was detected in all 5 
host categories, with the highest overall rates found in swine, 100% 
resistance to tetracycline, 88% to penicillin and 64% clindamycin. The 

next highest was found among humans with 81.6% of isolates resistant 
to penicillin followed by 44% to clindamycin and 43% to erythromycin. 
Among beef cattle isolates, 63.2% were resistant to penicillin, 15.8% 
resistant to clindamycin and 15.8% to erythromycin. None of the iso
lates from any of the hosts were resistant to linezolid. Among poultry 
isolates, the highest AMR was found to clindamycin in 40% of the iso
lates, 35.6% to erythromycin, and 33.3% to penicillin. Among dairy 
cattle, 39.4% of isolates were resistant to penicillin, followed by 9.1% 
resistance to chloramphenicol and 9.1% to gentamicin. Dairy cattle were 
the only host category with isolates that are resistant to trimethoprim- 
sulfamethoxazole. 

The percentage of S. aureus isolates determined to be resistant to 
various antimicrobials via susceptibility testing are depicted by host 
category in Fig. 1. The isolates with intermediate resistance were com
bined with resistant isolates. 

Oxacillin resistance was found among 22.7% of total S. aureus iso
lates, highest among swine (36%), followed by humans (31.6%), poultry 
(20%) and beef cattle (5.3%). None of the dairy cattle isolates were 
resistant to oxacillin. 

3.2. mecA gene prevalence 

Latex agglutination identified 220 isolates serologically as S. aureus. 
Fig. 2 depicted AMR patterns of S. aureus with characterization of genes 
by host category. Briefly, the isolates were distributed in the five host 
categories: beef cows (n = 19), dairy cows (n = 33), poultry (n = 45), 
swine (n = 25) and humans (n = 98). Of the 220 isolates, 217 were 
confirmed to be S. aureus via PCR of the nuc gene. The three isolates 
negative for the nuc gene but serologically positive for S. aureus were 
included in the study as described by Hoegh et al. (2014) where nuc- 
negative clinical isolates of S. aureus were described [40]. 

Of the 220 S. aureus isolates tested, 21.4% (47/220) were positive for 
the mecA gene. Among the host categories studied, swine had the highest 
prevalence of the mecA gene, with 32% (8/25) of the samples. Humans 
had the second highest prevalence at 31% (30/98), followed by poultry 
at 18% (8/45) and beef cattle at 5% (1/19). There was no detection of 
the mecA gene in the dairy cow isolates. There was one isolate each from 
poultry, swine and human that were resistant to cefoxitin (surrogate for 
oxacillin) and did not carry the mecA gene. 

3.3. Integron detection 

None of the S. aureus isolates contained class 1 integrons, hence no 
further analysis was performed. 

Fig. 1. Antimicrobial resistance of S. aureus by host category.  
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Fig. 2. Antimicrobial resistance patterns of S. aureus with gene characterization by host category.  

Table 1 
Likelihood of clindamycin, erythromycin and penicillin resistance among host species.  

Comparison of host species Clindamycin Erythromycin Penicillin 

OR 95% CI P-value OR 95% CI P-value OR 95% CI P-value 

Beef Cattle vs Dairy Cattle 2.91 0.44 19.20 0.27 2.91 0.44 19.20 0.27 2.64 0.82 8.45 0.10 
Beef Cattle vs Poultry 0.28 0.07 1.11 0.07 0.34 0.09 1.35 0.12 3.43 1.12 10.50 0.031* 
Swine vs Dairy Cattle 27.55 5.31 142.95 <0.001* 14.31 2.80 73.08 0.0014* 11.28 2.80 45.47 0.0007* 
Swine vs Beef Cattle 9.48 2.16 41.61 0.0029* 4.92 1.14 21.23 0.033* 4.28 0.93 19.65 0.06 
Swine vs Poultry 2.67 0.97 7.33 0.057 1.67 0.62 4.52 0.31 14.67 3.78 56.93 0.0001* 
Swine vs Human 2.27 0.92 5.64 0.077 1.23 0.51 2.97 0.64 1.65 0.45 6.12 0.45 
Poultry vs Dairy Cattle 10.33 2.20 48.63 0.0031* 8.55 1.81 40.47 0.0068* 0.77 0.30 1.96 0.58 
Human vs Dairy Cattle 12.12 2.75 53.45 0.001* 11.62 2.63 51.30 0.0012* 6.84 2.88 16.25 <0.001* 
Human vs Beef Cattle 4.17 1.14 15.24 0.031* 4.00 1.09 14.62 0.04* 2.59 0.90 7.51 0.08 
Human vs Poultry 1.17 0.57 2.40 0.66 1.36 0.66 2.82 0.41 8.89 3.98 19.85 <0.001* 

OR = Odds Ratio. 
CI = Confidence Interval. 

* Significant at p-value<0.05 
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3.4. Association of AMR profiles and host differences 

The statistical analyses to find differences between host species was 
performed for penicillin, clindamycin and erythromycin as there were 
not adequate number of isolates for analyses that were resistant to the 
other antimicrobials (Table 1). 

The isolates from swine had a significantly higher likelihood of 
penicillin, clindamycin and erythromycin resistance individually when 
compared to isolates from dairy cattle. Additionally, swine isolates were 
more likely to have clindamycin and erythromycin resistance when 
compared to isolates from beef cattle. There were no statistically sig
nificant differences detected in resistance to the three antimicrobials 
between dairy and beef cattle isolates. 

Penicillin resistance was significantly higher in swine, beef cattle and 
human isolates when compared to poultry isolates. However, clinda
mycin and erythromycin resistance were significantly higher in poultry 
isolates when compared to dairy cattle isolates. 

Human isolates were more likely to have clindamycin and erythro
mycin resistance when compared to dairy and beef cattle isolates, and 
significantly higher number of penicillin resistant isolates when 
compared to dairy cattle and poultry isolates. 

4. Discussion 

Antimicrobial resistance in bacterial infections continues to be a 
high-priority health concern in humans as well as animals. In humans, 
there is a high cost burden associated with treating infections caused by 
AMR bacteria due to longer hospitalization periods and high costs 
associated with complex treatment plans [41]. Staphylococcus aureus is 
prevalent in human and animal populations and is known to have 
developed resistance to different antimicrobials. Humans are the pri
mary reservoir for S. aureus and serve as a hub for host switching events, 
allowing S. aureus to successfully infect multiple species [42–45]. 
Confirmed cases of interspecies transmission between pigs, humans and 
cattle, emphasize the importance of understanding host specific anti
microbial resistance patterns for S. aureus to study transmission to ani
mal and public health [44,46]. This study aimed to identify the 
prevalence of MRSA isolates and the antimicrobial resistance profiles of 
S. aureus isolates collected from humans and major food animal groups. 

In the current study, swine and human S. aureus isolates had the 
highest detection of the mecA gene, a finding that was also reported by 
previous studies [45,47–50]. This study suggests that MRSA was more 
likely to be isolated from swine populations when compared to poultry 
or cattle among S. aureus collected for laboratory analysis. The preva
lence of methicillin resistance in swine isolates poses a potential risk for 
public health. In 2005, a swine-adapted lineage of MRSA was detected 
that could infect humans while having a low pathologic potential in 
swine [51]. Another study found a near 100% rate of nasal MRSA car
riage in Dutch slaughter pigs, posing a potential risk for pig to human 
transmission [52]. 

The host groups with the lowest mecA detection in this study were 
dairy and beef cattle isolates, with no dairy cow isolates positive for the 
mecA gene. S. aureus is a common cause of contagious mastitis infections 
in dairy cows and can be difficult to control with antimicrobials alone. 
Hygiene protocols to prevent contagious mastitis transmission are used 
extensively in the dairy industry and could possibly explain the low rates 
in dairy cattle isolates [53–55]. This study’s low detection of methicillin 
resistance in Staphylococcus aureus isolates is similar to a previous study 
reporting the prevalence in Canadian dairy cows at 0.5% in 2008 [56]. 

All 220 S. aureus isolates in this study were susceptible to linezolid, 
including MRSA isolates. Linezolid has been explored as a more effective 
treatment for MRSA when compared to vancomycin, but linezolid- 
resistance has been reported in MRSA isolates in human hospitals 
[57–59]. So far, the majority of linezolid-resistance has been observed in 
human isolates of S. aureus, but low rates of resistance in swine has been 
noted by other studies. Similar to this study, no resistance has been 

reported for cattle or chicken isolates [60–62]. 
This study found human, dairy cattle and beef cattle isolates to were 

more likely to be resistant to penicillin. Numerous studies have 
confirmed high rates of penicillin resistance in S. aureus isolates due to 
the development of the enzyme penicillinase/ β-lactamase causing 
inactivation of beta-lactam drugs [63–66]. When comparing dairy and 
beef cattle isolates, resistance profiles differ in that beef cattle isolates 
were resistant to erythromycin while no resistant dairy cattle isolates 
were detected. Dairy cattle isolates were the only isolates to show 
resistance to ceftaroline and trimethoprim-sulfamethoxazole. Trimeth
oprim-sulfamethoxazole resistance in dairy cattle isolates has been 
demonstrated to be found in milk products by Abdeen et al. (2020) [66] 
and low-level resistance to ceftaroline in the isolates from this study was 
consistent with results obtained by Abdel-Moein et al. (2019) [60]. 

One hundred percent of the swine isolates in this study were resistant 
to tetracyclines, which supports the findings of Dierikx et al. (2016) [52] 
and Conceição et al. (2017) [67]. This resistance to tetracycline is 
characteristic of swine isolates of S. aureus and can be linked back to a 
host-switching event from humans to pigs [44]. It could also be linked to 
the tetracyclines used as feed additives in swine operations. The tetra
cycline resistance gene tet(M) has been described to be universally 
prevalent among livestock-associated MRSA but absent from human- 
isolates. Tetracyclines are also used at higher amounts in farmed ani
mals when compared against human medicine, which could explain the 
persistent detection of this resistance [46]. Resistance in swine isolates 
was detected against penicillin, clindamycin and erythromycin and 
supporting previous studies [52,67]. 

Antimicrobial resistance has been attributed to horizontal gene 
transfer of AMR genes via plasmids, transposons and integrons [68]. 
Integrons have been detected in S. aureus isolates from poultry litter, 
human hospitals, and bovine milk, however; this study detected no 
integrons in the 220 isolates, including MRSA isolates [69–71]. 

This study was performed on isolates collected from multiple states 
over the course of 14 years (2003–2017). The sample matrices were not 
included in the data that was received from any of the laboratories nor 
was the geographical locations of the sample origins. These limitations 
of non-availability of enough metadata have the possibility to impact the 
detection of integrons, as decreasing identification rates of integrons 
have been noted over time [70]. The isolates were mostly representative 
of the laboratory submission of clinical as well as surveillance samples. 

From the data gathered in this study, it is clear that S. aureus isolates 
do not rely specifically on integrons for AMR gene transfer, as our study 
observed antimicrobial resistance in the absence of integron detection. 

5. Conclusions 

This study has demonstrated a high occurrence of penicillin resis
tance in Staphylococcus aureus isolates collected from all of the host 
species. There were differences observed between host species with 
tetracycline resistance being the highest among swine isolates and 
clindamycin being highest in poultry isolates. No detection of oxacillin 
resistance was found in isolates from dairy cattle but was found in iso
lates from all of the other host species. Ninety four percent of the 
S. aureus isolates that were resistant to oxacillin contained the mecA 
gene. Drug resistant S. aureus is medically significant because there is a 
narrow range of other treatment options in animals or humans. 
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