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We aimed to develop a noninvasive radiomics approach to reveal the m6A methylation
status and predict survival outcomes and therapeutic responses in patients. A total of 25
m6A regulators were selected for further analysis, we confirmed that expression level and
genomic mutations rate of m6A regulators were significantly different between cancer and
normal tissues. Besides, we constructed methylation modification models and explored
the immune infiltration and biological pathway alteration among different models. The m6A
subtypes identified in this study can effectively predict the clinical outcome of bladder
cancer (including m6AClusters, geneClusters, and m6Ascore models). In addition, we
observed that immune response markers such as PD1 and CTLA4 were significantly
corelated with the m6Ascore. Subsequently, a total of 98 obtained digital images were
processed to capture the image signature and construct image prediction models based
on the m6Ascore classification using a radiomics algorithm. We constructed seven
signature radiogenomics models to reveal the m6A methylation status, and the model
achieved an area under curve (AUC) degree of 0.887 and 0.762 for the training and test
datasets, respectively. The presented radiogenomics models, a noninvasive prediction
approach that combined the radiomics signatures and genomics characteristics,
displayed satisfactory effective performance for predicting survival outcomes and
therapeutic responses of patients. In the future, more interdisciplinary fields concerning
the combination of medicine and electronics remains to be explored.

Keywords: m6A, radiogenomics, contrast-enhanced computed tomography, immunotherapy, mutation burden
INTRODUCTION

The whole genome distribution of N6-Methyladenosine (m6A) was not revealed until 2012; it is the
most common epigenetic modification of the eukaryotic transcriptome, affecting almost every
process of RNA metabolism, including translation, folding, splicing, degradation, and export (1–5).
m6A RNA methylation is a reversible and dynamic procedure, which is catalyzed by the m6A
org October 2021 | Volume 12 | Article 7226421
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methyltransferase complex consisting of methyltransferases
(writers), including VIRMA, WTAP, METTL3/14/15/16,
RBM15, RBM15B, and ZC3H13. Among the m6A RNA
methyltransferase complexes, METTL3 is the key component
(6, 7). The m6A modification is removed by demethylases
(erasers), including ALKBH5 and FTO (8, 9). Fourteen binding
proteins act as “readers,” which specifically recognize the m6A
modification and produce m6A modified RNA, including
ELAVL1, FMR1, HNRNPA2B1, HNRNPC, IGF2BP1/2/3,
LRPPRC, RBMX, YTHDC1/2, and YTHDF1/2/3 (10, 11). An
increasing number of studies have found that m6A modification
is involved in a variety of biological processes, including
embryonic development disorders, tumor development, and
immune cell infiltration (12–14). Notably, the imbalance of
m6A modification is significantly associated with the
occurrence and progression of various cancers, such as bladder
cancer, pancreatic cancer, hepatocellular carcinoma, and
colorectal cancer (15–18). In brief, m6A modification plays a
role in carcinogenesis and tumor inhibition in diverse scenarios.

Recent progress in genetics has allowed for extensive
genomics and transcriptome analyses to reveal the potential
molecular mechanism underlying bladder cancer. Radiomics,
another new technology, has enabled the identification of
significant imaging signatures that could not be captured by
the unaided eye and the exploitation of the potential
characteristics of digital imaging. Radiomics can transform
biomedical images into mineable quantitative characteristics,
and then conduct subsequent analyses to improve the effective
performance of preoperative expectation, tumor classification,
prognosis prediction, and treatment response (19–21).
Radiogenomics is an emerging cross-disciplinary study
between radiomics and genomics, which is the simplest
method used to extract high-level genomic information. In
recent years, it has been extended to connect radiomics with
broader biological characteristics, such as proteomics and
metabolomics (22, 23). Previous studies have explored tumor
gene expression, tumor mutation burden, methylation pattern,
and subtypes using non-invasive digital imaging features (24–
26). In addition, a combination of radiomics and genomics can
contribute to improving the efficiency of clinical prediction in
some cancers (27, 28). Thus, radiogenomics may help us
understand the molecular phenotype of various cancers and
provide real-time monitoring for the clinical management of
individual patients.

Bladder cancer is the sixth most common cancer and the ninth
most common cause of cancer death among males worldwide.; a
highly malignant urogenital tumor characterized by hidden onset
and easy misdiagnosis (29). Distinct proportions of genome
subclones lead to cellular and molecular heterogeneity in this
type of tumor, which affects both clinical outcomes and
therapeutic responses (30, 31). Cystoscopy, as a traditional
diagnostic technology, is restricted in realizing the purpose of
individualized medicine because of the inability to identify
genome subclones, and it is an invasive method. Thus,
increasing studies have begun to focus on image processing to
help predict the clinical outcomes of Bca patients. Xu X. et al.
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radiomics in bladder cancer from 2000 to 2021, described the
current blueprint of this field for researches, and comprehensively
explained its pitfalls, challenges and opportunities (32). Xu S. et al.
also combined with diffusion-weighted imaging (DWI) radiomics
features and clinical data of transurethral resection to improve the
sensitive and accuracy for the detection of muscle invasive bladder
cancer (33). Therefore, it is imperative to develop a new non-
invasive technology to help clinicians make correct judgement and
reduce unnecessary invasive examinations.

In this study, we aimed to develop a noninvasive radiomics
approach to reveal the m6A methylation status and predict
survival outcomes of Bca patients. We collected the Genomic
data from 716 cases of bladder cancer, and then construct the
methylation modification pattern by unsupervised clustering of
m6A regulators expression level. we investigated the expression
of m6A regulators rather than m6A methylation itself, as the
biological function of m6A methylation will alter based on
genomic context. Three distinct m6A methylatin modification
patterns with different tumor microenviroment were identified.
In the final analysis of genomics, we identified m6A-related
prognostic genes, and constructed the m6Ascore system based
on the expression levels of these genes to quantify the m6A
methylation status of individual samples. As for the radiomics, a
total of 120 samples had complete digital images were obtained
from the Cancer Imaging Archive (TCIA) database. We used a
radiomics algorithm to obtain the image signature and
constructed image prediction models based on the m6Ascore
system classification. In brief, our findings revealed the critical
role of m6A RNA methylation in bladder cancer, and we
proposed a convenient method to help diagnose and predict
the survival outcomes of patients with bladder cancer.
METHODS

Data Acquisition of Bladder
Cancer Samples
The transcriptome data and adjusted clinical information of
bladder cancer samples were retrospectively acquired from the
Gene Expression Omnibus (GEO) and The Cancer Genome
Atlas (TCGA) databases. A total of 716 samples were selected for
analysis, including those from the Cancer Genome Atlas
Urothelial Bladder Carcinoma (TCGA-BLCA) database (n =
408) and GSE32894 dataset (n = 308). Transcriptome data and
genomic mutation data of the TCGA-BLCA were obtained from
the UCSC Xena database. The m6A regulators were collected
based on several articles, including nine methyltransferases
(writers; VIRMA, WTAP, METTL3/14/15/16, RBM15,
RBM15B, and ZC3H13), two demethylases (erasers; ALKBH5
and FTO), and 14 binding proteins (readers; ELAVL1, FMR1,
HNRNPA2B1, HNRNPC, IGF2BP1/2/3, LRPPRC, RBMX,
YTHDC1/2, YTHDF1/2/3) (34–37). The effective clinical
immunotherapy performance and digital imaging information
of bladder cancer were obtained from the Cancer Imaging
Archive (TCIA) database.
October 2021 | Volume 12 | Article 722642
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Unsupervised Clustering of Twenty-Five
m6A Regulators
To determine the distinct m6A modification patterns mediated
by m6A regulators, unsupervised consensus clustering analysis
was performed based on the expression level of the 21 identified
m6A regulators (4 identified m6A regulators were excluded due
to missing GSE32894 transcriptome data). Principal component
analysis (PCA) was performed to determine whether each
subtype was relatively independent of the others. The R
package “conensusClusterPlus” was utilized to determine the
cluster count, and 1000 repetitions and pltem=0.8 were executed
to verify the stability of the subtype. The R package “gene set
variation analysis (GSVA)” was then used to assess any
differences in biological pathways among subtypes (38). The
identified biological features were obtained from the Kyoto
Encyclopedia of Genes and Genomes (KEGG) database (39).

Immune Cell Infiltration and Tumor
Mutation Burden Estimation
Single-sample gene set enrichment analysis (ssGSEA) is designed
for analysis of a single sample that could not be processed using
standard GSEA (40). The relative abundance of immune cells in
bladder cancer was estimated by performing ssGSEA based on
the expression levels of immune cell-related genes (41). The
deconvolution algorithm “cibersort” was then employed to assess
the relative abundance of 22 infiltration immune cells and the
“ESTIMATE” algorithm was applied to calculate the stromal and
immune abundance based on the RNA-seq data of bladder
cancer. We also used the “MutSigCV” algorithm to select
oncogenes with a higher mutation frequency than the
background. The mutation landscapes of oncogenes and m6A
regulators in TCGA-BLCA cohort were displayed using the R
package “maftools.”

Selection of m6A Prognostic Related
Genes Between Diverse Subtypes
To select the m6A related genes, the empirical Bayesian function
of the R package “limma” was employed to select the differentially
expressed genes (DEGs) among diverse subtypes, which we
termed m6A related genes. The adjusted r value was 0.001. We
then adopted univariate Cox regression analysis to extract the
m6A prognostic related genes for further analysis. To prove that
m6A prognostic-related genes (MPRGs) play an important role in
tumor progression, we classified tumor samples into diverse gene
clusters by employing an unsupervised clustering method
according to the MPRGs expression levels.

Construction of m6Ascore Models
The above models were only based on the patient population
and cannot accurately predict the m6A methylation status of an
individual patient. Therefore, we designed an m6Ascore to
assess the m6A modification patterns of individual samples.
Based on the m6A prognostic-related gene expression level, we
constructed the m6Ascore models by performing PCA. This
method aimed to apply the concept of dimension reduction to
transform multiple indicators into a few comprehensive
Frontiers in Immunology | www.frontiersin.org 3
indicators, whose advantage is to maintain the most
important features and remove noise and insignificant
features to improve data processing speed. Both principal
components 1 and 2 were extracted to act as m6Ascores, the
method was similar to GGI (42).

m6Ascore = S(PC1i + PC2i),

where i is the m6A prognostic-related gene expression level.

Identification of Radiomics Signatures
From Digital Imaging
A total of 120 image samples matched with TCGA-BLCA samples
were selected from TCIA dataset, 22 samples were excluded
according to specific exclusion criteria (inadequate image quality
or inability of the imaging surgeon to identify the lesion area). The
study eventually included 98 samples. The constructed m6Ascore
model as a classifier, we extracted imaging feature from these
digital images for established radiogenomic predictionmodels. We
randomly selected 67 cases as the training dataset (46/21 =
positive/negative), and the remaining 31 cases were used as an
independent test dataset (21/10 = positive/negative). 98 patients
were selected for a repeat region of interest (ROI) segmentation at
30 days following the initial segmentation, and this was performed
by the same radiologist and an additional radiologist (6 years of
experience in abdominal imaging). Then, the feature matrix was
normalized.We then applied several dimensionality reduction and
machine learning methods for imaging genomics model building
and used the best area under the curve (AUC) value in the test
group as the selection criterion to choose the best approach to
construct the final model. Among them, Z-Score and Minmax
normalization methods were used to normalize the data; Principal
components analysis (PCA) and Pearson correlation coefficient
(PCC) methods were used to pre-process the features; ANOVA,
Kruskal-Wallis (KW), and Recursive feature elimination (RFE)
were used to select the best features. A variety of machine learning
classifiers, including SVM, LDA, logistic regression, LR-Lasso,
Adaboost, Naive Bayes, and Random Forest, were used to build
the radiogenomics classifier model. A total of more than a
thousand models were constructed and one of them was
selected as the optimal model.

Model performance was evaluated using receiver operating
characteristic (ROC) curve analysis. AUC quantification was
calculated. Accuracy, sensitivity, specificity, positive predictive
value (PPV), and negative predictive value (NPV) were also
calculated at the maximum Yorden index value of the cut-off
values. We also estimated the 95% confidence intervals using
1000 samples. The above procedures were implemented using
FeAture Explorer Pro (FAEPro, V 0.3.7) for Python (3.7.6).

Statistical Analysis
All statistical analyses were performed using the R software
package (version 4.0.3). Differential gene expression analysis
between the diverse cohorts was performed using the R package
“limma.” The correlation coefficients between the m6Ascore and
the infiltration of immune cells were evaluated using Spearman
coefficient analysis. The Kaplan-Meier method was used to plot
October 2021 | Volume 12 | Article 722642
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survival curves of patients with bladder cancer. AUC was used to
evaluate the effective performance of constructed models using R
package “pROC.” The R package “RCircos” was used to determine
the location of the m6A regulators and their circular sequences
along the chromosomes (43).
RESULTS

Landscape of m6A Regulators in
Bladder Cancer
A total of 25 m6A regulators were collected for further analysis,
including nine methyltransferases (VIRMA, WTAP, METTL3/
14/15/16, RBM15, RBM15B, and ZC3H13), two demethylases
(ALKBH5 and FTO), and 14 binding proteins (ELAVL1, FMR1,
HNRNPA2B1, HNRNPC, IGF2BP1/2/3, LRPPRC, RBMX,
YTHDC1/2, YTHDF1/2/3). We first investigated the incidence
of somatic mutations and copy number variations (CNVs) of 25
m6A regulators in bladder cancer and then summarized the gene
expression distribution of m6A regulators in different samples.
We found that m6A regulators were altered in 114 of 411
samples (a mutation frequency of 27.74%). The waterfall plot
Frontiers in Immunology | www.frontiersin.org 4
showed that KIAA1429 and METTL3 presented with the highest
mutation frequency, mainly for missense mutations, nonsense
mutations, and multiple hits, whereas METTL16 did not present
as having any mutation in bladder cancer samples (Figure 1A).
CNV frequency was found to be common in 25 m6A regulators
of bladder cancer. We found that KIAA1429, ZC3H13, and
RBM15B presented the highest CNV frequency (Figure 1B),
and ZC3H13 exhibited a loss in copy number, which
corresponded to the expression level of ZC3H13 in tumor
samples. The location of CNV alteration of m6A regulators on
23 chromosomes is represented in a circular diagram
(Figure 1C). We found that the expression levels of m6A
regulators were significantly different between cancer and
normal tissues (Figure 1D). The correlation and prognostic
effectiveness are displayed in Figures 1E, F. We found that
m6A regulators showed a significant correlation not only in the
same function categories but also in diverse function categories,
among writers, erasers, and binding proteins. The above analyses
revealed a significant difference in expression alterations and
genomic mutations in m6A regulators between cancer and
normal tissues, which suggested that the m6A regulators
played a vital role in tumor development.
A B C

D E F

FIGURE 1 | Landscape of genetic mutation and transcriptome alteration of m6A regulators in bladder cancer. (A) 114 of 411 samples with bladder cancer
experienced genetic mutations of 25 m6a regulators, with a frequency of 27.74. the presentation of each variant types was presented by the bagplots right barplots.
Each cohort represented an individual sample. (B) The frequency of copy number variation in GSE32894 were presented. Green dot represented deletion frequency
and the red dot represented amplification frequency. The number represented the variation frequency. (C) The location of CNV alteration of m6A regulators on 23
chromosomes were presented by circular diagram. (D) The expression level of 25 m6A regulators between tumor and normal samples. Red represented tumor and
blue represented normal. The asterisks represented the statistical p value (*P < 0.05; **P < 0.01; ***P < 0.001). (E, F) The correlation among m6a regulators, red,
orange and gray represented erasers, readers and writer respectively. The size of circle represented the effect of each regulator on clinical outcomes.
October 2021 | Volume 12 | Article 722642
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m6AClusters Mediated by m6A Regulators
The clinical and transcriptome data of the TCGA-BLCA cohorts
and GSE32894 were integrated into one meta-cohort for further
analysis. The prognostic value of 21 m6A regulators was
demonstrated using Kaplan–Meier (K-M) survival curves
(Supplementary Figure 1). The results displayed that m6A
regulators were significantly correlated with patients’ clinical
outcome. Then, unsupervised consensus clustering analysis was
used to classify patients into diverse subtypes based on the
expression level of the m6A regulators. Three m6AClusters
were identified, including 208 samples in m6ACluster A, 308
samples in m6ACluster B, and 114 samples in m6ACluster C.
Among these m6AClusters, m6ACluster B presented a
significant survival advantage, while m6ACluster C exhibited
the worst clinical outcome in the meta-cohort (Figure 2A). The
PCA results also proved that the three subtypes were relatively
independent of each other (Figure 2B). The heatmap shows the
differential expression levels of m6A regulators among
m6AClusters (Figure 2C). The expression of IGF2BP1/2/3 was
significantly reduced in m6ACluster B, which revealed that
IGFBP1/2/3 may play a vital role in cancer development.
GSVA was employed to investigate the biological process
alteration among the three m6AClusters. The result revealed
that m6ACluster A was characterized by immune activation,
which enriched in toll like receptor signaling pathway, nod like
receptor signaling pathway, T cell receptor signaling pathway
and chemokine signaling pathway. m6ACluster B was
characterized by alteration of metabolism, and m6ACluster C
was significantly enriched in the cell proliferation pathway
(Figures 2D–F).

Selection of m6A Prognostic
Related Genes (MPRGs)
Between Diverse Subtypes
Although the identified m6AClusters can effectively distinguish
the clinical outcomes of patients with bladder cancer, the potential
genetic mutations and transcriptome alterations in these subtypes
are not clear. We investigated the potential m6A related genes
among the diverse m6AClusters to reflect their potential effective
mechanism in bladder cancer. The R package “limma” was used to
select the DEGs among diverse m6AClusters, including 229 genes.
(Supplementary Figure 2). Gene ontology (GO) enrichment
analysis of these m6A related DEGs, which is summarized in
Supplementary Figure 2, revealed that the enrichment of
biological processes is significantly associated with cell
proliferation and energy metabolism. These results further
indicated that m6A related genes were significantly associated
with tumor development. A total of 213 MPRGs were selected
using univariate Cox regression analysis (Table S1). We applied
an unsupervised clustering method to classify patients into three
subtypes: gene cluster A, gene cluster B, and gene cluster C
(Figure 3A). The K-M survival method demonstrated a
significant difference among these gene subtypes; GeneCluster C
presented a significant survival advantage, while GeneCluster B
had the worst clinical outcome in the meta-cohort (Figure 3B).
The expression levels of twenty-five m6A regulators in distinct
Frontiers in Immunology | www.frontiersin.org 5
gene clusters were compared, and it was observed that the
expression levels of twenty-five m6A regulators were
significantly different among each gene cluster (Figure 3E).
Furthermore, the heatmap also showed significant difference
among each gene clusters in the entire transcriptome, suggesting
that genomic subgroup can distinguish patients from distinct m6A
methylation status. (Figure 3D).

Construction of m6Ascore Models
Although the results of this study can predict the survival status
of Bca patients, these investigations were based on the patient
population and hence cannot accurately predict the m6A
methylation status of an individual patient. Therefore, we
constructed the m6Ascore models by performing PCA
according to the m6A prognostic-related gene expression
levels, which could qualify the m6A methylation status of
individual patients with bladder cancer. The m6Ascore as well
as PCA1 and PCA2 score were displayed in Table S2. The K-M
survival method demonstrated a significant difference between
the m6Ascore groups; patients with a high m6Ascore exhibited a
significant survival advantage, while the patients with low
m6Ascore had the worst clinical outcomes in the meta-cohort
(Figure 3C). At the same time, patients were classified into
different cohorts according to their clinical characteristics (age, N
stage, clinical stage, grade, T stage and M stage), and it was found
that the m6Ascore exhibited good predictive performance in the
different clinical cohorts, including patients categorized by age
and cancer stage (Figure 4). The bar plots and box plots showed
that m6Ascore could help distinguish between different clinical
pathologies. The patients with a low m6Ascore presented with a
higher degree of malignancy in tumor samples, which further
verified that the m6Ascore had good predictive performance,
predicting not only the clinical outcomes but also the clinical
traits (Supplementary Figure 3).

Immune Cell Infiltration in m6AClusters
To explore the immune cell infiltration alteration underlying the
three diverse m6AClusters, a box plot of the relative content of
immune cells among the distinct subtypes was plotted by
performing ssGSEA (Figure 5A). The results demonstrated
that almost all immune cells were reduction in m6ACluster B,
and increased in m6ACluster A and m6ACluster C. The immune
cell infiltration was also assessed using the “ESTIMATE”
algorism, which was consistent with the results of ssGESA that
the immune score was the lowest in the m6ACluster B.
(Figure 5D). Then stromal purity (StromalScore) and tumor
cell purity (ESTIMATEScore) in the three m6AClusters were
also evaluated, which displayed that StromalScore and
ESTIMATEScore were increased in m6ACluster A and
m6ACluster C, decrease in m6ACluster B (Figures 5E, F).

Prognostic Value of m6Ascore
To visualize the relationship between the above models, the
clinical pathology and clinical outcomes of the Sankey diagram
were plotted (Figure 6A and Suplementary Figure 4). The
Kruskal-Wallis test was used to better reveal the correlation
October 2021 | Volume 12 | Article 722642
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between the above models and the m6AScore. Figure 5B shows
that m6ACluster B presented the highest median m6Ascore, and
Figure 5C shows that GeneCluster B presented the lowest
median m6Ascore. m6ACluster B and GeneCluster B exhibited
a significant survival advantage and poor clinical outcomes,
respectively, which is consistent with the prediction made
using the m6Ascore. Thus, these results confirmed that
m6Ascore could qualify the m6A methylation status of
individual patients with bladder cancer.

We further analyzed the relationship between m6Ascore and
tumor mutational burden (TMB). The scatter diagram showed
that m6Ascore was significantly associated with the TMB
(Figure 6D), and the waterfall plot also demonstrated that
patients with low m6Ascore presented more extensive TMB
than did the patients with high m6Ascore (Figures 6B, C).
K-M analysis revealed that the patients with H-TMB exhibited
a significant survival advantage, and the patients with L-TMB
had the worst clinical outcomes (Figure 6E). To further
accurately qualify the clinical status of patients with bladder
cancer, we combined TMB and m6Ascore to predict the clinical
outcomes of each patient. K-M analysis showed that patients
with H-TMB and high m6Ascore exhibited a significant survival
advantage, and patients with L-TMB and low m6Ascore had the
worst clinical outcomes (Figure 6F).
Frontiers in Immunology | www.frontiersin.org 7
Besides, we observed that immune response markers such as
PD1 and CTLA4 were significantly associated with the m6Ascore,
while patients with high m6Ascore presented lower expression
levels of PD1 and CTLA4 (Supplementary Figures 3C, D). So, we
investigated whether the m6Ascore could predict a patients’
response to immunotherapy treatment. Our results showed that
the m6Ascore predicts that patients, who express CTLA4+/PD1-,
respond to immunotherapy (Supplementary Figure 3E).

Construction of Optimal
Radiomics Signatures
A total of more than a thousand models had been constructed via
combination of several methods from each step, and the detail
information of this models were displayed in Table S3. Using the
classifier AUC values of the test group as the selection criteria for
the best model, we can find that the best predictive efficacy of the
imaging genomics model was achieved by a machine learning
approach built with the Z-SCORE method for data
normalization, the PCA method for feature pre-processing, the
KWmethod for dimensionality reduction, and application of the
LASSO-constrained logistic regression method. A comparison of
the AUC values for different data pre-processing and modeling
methods is shown in Figures 7A–D. Seven features were
identified as optimal for radiomics, and the process is shown
A B

D E

C

FIGURE 3 | Construction of geneClusters and m6Ascore models. (A) Consensus matrix displayed three major clusters. (B, C) Kaplan-Meier analyses for the
geneClusters and m6Ascore models based on 716 patients with bladder represented significant difference, Log-rank p value <0.001. (D) The heatmap represented
significant difference in transcriptome aspect among distinct geneClusters. The N stage, M stage, T stage, tumor stage, tumor grade, gender, age, survival status,
m6Acluster and geneClusters were utilized as patients’ annotations. Red/blue represented high/low expression of regulators. (E) The expression level of 21 m6A
regulators among geneClusters. blue represented geneCluster A; yellow represented geneCluster B and red represented geneCluster C. The asterisks represented
the statistical p value (*P < 0.05; **P < 0.01; ***P < 0.001).
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in the Supplementary Word. Based on these seven features, we
found that the model obtained the highest AUC value for the
validation dataset. At this point, the model achieved an AUC
degree of 0.887 and 0.762 for the training and test datasets,
respectively. The ROC curves are shown in Figure 7F. The
selected features are shown in Figure 7E.

The calculation formula of the radiomics model can be seen in
follow: Radscore=0.040*PCA_Feature_2 - 0.103*PCA_Feature_8
+ 0.176*PCA_Feature_19 + 0.175*PCA_Feature_20 - 0.183*PCA_
Feature_23 + 0.297*PCA_Feature_34 - 0.315*PCA_Feature_57.
The characteristics of PCA_feature was displayed in Table S4.
DISCUSSION

With the constant advancement in gene sequencing technology
which focuses on the function and influence of reversible RNA
Frontiers in Immunology | www.frontiersin.org 8
modification, the concept of epigenetic transcriptomics has
gradually gained the attention of researchers. Due to the
complexity of m6A level detection (m6A MeRIP and m6A-seq),
several studies have reported alternative approaches to identify the
genetic mutation of m6A regulators, and evaluated the
relationship between the m6A methylation modification pattern
and cancer diseases. Abnormal levels of m6A regulators have
exhibited a predictive benefit in many types of cancer, such as
bladder cancer (44, 45), renal clear cell carcinoma (46), prostate
cancer (47, 48), and breast cancer (49). Xie et al. reported that the
interaction between IGF2BP1 and circPTPRA suppresses bladder
cancer progression (50). Yang et al. found that METTL3 and
CDCP1 are upregulated in bladder cancer and are associated with
the progression of bladder cancer (51). Jin et al. explored that m6A
writer METTL3 and eraser ALKBH5 regulator cell adhesion via
embellishing ITGA6 expression in bladder cancer (44). Xie et al.
demonstrated that METTL3/YTHDF2 m6A axis degraded the
FIGURE 4 | Kaplan-Meier analyses for the m6Ascore models based on the distinct clinical pathology. ns > 0.05
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mRNA of tumor suppressors SETD7 and KLF4, contributing to
the progression of bladder cancer (52). The differential expression
of regulators involved in diverse tumor types provided us with a
clue that the maladjustment of m6A regulators at the tissue level is
complicated. Therefore, further studies on m6A regulators are
required to explore the regulatory mechanism underlying m6A
RNA modification in bladder cancer.

In this study, we classified bladder cancer samples into three
distinct m6A methylation clusters, which can effectively predict
the clinical outcome of bladder cancer, namely m6ACluster A,
m6ACluster B, and m6ACluster C. We observed significant
differences in immunocytes among the three m6A methylation
clusters. Although the m6ACluster A and m6Acluster C were
characterized by immune activation, which represented by high
infiltration of activated CD8 T cells, activated B cells, nature
killer cells, revealed a hot immune microenviroment, the
activation of the stromal cells prevented the penetration of
immune cells into the parenchyma of tumors. Therefore, it was
no surprised that m6ACluster A and m6ACluster C has a poor
clinical prognosis than m6Acluster B.

Beside, DEGs among thses three m6AClusters were regarded
as m6A methylation-related genes and might be indirectly or
directly alter m6A methylation status. Then we selected m6A
prognostic-related DEGs by univariate Cox regression analysis.
Three transcriptome clusters were constructed according to the
m6A prognostic-related factors, which were significantly
Frontiers in Immunology | www.frontiersin.org 9
correlated with clinical outcomes. The transcriptome clusters
further confirmed that these genes were related to m6A
methylation status and the progression of bladder cancer.

Considering the intertumoral heterogeneity, we further
constructed a quantitative model termed “m6Ascore” to qualify
the m6A methylation status of individual samples. in order to
accurately guide the treatment of individual patients. Further
analysis found that m6Ascore not only can be used to predict the
clinical prognosis of patients, but also can accurately distinguish
between different clinical pathlogys. In addition, immune response
markers such as PD1 and CTLA4 were significantly related to the
m6Ascore, which indicated that m6Ascore had the ability to assess
the effective performance of immunotherapy treatment. Moreover,
when combined with TMB, m6Ascore has more accurate prediction
performance. Therefore, these results verified m6A models may be
used in clinical evaluations and targeted therapeutic schedules.

However, genomic prediction models are cumbersome and
invasive, which are not conductive to auxiliary diagnosis by
clinicians. Thus, we attempt to find a convenient approach to
predict patients’ genetic subtype for making the appropriate
clinical diagnosis. In the era of biological information digitization,
radiomics analysis has been used to capture quantitative signatures
from digital images that were related to the clinical pathology or
molecular characteristics of patients (53). In this context, an
increasing number of studies have focused on presenting genomic
information on bladder cancer via digital imaging. For example,Wu
E F
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FIGURE 5 | The immune cell infiltration characteristics and the relationship between m6Ascore and m6A subtypes. (A) The content of each tumor microenvironment
infiltrating cells in three m6Aclusters. The asterisks represented the statistical p value (*P < 0.05; **P < 0.01; ***P < 0.001; ns > 0.05). (B, C) The correlation between
m6Ascore and m6A subtypes were evaluated by Kruskal-Waillis test. The thick line of box represented the median value. (D–F) The immuneScore, stromalScore and
ESTIMATEScore of these m6Aclusters were plotted.
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FIGURE 6 | The relationship of m6Ascore and tumor burden mutation. (A). The SamKey diagram of m6A methylation modification in groups with distinct
m6Aclusters, geneClusters, m6Ascore, and clinical outcomes. (B, C) The landscape of tumor somatic mutation in TCGA-BLCA displayed by low (B) and high
m6Ascore (C). Each column represented individual patients. The upper barplot displayed tumor mutation burden. (D) The correlation among m6Ascore, tumor
burden mutation and geneClusters, blue, yellow and red point represents geneCluster A, B, C respectively. (E, F) the Kaplan-Meier analyses for The TMB subtypes
and TMB-m6Ascore subtypes represented significant difference, Log-rank p value <0.001.
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FIGURE 7 | (A) The effect on the AUC values of the radiomics model when different methods of normalizing the imaging data are used. (B) Effect of the choice of
feature reduction method on the AUC value of the model. (C) Impact of feature selection methods on classifier AUC values during radiogenomics model building.
(D) Comparison of different machine learning modelling approaches on classifier performance in the test set, including SVM, LDA, RF, LR, LRlassp, AB, DT, NB,
among which LRLasso achieved best performance. (E) Weighting coefficients of the extracted features in the final radiogenomics model. (F) Results of the AUC
values of the best classifier model in the training and test groups.
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et al. constructed a radiomics nomogram for preoperative
prediction of lymph node metastasis in bladder cancer (54).
Zheng et al. evaluated the muscular invasiveness of bladder
cancer by performing radiomics analysis, and the AUC was as
high as 0.913 (55). In this study, AUC values as the selection criteria
for identifying the best model, several methods were conducted in
this researched to extract the imaging features and construct
radiogenomic models. It was found that the best predictive
efficacy of the imaging genomics model was achieved by a
machine learning approach built with the Z-SCORE method for
data normalization, then the PCA method for feature pre-
processing, subsequently, the KW method for dimensionality
reduction, finally application of the LASSO-constrained logistic
regression method for building radiogenomics classifier models.
Seven features were identified as optimal for radiogenomic model.
In brief, we constructed a non-invasive radiogenomic model to
predict the m6a methylation status of individual patients, which
may be beneficial for clinician to carry out individualized medical
treatment, such as the combination of targeting m6A regulators and
immunotherapy. Subsequent studies will further explore how to
alter the m6a status of patients to improve the clinical prognosis.
CONCLUSION

The presented radiogenomics model, a noninvasive prediction
approach that combined the radiomics signatures and genomics
characteristics, displayed satisfactory effective performance for
predicting survival outcomes and therapeutic responses of
patients with bladder cancer. More interdisciplinary studies
that combine medicine and electronic fields need to be explored.
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