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This study evaluated the depth of anesthesia (DoA) index using artificial neural networks (ANN) which is performed as the
modeling technique. Totally 63-patient data is addressed, for both modeling and testing of 17 and 46 patients, respectively. The
empirical mode decomposition (EMD) is utilized to purify between the electroencephalography (EEG) signal and the noise. The
filtered EEG signal is subsequently extracted to achieve a sample entropy index by every 5-second signal. Then, it is combined with
other mean values of vital signs, that is, electromyography (EMG), heart rate (HR), pulse, systolic blood pressure (SBP), diastolic
blood pressure (DBP), and signal quality index (SQI) to evaluate the DoA index as the input. The 5 doctor scores are averaged
to obtain an output index. The mean absolute error (MAE) is utilized as the performance evaluation. 10-fold cross-validation is
performed in order to generalize the model. The ANN model is compared with the bispectral index (BIS). The results show that
the ANN is able to produce lower MAE than BIS. For the correlation coefficient, ANN also has higher value than BIS tested on the
46-patient testing data. Sensitivity analysis and cross-validation method are applied in advance. The results state that EMG has the
most effecting parameter, significantly.

1. Introduction

The general anesthetic drug occurs in the brain [1]. Due to
that very decisive reason, it would be reasonable to monitor
the brain activity by examining the EEG to assess the DoA
[2]. Several studies have been addressed to evaluate the
relationship between the EEG and the anesthesia [3–5]. EEG
continuous signals state the complicate nonlinearity and
progressive properties [6, 7] and are frequently interfered by
other signals, like the electric power and elctrosurgical knives.
These issues highly possibly create severe difficulty [8].

Several vital signs were used for theDoA analysis. A study
concluded the power spectral analysis of heart rate variability
may be a practical use for measuring DoA [9]. Horiguchi

and Nishikawa evaluated studies of anesthesia based on
monitoring the heart rate with the drug propofol [10, 11].
Beside the heart rate consideration, PRST (i.e., systolic blood
pressure, heart rate, sweating, and tears), is also utilized as the
standard measurement of the autonomic reaction in clinical
practice [12]. An investigation is also conducted related to the
heart rate and blood pressure to the lumbar epidural [13].

Apart from the ECG signal processing, there are several
cases which were studied linking the EMG and DoA, even
though a study concluded that there was no EMG effect to
cerebral state monitor (CSM) or BIS index in children [14].
However, a case indicating a strong correlation between EMG
andCSM in an ICU patient was conducted by Boroojeny [15].
The consciousness monitor machine, index of consciousness
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(IoC), was introduced by the Morpheus Medical Company.
The IoC machine, estimating the anesthesia index by using
the fuzzy inference algorithm, also shows the EMG bar and
burst suppression ration (BSR). A study by Revuelta et al.
which emphasizes the evidence of a rapid change in the IoC,
accompanied by a rise of EMG, is likely due to the response
of the augmented muscle activity [16]. Another commercial
product, by GEHealthcare EntropyModule (formerly Datex-
Ohmeda M-Entropy), provides the state entropy (SE), from
frequency range of 0.8Hz to 32Hz, and response entropy
(RE), including the facial EMG, has frequency range from
0.8Hz to 47Hz. For this machine, the EMG is evaluated as
a signal rather than an artifact [17].

In some cases, when the surgery does not require full
general anesthesia, some sedative drugs are utilized to reduce
the cognitive activity [19]. Having the previously stated
considerations, it is highly probable that EEG signal is
considered in addition to other signals that are related to
the cardiovascular system such as muscle movement and
other measures investigated by previous studies to assist the
medical doctor to interpret the DoA. Therefore, this study
aims at investigating the DoA system based on collection
of signals such as sample entropy of the continuous EEG
signal, mean values of heart rate, both systolic and diastolic
blood pressure, pulse, signal quality index (SQI), and EMG.
This study also evaluates the sensitivity analysis in order to
investigate the partial effect by the inputs to the output.

2. Materials and Methods

This research is approved by Institutional Review Board
(IRB) and written informed consent was obtained for the
permission by the patients. In this study, the data was
collected from the patients in surgical operation room at
the National Taiwan University Hospital (NTUH) in Taipei,
Taiwan. The total 63-patient data were analyzed. All of
the patients had general anesthesia. Physiological monitor
equipment, Phillips IntelliVue MP60 utilized by BIS Quatro
Sensor module, was coupled to a laptop as a data-logging
system. The logged data, for the input of the modeling,
are the mean data of the heart rate, pulse, blood pressure,
and signal quality index (SQI), having sampling rate 0.2Hz.
In order to evaluate the model and compared to the BIS
signal, whose sampling rate is also 0.2Hz, the raw 125Hz
EEG signal is filtered and analyzed each 5 seconds, 625
points, to have a sample entropy (SE) index. In this case,
the output data was produced by 5 medical doctors who
concluded the anesthesia level graphically after evaluating
the vital signs. This 5-doctor output was first digitized [20]
and resampled at 0.2Hz, as well as BIS frequency and other
input parameters, eventually being an averaged value. The
whole system is shown in Figure 1.The data is analyzed using
several algorithms coded in MATLAB language (MathWork
Inc., Natick, Massachusetts, USA).

2.1. Empirical Mode Decomposition. Empirical mode decom-
position filtering algorithm, proposed by Huang et al., has
been used for the studies related to the signal filtering
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Figure 1: Depth of anesthesia modeling flowchart.

problem [21, 22].This penetratingmethod, in order to extract
the correct information from the continuous signal, should
be performed in advance. EMD working principle is by
decomposing the time-series signal into a specific finite sum
of the components based on the considerable frequency
ranges, called intrinsic mode functions (IMFs). Consider
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frequency domain, will be merged to achieve the filtered
signal. According to our previous study conducted by Huang
et al., the IMF 2 to IMF 6 are the most important IMFs
due to the frequency ranges appearing between 0.8Hz and
32Hz, which are the EEG’s frequencies [23]. By Figure 2 the
5-second EMD-filtered EEG can be seen.

2.2. Sample Entropy. The entropy is originally known as
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Figure 2: Five-second EMD-filtered EEG.
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Finally the function of sample entropy can be calculated
as follows:
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where 𝑚 is the space dimension, 𝑟 is standard deviation,
and 𝑁 is the length of the time series. This study uses the
parameters of 𝑚 and 𝑟 which are 2 and 0.15, respectively,
according to the previous study by Costa et al. [26].

2.3. Artificial Neural Networks. Artificial neural network is a
structure developed particularly to imitate the human think-
ing. Enormous highly interconnected processing elements
operating parallel work for the network. This steers ANN to
be used in many areas [27]. The neural network is trained
to learn some patterns of the input-output modeling system.
In training, a backpropagation neural network (BPNN) is
one of the most well-known methods working by evaluating
the error model backwardly. Figure 3 shows how the BPPNN
works, starting from structure of the system, normaliza-
tion, weight initialization, feed-forwarding, computation of

the error, backpropagation, updating the weights, and testing
the fixed model.

For data preparation, all the alphabetical data should
be altered to numerical value. Normalizing data should be
performed for range from 0 to 1 due to the nature of the log
sigmoid transfer function used in the model. All normalized
data and weights are included in the feed-forward step to be
evaluated by the log sigmoid system.

2.4. Sensitivity Analysis. In order to evaluate the behavior
of the inputs and the outputs, sensitivity analysis is the
appropriate consideration [28]. The partial derivative of the
networks’ input for the output of the sensitivity analysis is
utilized in this study by leave-one out method. The following
algorithms are as follows:

(i) First of all, normalize all the input and output corre-
sponding to their own specific parameters, zero as the
minimum value and one as the maximum value.

(ii) Average all the input variables and simulate them to
get the output as the target of the comparison value.

(iii) Sequentially and partially, change each input from 0
to 1, by 0.1 increments, and others keep being constant
to examine the mean-squared error (MSE) of the
actual output and target differences and analyze how
sensitive the variable for the system.

(iv) Lastly, make the ranking of each input variables based
on the error produced by the model. The more the
MSE, the more sensitive the input for the model.

3. Results

In this study, backpropagation artificial neural network is
utilized. The single hidden layer, 10 hidden nodes, 10,000
epochs, small learning rate of 0.005, and 0.15 of momentum
term are applied to model the depth of anesthesia. This
relatively low learning rate is compensated by the enormous
epoch. In order to get the precise model, computational time
consideration, due to the epoch number, is ignored. Totally
63-patient data is addressed, for both modeling and testing,
17 and 46 patients, respectively. In order to evaluate more
details about the relationship between the inputs and the
output variable, the 10-fold cross-validation and sensitivity
analysis are performed. The averaged result from each fold
will create a singlemodel to determine the DoA.Thismethod
is also used to evaluate the sensitivity analysis by averaging
the errors from each fold to decide the rank of the parameter
affecting the output.

For the training result, how the ANNmodel in approach-
ing the doctor’s index and its MSE are shown in Figures 4(a)
and 4(b). The model is relatively better in dealing with the
unconscious levels, indicated by the lower error, than facing
the conscious stage. For its performance and validationmodel
result, it can be seen by Figures 9 and 10, respectively. In order
to calculate the ROC curve and its AUC, as shown in Figure 5,
the threshold between conscious and unconscious has to be
decided. By referring to a previous study by Gajraj et al. [18],
48.8 is defined as the BIS mean value for the consciousness
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Figure 3: Artificial neural network flowchart.
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Figure 4: ANN training result. (a) ANN training performance compared to the doctor decision and (b) the squared-error between themodel
and the doctor’s consciousness index of 16 patients.

level, in range of 1 to 94, while the conscious mean value is
89.5, by the lowest conscious valuewhich is 70 and the highest
which is 97.

In this study, several thresholds are defined based on
the mean and the standard deviation of the training data.
The combination of those two parameters, started by the
lowest threshold value, 37.02, producing AUC is 0.72, and

the highest threshold value, 70.2, achieving 0.96 of AUC.
In this case, the sum of the mean and double standard
deviation, which is the highest threshold in order to dis-
tinguish between conscious and unconscious, is relatively
similar to the lowest conscious value defined by Gajraj et
al.; it has 0.2% error exceeding their study’s thresholding
value.
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Figure 6: A clean patient signal: (a) BIS signal and ANN performance in comparison with doctor’s index; (b) ANN error; (c) BIS error.
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Figure 7: A noisy patient signal: (a) BIS signal and ANN performance in comparison with doctor’s index; (b) ANN error; (c) BIS error
(magenta squares indicate the lost signal).

The intensity of 46-case testing ANN absolute error is
more closely distributed to zero than the BIS’ error. The
correlation coefficient of the ANN is also better than BIS
result, by evaluating its distribution; ANN has 0.66 ± 0.21;
meanwhile BIS has 0.48 ± 0.36, shown by Figure 11. For the
noise problem, Figures 6 and 7 reveal how the ANN and BIS
deal with the clean and noisy signal. Figure 7 in particular
shows that, for conditions in noisy environment, the BIS
signal has noise contamination due to the electrosurgical
knife which cause the signal drops to negative values, marked
by the magenta squares. However, in this case, the ANN
model provides a more stable and noise-free behavior.

Another way to evaluate the performance of the testing
models is by calculating the area under the curve (AUC) of
the receiver operating characteristics (ROC). Figure 8 shows
that the threshold is fixed by 48.8 by using Gajraj study’s
reference. The threshold procedure is taken by finding each
mean testing patient data and added with its various standard
deviations. Higher threshold will produce bigger AUC of the
ROC curve.The figures for the several thresholds can be seen
from Figures 12–14.

In purpose of evaluating the generalization the data
distribution between the modeling data and the testing data,

the 10-fold cross-validation is performed. Each single training
and validation data is switched; then themodeling stage starts
to train the newmodel.This model will evaluate the fixed 46-
case testing data. This algorithm is also applied to evaluate
how general the model in interpreting the testing by utilizing
the sensitivity analysis.

For the total 46 patients, the cross-validation method
utilized to evaluate the distribution of the data can be seen by
the standard deviation in Table 1. First each fold evaluates the
testing data in order to produceMAE and standard deviation.
The total MAE only are then averaged to form a total system
mean and the standard deviation, marked by “∗.” By having
this result, that is, 6.61 ± 0.15, the data is relatively similar to
analyze these 46 patients. In order to make the model more
robust, the ensemble system, based on several studies [29, 30],
has been addressed to the whole folds, producing MAE of
6.54 with 6.69 of standard deviation, before concluding the
index. BIS has 12.31 of MAE and 13.06 of standard deviation,
meaning that the ANN has better ability to predict the DoA
than BIS.

The sensitivity evaluation is eventually utilized to evaluate
the ranking of the input variables, in order to investigate the
relationship to the output. Here, the 10-fold cross-validation
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Table 1: 46-patient testing result from each fold.

Fold MAE ± SD
1 6.45 ± 6.61
2 6.6 ± 6.68
3 6.56 ± 6.59
4 6.79 ± 6.89
5 6.64 ± 6.75
6 6.51 ± 6.68
7 6.58 ± 6.70
8 6.94 ± 6.69
9 6.59 ± 6.69
10 6.5 ± 6.8
Mean ± SD 6.61 ± 0.15∗

Note: “∗” means average and standard deviation of MAE.

evaluates the error from each variable into every single
fold; it can be seen by Figures 15 and 16. The error is
then averaged to evaluate the parameters, identically to the
previous mechanism, shown by Figure 17. It concludes that
the EMG signal has the highest influence followed by EEG,
heart rate,mean diastolic blood pressure, signal quality index,
mean systolic blood pressure, and pulse.The EMG, which has
very confident index which is in the first rank, has significant
difference compared to the second rank, EEG (𝑃 value <
0.05). However, for the following rankings, EEG, heart rate,
mean diastolic blood pressure, and SQI, second to fourth, are
not significantly different (𝑃 value > 0.05). For the fifth, mean
systolic blood pressure has significant different with the SQI,
that is, in the fourth position. Pulse has the less influence to
the depth of anesthesia, even though it does not have rapid
difference with the systolic blood pressure.
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Figure 9: Modeling performance error curve.

4. Discussion and Conclusions

Deciding the index of the anesthesia consciousness in surgical
procedure is extremely critical. In practical, a number of
parameters should be considered. On the other hand, in
the operating theater while performing and evaluating the
anesthesia consciousness index, noise is highly likely to
interfere with the decisive signal enlightening the index. The
classification method should be able to precisely recognize
the patients being either awake or sleep.

The EEG signal is decomposed by EMD method and
recomposed by the frequency of 0.8Hz to 32Hz, the IMF 2
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to IMF 6, to purify from the noise. This filtered signal is
then extracted to evaluate the sample entropy index. This
signal is resampled at 0.2Hz in order for the BIS sampling
frequency. The sample entropy of the EEG is then combined
with every 5-second mean signal, EMG, heart rate, pulse,
systolic and diastolic blood pressure, and signal quality index
to evaluate the DoA index as the input and the doctor index
as the output of the ANN modeling. The receiver operating
characteristics (ROC) curve and the 10-fold cross-validation
are performed in advance to evaluate the model and for the
sensitivity analysis.

There are some perspectives for considering or filtering
the muscle activity. The EMG signal is commonly classified
as the artifact effect for the EEG data logging cases due to
the muscle activities [31–33]. However, in another study by
Viertiö-Oja et al. [17], the EMG is decided as a signal, instead
of an artifact. In advance, Boroojeny showed a case which
marks a strong correlation between EMG and CSM in an
ICU patient [15] and a study by Revuelta et al. highlights
the significant change in the IoC, by a rise of EMG which is

possibly due to the feedback of the enhanced muscle activity
[16].

By this study, totally 63-patient data is addressed, for
both modeling and testing, 17 and 46 patients, respectively.
In order to evaluate patients being either awake or sleep, the
threshold is decided by a study conducted by Gajraj et al. [18].
The noisy result by the ANN will often affect the AUC of
ROC curve result due to the threshold level. However when
facing the noise environment in the operation room, the
ANN results still providemore robust results compared to the
BIS. The evaluation results also show that the ANN is better
than BIS in dealing with anaesthesia by most of the cases. For
parameter evaluation, sensitivity analysis is performed. The
EMG is themost affecting parameters followed by EEG, heart
rate, diastolic blood pressure, SQI, systolic blood pressure,
and pulse.

This study is relatively novel and successful in eval-
uating the consciousness level to overcome some surgi-
cal procedures utilizing some drugs subsequently dimin-
ishing the effect of the EEG signal, commonly utilized
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Figure 13: Testing model AUC distribution by the sum of mean and 1.5 of standard deviation consciousness threshold.

as a parameter for the depth of anesthesia (DoA). Fur-
thermore, this study provides information on the muscle
activity, EMG, that in some cases are considered as the
noise, significantly affecting the result to characterize the
consciousness level. The results are supported by previous
studies conducted by Boroojeny [15] and Viertiö-Oja et al.
[17].

Appendix

The performance result of the modeling can be seen in
Figure 9 showing the performance of the model, both the
training and the validation data. On this picture it can be
seen that the error converged in the early epoch. The model
converging error becomes saturated and slightly changes after
the around thousand epochs. A ten-thousand-epochmodel is
decided as the stopping criterion.The validationmodel result
and the error also can be seen in Figures 10(a) and 10(b).
The 46-case testing data of absolute error and the correlation

coefficient comparing BIS and ANN with the doctor’s index
is shown in Figure 11. Several defined thresholds to evaluate
the performance of the models are shown by Figures 12–14.
The information about the marginal error of each single fold
to the patient testing dataset based on the color map can be
seen in Figure 15. The color-map distributes from the blue-
based color to the red-based color.The closer thematrix color
to the red-based color is, the higher the error is generated.

To form the single cross-validation model, each index
created by each fold, for totally 10-fold, is then averaged,
shown in Figure 16. These models have different training and
the validation dataset. This algorithm also aims at producing
the result of the independent testing data more generally. It
works by considering the whole folds, which were trained,
before averaging them into an index.

Figure 17(a) shows the error response when each param-
eter partially changes to each single fold. The higher error
means the more sensitive the parameter to the model.
Figure 17(b) shows the averaged error of the total folds.
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of mivacurium-induced neuromuscular block on Bispectral
Index and Cerebral State Index in children under propofol
anesthesia—a prospective randomized clinical trial,” Paediatric
Anaesthesia, vol. 20, no. 8, pp. 697–703, 2010.

[15] S. B. Boroojeny, “The effect of facial muscle contraction of the
cerebral state index in an ICU patient: a case report,” Cases
Journal, vol. 20, pp. 697–703, 2010.

[16] M. Revuelta, P. Paniagua, J. M. Campos et al., “Validation of
the index of consciousness during sevoflurane and remifentanil
anaesthesia: a comparison with the bispectral index and the
cerebral state index,” British Journal of Anaesthesia, vol. 101, no.
5, pp. 653–658, 2008.

[17] H. Viertiö-Oja, V. Maja, M. Särkelä et al., “Description of the
Entropy algorithm as applied in theDatex-Ohmeda S/5 Entropy
module,”Acta Anaesthesiologica Scandinavica, vol. 48, no. 2, pp.
154–161, 2004.

[18] R. J. Gajraj, M. Doi, H. Mantzaridis, and G. N. C. Kenny,
“Comparison of bispectral EEG analysis and auditory evoked
potentials for monitoring depth of anaesthesia during propofol
anaesthesia,” British Journal of Anaesthesia, vol. 82, no. 5, pp.
672–678, 1999.

[19] F. Ferrarelli, M. Massimini, S. Sarasso et al., “Breakdown in
cortical effective connectivity during midazolam-induced loss
of consciousness,” Proceedings of the National Academy of
Sciences of the United States of America, vol. 107, no. 6, pp. 2681–
2686, 2010.

[20] G. J. A. Jiang, S.-Z. Fan, M. F. Abbod et al., “Sample entropy
analysis of EEG signals via artificial neural networks to model
patients’ consciousness level based on anesthesiologists expe-
rience,” BioMed Research International, vol. 2015, Article ID
343478, 8 pages, 2015.

[21] N. E. Huang, Z. Shen, S. R. Long et al., “The empirical mode
decomposition and the Hubert spectrum for nonlinear and
non-stationary time series analysis,” Proceedings of the Royal
Society A: Mathematical, Physical and Engineering Sciences, vol.
454, no. 1971, pp. 903–995, 1998.

[22] Z. Wu and N. E. Huang, “On the filtering properties of the
empirical mode decomposition,” Advances in Adaptive Data
Analysis, vol. 2, no. 4, pp. 397–414, 2010.

[23] J.-R. Huang, S.-Z. Fan, M. F. Abbod, K.-K. Jen, J.-F. Wu,
and J.-S. Shieh, “Application of multivariate empirical mode
decomposition and sample entropy in EEG signals via artificial
neural networks for interpreting depth of anesthesia,” Entropy,
vol. 15, no. 9, pp. 3325–3339, 2013.

[24] J. S. Richman and J. R. Moorman, “Physiological time-series
analysis using approximate and sample entropy,” American
Journal of Physiology—Heart and Circulatory Physiology, vol.
278, no. 6, pp. 2039–2049, 2000.

[25] D. E. Lake, J. S. Richman, M. P. Griffin, and J. R. Moorman,
“Sample entropy analysis of neonatal heart rate variability,”
TheAmerican Journal of Physiology—Regulatory Integrative and
Comparative Physiology, vol. 283, no. 3, pp. R789–R797, 2002.

[26] M.Costa, A. L. Goldberger, andC.-K. Peng, “Multiscale entropy
analysis of biological signals,” Physical Review E: Statistical,
Nonlinear, and Soft Matter Physics, vol. 71, Article ID 021906,
2005.

[27] S. Samarasinghe,Neural Networks for Applied Sciences and Engi-
neering: From Fundamental to Complex Pattern Recognition,
Taylor & Francis, 2007.

[28] A. Saltelli, M. Ratto, T. Andres et al., Global Sensitivity Analysis.
The Primer, John Wiley & Sons, 2008.

[29] Y.-J. Jiang, M. H.-M. Ma, W.-Z. Sun, K.-W. Chang, M. F.
Abbod, and J.-S. Shieh, “Ensembled neural networks applied
to modeling survival rate for the patients with out-of-hospital
cardiac arrest,”Artificial Life and Robotics, vol. 17, no. 2, pp. 241–
244, 2012.

[30] M. F. Abbod, K.-Y. Cheng, X.-R. Cui, S.-J. Huang, Y.-Y. Han,
and J.-S. Shieh, “Ensembled neural networks for brain death
prediction for patients with severe head injury,” Biomedical
Signal Processing and Control, vol. 6, no. 4, pp. 414–421, 2011.

[31] I. I. Goncharova, D. J. McFarland, T. M. Vaughan, and J. R.
Wolpaw, “EMGcontamination of EEG: spectral and topograph-
ical characteristics,” Clinical Neurophysiology, vol. 114, no. 9, pp.
1580–1593, 2003.

[32] M. Fatourechi, A. Bashashati, R. K. Ward, and G. E. Birch,
“EMG and EOG artifacts in brain computer interface systems:
a survey,” Clinical Neurophysiology, vol. 118, no. 3, pp. 480–494,
2007.

[33] W. Zhou and J. Gotman, “Removal of EMG and ECG artifacts
from EEG based on wavelet transform and ICA,” in Proceedings
of the 26th Annual International Conference of the IEEE Engi-
neering in Medicine and Biology Society (IEMBS ’04), vol. 1, pp.
392–395, IEEE, San Francisco, Calif, USA, September 2004.


