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ABSTRACT: Dual contrast micro computed tomography (CT) shows potential for detecting articular cartilage degeneration. However, the
performance of conventional CT systems is limited by beam hardening, low image resolution (full‐body CT), and long acquisition times
(conventional microCT). Therefore, to reveal the full potential of the dual contrast technique for imaging cartilage composition we employ
the technique using synchrotron microCT. We hypothesize that the above‐mentioned limitations are overcome with synchrotron microCT
utilizing monochromatic X‐ray beam and fast image acquisition. Human osteochondral samples (n = 41, four cadavers) were immersed in a
contrast agent solution containing two agents (cationic CA4+ and non‐ionic gadoteridol) and imaged with synchrotron microCT at an early
diffusion time point (2 h) and at diffusion equilibrium (72 h) using two monochromatic X‐ray energies (32 and 34 keV). The dual contrast
technique enabled simultaneous determination of CA4+ (i.e., proteoglycan content) and gadoteridol (i.e., water content) partitions within
cartilage. Cartilage proteoglycan content and biomechanical properties correlated significantly (0.327< r< 0.736, p< 0.05) with CA4+
partition in superficial and middle zones at both diffusion time points. Normalization of the CA4+ partition with gadoteridol partition
within the cartilage significantly (p< 0.05) improved the detection sensitivity for human osteoarthritic cartilage proteoglycan content,
biomechanical properties, and overall condition (Mankin, Osteoarthritis Research Society International, and International Cartilage Repair
Society grading systems). The dual energy technique combined with the dual contrast agent enables assessment of human articular
cartilage proteoglycan content and biomechanical properties based on CA4+ partition determined using synchrotron microCT. Additionally,
the dual contrast technique is not limited by the beam hardening artifact of conventional CT systems. © 2019 The Authors. Journal of
Orthopaedic Research® published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society. J Orthop Res 38:563–573, 2020
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Cartilage injury can initiate the development of post‐
traumatic osteoarthritis (PTOA) if not detected and
treated early after injury. Therefore, early diagnosis is
crucial for the initiation of surgical or pharmaceutical
treatment to slow down the lesion progression to
PTOA.1–4 Currently available clinical imaging modal-
ities to assess cartilage condition (proteoglycan [PG]
distribution, collagen network organization, and water
content) include magnetic resonance imaging (MRI) and
computed tomography (CT).5 However, the usability of
MRI in diagnostics is limited by availability, relative
long acquisition time, and incompatibility with metallic
implants.6 In addition, CT without contrast enhance-
ment is capable of detecting only joint space narrowing
and changes in bony structures at late‐stage of the

disease.6 Thus, new sensitive and quantitative imaging
methods are needed for the detection of minor articular
cartilage lesions and early osteoarthritic degeneration.

Contrast‐enhanced computed tomography (CECT)
enables detection of changes in cartilage composition
along with quantitative evaluation of subchondral bone
density and structure.7–11 Advantages of CECT com-
pared with MRI are shorter acquisition times, higher
resolution, and lower costs. Delayed CECT7,8,12 allows
the detection of early degenerative changes since de-
generation alters contrast agent diffusion within car-
tilage. Originally, anionic contrast agents were used in
CECT13–15; however, recent studies have introduced
cationic contrast agents for cartilage imaging showing
improved sensitivity for PG loss.16,17 Cationic contrast
agents are more sensitive to cartilage PG content at
diffusion equilibrium than anionic agents due to elec-
trostatic attraction between cationic molecules and
negatively charged PGs. However, cationic contrast
agents have limitations in assessing PG content of
cartilage at clinically feasible early diffusion time
points, that is, 1–2 h after contrast agent admin-
istration.18 At early diffusion time points, contrast
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agent diffusion into cartilage is affected by water con-
tent and surface permeability as well as by the PG
content, diminishing the sensitivity of cationic contrast
agents to variations in PG content. As a solution, we
introduced a dual contrast agent (a mixture of two
contrast agents) and a dual energy CT technique (two
X‐ray energies) for imaging at diffusion equilibrium.19

In that study, we used the dual contrast agent com-
posed of cationic, iodine‐based (CA4+,20,21 q = +4, and
iodine k‐edge 33.2 keV) and non‐ionic, gadolinium‐
based (gadoteridol, q = 0, and gadolinium k‐edge
50.3 keV) contrast agents. The diffusion of non‐ionic
contrast agent reflects the water content and perme-
ability when the contrast agent partition is determined
prior to diffusion equilibrium. Further, by normalizing
the cationic contrast agent distribution with that of
non‐ionic agent distribution, the PG content within
cartilage is estimated more accurately.19,22 This tech-
nique is based on exploiting two X‐ray energies that
enable simultaneous determination of the distributions
of the contrast agents within cartilage. To achieve this,
X‐ray energies must be chosen carefully based on the
applied contrast agents and their element‐specific k‐
edges (i.e., photoelectric absorption edges).

The main limitation of conventional microCT and clin-
ical CT scanners is the relatively wide energy spectrum.
With one tube voltage, the photon energies can spread on
both sides of the k‐edge of the chosen contrast agent. In
addition, beam hardening artifacts can occur. These factors
might limit the accuracy of the dual contrast technique.
Moreover, with conventional microCT scanners, high‐res-
olution images require long acquisition time. When
imaging during active diffusion (i.e., early diffusion time
points), the image acquisitions with both energies should,
in theory, be conducted simultaneously. To achieve very
high resolution with relatively short imaging time (~
2min per acquisition), synchrotron‐based microCT23 can
be used to validate the technique. As monochromatized
synchrotron microCT X‐ray beams exhibit a narrow en-
ergy spectra, the contrast difference between the two im-
ages and between the contrast agents is maximized.

Herein, for the first time, we employ two different
monochromatic X‐ray energies in high‐resolution syn-
chrotron‐based microCT to image the diffusion of dual
contrast agent in human articular cartilage. The aim of
this study is to assess the full potential of the dual contrast
technique to detect human articular cartilage degener-
ation at a clinically relevant diffusion time point (2 h) and
at diffusion equilibrium (72h). We hypothesize that syn-
chrotron‐based microCT will provide sensitive dual con-
trast diagnosis of spontaneous arthritic human articular
cartilage and that limitations of conventional CT systems
are overcome with synchrotron microCT employing mon-
ochromatic X‐ray beam and fast image acquisition.

METHODS
Contrast Agent Preparation
The dual contrast agent was composed of CA4+ (5,5′‐
(malonylbis(azanediyl))bis(N1,N3‐bis(2‐aminoethyl)‐

2,4,6‐triiodoisophthalamide, q = +4, M = 1,499.88
g/mol) and gadoteridol (Prohance®; Bracco International
B. V., Amsterdam, Netherlands, q = 0, M = 558.69 g/mol)
diluted with phosphate‐buffered saline (PBS). Two dual
contrast agent immersion baths (for 2 and 72 h im-
mersions) containing 5mg I/ml and 10mg Gd/ml were
prepared. Inhibitors of proteolytic enzymes (5mM eth-
yleneadiaminetetra‐acetic acid [EDTA; VWR Interna-
tional, Fontenay‐sous‐Bois, France] and 5mM
benzamidine hydrochloride hydrate [Sigma‐Aldrich Inc.,
St. Louis, MO]) were added to both immersion baths.
Furthermore, penicillin–streptomycin–amphotericin B
(antibiotic antimycotic solution: 100 units/ml penicillin,
100 µg/ml streptomycin, and 0.25 µg/ml amphotericin B,
Sigma‐Aldrich Inc., St. Louis, MO) was added to the
72‐h immersion bath to minimize the sample degener-
ation. The osmolalities of the contrast agent mixtures
were ~308 and ~297mOsm/kg for the 2‐ and 72‐h
immersion baths, respectively. The osmolalities of
the contrast agents and PBS were measured with a
freeze‐point osmometer (Halbmikro‐osmometer; GWB,
Knauer & CO GmbH, Berlin, West‐Germany).

Sample Preparation
A total of 41 osteochondral samples (d = 8mm, thick-
ness = 2.21± 0.46mm) were extracted from human ca-
davers’ (N = 4, mean age 71.3 [from 68 to 79]) left and
right proximal tibia (N= 8) and distal femur (N= 8). The
Research Committee of the Northern Savo Hospital
District (Kuopio University Hospital, Kuopio, Finland,
ethical permission number: 134/2015) approved the
sample collection. A detailed flowchart describing sam-
pling and experiments is shown in Fig. 1. The specimens

JOURNAL OF ORTHOPAEDIC RESEARCH® MARCH 2020

Figure 1. Study work‐flow and the osteochondral sample proc-
essing protocol [Color figure can be viewed at wileyonlinelibrary.com]
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were stored at −20°C until thawed for the biomechanical
measurements. Subsequently, the samples were re-
frozen, stored at −20°C, and later halved. One half was
sectioned for digital densitometry measurements and
histological analysis, whereas the other half was halved
again to quarters. The quarter sides were sealed care-
fully with cyanoacrylate (Super Glue Precision, Loctite,
Düsseldorf, Germany) to ensure the contrast agent dif-
fusion only through the articulating surface. The first
quarter was immersed in PBS and the second quarter in
the dual contrast agent mixture bath (4.4ml, 100 times
the largest cartilage volume) for 72 h at +8°C to avoid
tissue degeneration. The bath was gently agitated using
Gyro rocker (STR9 Gyro rocker Platform Rocker; Stuart
Scientific, Staffordshire, UK) during the immersion.
Afterwards, the samples were stored at −20°C until the
synchrotron microCT measurements.

Biomechanical Measurements
Biomechanical properties of cartilage (n = 40, data for
one sample was lost due to technical malfunction) were
determined by indentation loading using a custom‐
made material tester equipped with an actuator having
displacement resolution of 0.1 µm (PM500‐1 A; New-
port, Irvine, CA) and a load cell with 5mN force reso-
lution (Sensotec, Columbus, OH).

First, the average cartilage thickness was calculated
from four measurements around the cylindrical os-
teochondral sample using a vernier caliper (reso-
lution = 0.01mm). Subsequently, samples (from bone)
were glued to the bottom of a sample holder, which was
then filled with PBS to fully immerse the samples. The
container was adjusted to set the cartilage surface in
perpendicular contact with cylindrical, custom‐made,
flat‐ended, metallic indenter (d = 728 µm [n = 7, the in-
denter was damaged after the first 7 samples were
measured] or d = 667 µm [n = 33]). After reaching me-
chanical equilibrium at pre‐stress of 12.5 kPa,24 three
compressive steps (3 × 5% of uncompressed cartilage
thickness with a ramp rate of 100%/s) were applied
using 900 s relaxation time in between the compressive
steps. The Hayes model25 was used to calculate the
equilibrium modulus (fit to the last three equilibrium
points) and instantaneous modulus (the ramp phase of
the third step). The thickness of the samples was veri-
fied and corrected based on microCT images. The Pois-
son’s ratios applied in the calculations were as follows:
equilibrium modulus (ν = 0.2)26 and instantaneous
modulus (ν = 0.5).27,28

Synchrotron‐Based MicroCT Imaging
The microCT imaging was conducted at X02DA
TOMCAT beamline (Swiss Light Source, Paul Scherrer
Institute, Villigen, Switzerland). Two monochromatic
X‐ray energies (32 and 34 keV) were selected by uti-
lizing a double‐multilayer monochromator (with a
spectral bandwidth of about 2–3%) based on iodine
k‐edge (33.2 keV). The image acquisition was conducted
by combining 1:1 magnifying visible light optics

microscope (Optique Peter, Lyon, France), a 300‐µm
thick scintillator (LuAg, CRYTUR spol.s.r.o., Czech
Republic), and an sCMOS detector (pco.Edge 5.5; PCO
AG, Kelheim, Germany). A field of view (FOV) of
16.640 × 3.497 mm2 and an isometric voxel size of
6.5 × 6.5 × 6.5 µm3 were applied. To minimize the radi-
ation exposure of the samples, an off‐beam alignment
system was used.29

In order to estimate the dose deposited on each
sample, the X‐ray flux was measured with calibrated
passivated implanted planar silicon diodes29 and
yielded 9.8 × 1010 photons/mm2/s for the 32 keV and
1.0 × 1011 photons/mm2/s for the 34 keV, respectively.
The cartilage samples were then modeled as soft tissue
(ICRU‐44) by considering the X‐ray mass energy‐ab-
sorption coefficient from the NIST database,30 which
yielded doses of 0.47 and 0.43 Gy for the two energies
(32 and 34 keV), respectively. These values, however, do
not consider the presence of the contrast agents which
would need to be taken into account when estimating
the radiation dose deposition among different tissues
(such as cartilage and bone).31,32

First, a set of contrast agent phantoms with varying
CA4+ and gadoteridol concentrations in distilled water
were imaged using both energies. In the phantoms, the
iodine (CA4+) concentrations were 3, 6, 12, 18, 24, 30, 36,
and 42mg I/ml and the gadolinium (gadoteridol) concen-
trations were 6, 9, 12, 15, and 18mg Gd/ml (Fig. 2). In
addition, eight mixture phantoms with iodine/gadolinium
concentrations of 3/18, 6/16, 10/14, 16/12, 20/10, 26/8, 32/6,
and 40/3mg/ml were imaged.

Prior to the immersion in dual contrast agent mix-
ture, the non‐contrast images (Fig. 3) of the osteochon-
dral samples were acquired by measuring the samples in
the air. Next, the samples were immersed in contrast
agent mixture bath (4.4ml, ≥100 times the cartilage
volume) for 2 h at +7°C. Further, the sample quarters
immersed for 72 h in contrast agent mixture before
storage (−20°C) were after thawing immersed again for
1 h to ensure the diffusion equilibrium. After the im-
mersions, the image acquisition (Fig. 3) was conducted
as follows, first with 34 keV X‐ray beam, then with
32 keV, and finally again with 34 keV. Two acquisitions
for 34 keV were conducted and averaged to minimize the
time difference between acquisitions with the two en-
ergies. The imaging time was minimized to be approx-
imately 129 s per acquisition with the minimal time
difference between the subsequent acquisitions (~5min
31 s between the starting times of the scans).

Data Analysis
The concentrations in the contrast agent mixture
phantoms and the contrast agent partitions within
cartilage were solved using Beer–Lambert law and
Bragg’s additive rule for mixtures,33 as were done in
our earlier studies19,22,34:

α μ μ= +C CE E EI, I Gd, Gd (1)
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where α is the total X‐ray attenuation of the contrast
agent mixture within phantom or cartilage with energy
E, µ is the mass attenuation coefficient, and C is the
concentration of iodine (I) or gadolinium (Gd) in the
mixture. The contrast agent concentrations in the
mixtures and within cartilage are solved using Equa-
tion (1) based on the radiation intensities of two dif-
ferent X‐ray energies applied (in this study 32 and
34 keV) as follows:

μ α μ α

μ μ μ μ
=

−

−
CI

Gd,32 34 Gd,34 32

I,34 Gd,32 I,32 Gd,34
(2)

μ α μ α

μ μ μ μ
=

−

−
CGd

I,34 32 I,32 34

I,34 Gd,32 I,32 Gd,34
(3)

The articulating surface and bone‐cartilage inter-
face were manually determined using a segmentation
software (Seg3D, version 2.2.1, 2015; University of
Utah, Salt Lake City, UT) for every sample at both
time points. Due to the limited vertical FOV of ap-
proximately 3.5 mm, the cartilage–bone interface was
not visible for 9/41 samples, and therefore, for those
samples the interface was determined to be at the
image border, resulting in the loss of the calcified
cartilage (<200 µm). The volume of interest (VOI, a
cylinder with the diameter of 1,950 µm and height of
cartilage thickness) was selected from the center of
the osteochondral sample by using a custom‐made
MATLAB (R2015b and R2017b; The MathWorks, Inc.,
Natick, MA) code.35 The 34‐keV acquisitions con-
ducted at the beginning and end of the imaging
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Figure 2. The contrast agent series for (A) CA4+ (iodine, I) with 3, 6, 12, 18, 24, 30, 36, and 42mg I/ml and (B) gadoteridol (gadolinium,
Gd) with 6, 9, 12, 15, and 18mg Gd/ml were imaged with energies of 32 and 34 keV separately to determine the iodine and gadolinium
mass attenuation coefficients. The figures show the X‐ray attenuation as a function of the true concentration of the contrast agents. The
equations for X‐ray attenuation (AU) as a function of contrast agent concentration for iodine were µI,32keV = 162 ×CI + 16 (R2 = 0.999) and
µI,34keV = 812 ×CI + 12 (R2 = 1.000); for gadolinium µGd,32keV = 300 ×CGd + 1 (R2 = 0.999) and µGd,34keV = 276 ×CGd + 39 (R2 = 1.000).

Figure 3. Tomographic slices of the computed tomography (CT)‐reconstructed volume acquired with 32 and 34 keV photon energies at
different time points (0, 2, and 72 h) after the contrast agent immersion. The articulating surface and cartilage–bone interface are
marked with black and white arrowheads, respectively. The contrast agent mainly responsible for inducing the contrast is CA4+ and
gadoteridol for 34 and 32 keV images, respectively
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sequence were averaged to minimize the error caused
by ongoing diffusion.

First, a non‐contrast‐enhanced X‐ray attenuation
profile (horizontal average of VOI, Fig. 4), attained
from the halves that initially contained no contrast
agent, was subtracted from the X‐ray attenuation pro-
files of samples with diffused contrast agents. Next, the
concentration profiles for CA4 + and gadoteridol were
determined (Equations (2) and (3)) and from those, the
partition profiles were calculated as follows:

=
C

C
Partition cartilage

bath
(4)

For further analyses, the cartilage thickness was
divided into superficial (0–10%), middle (10–40%),
deep (40–100%) zones, and into full cartilage thick-
ness (0–100%) starting from articulating surface (0%)
to cartilage–bone interface (100%). The decrease in
bath concentration (due to the contrast agent dif-
fusion into cartilage) was taken into account when
calculating the partition profiles. The masses of ga-
dolinium and iodine were calculated based on their
contents within cartilage and sample volume and
then deduced from the masses of gadolinium and io-
dine in the bath. With this information, the bath
concentrations of CA4+ and gadoteridol at 2‐ and 72‐
h time points were determined. Finally, the partitions
of CA4+ and gadoteridol were calculated using
Equation (4). Further, CA4+ partition profiles were
normalized (i.e., divided) with those of gadoteridol
profiles to enhance the accuracy of detecting the PG
content within the sample.

Digital Densitometry and Histological Grading
The sample halves were decalcified in EDTA, cut into
3 µm thick sections, and stained with Safranin‐O. Sa-
franin‐O is a cationic dye, and it is stoichiometrically
attracted to PGs, thus quantitatively revealing the PG
distribution within cartilage.36 The optical density (OD,
i.e., PG content) was determined with digital

densitometry measurements using a light microscope
(Nikon Microphot‐FXA; Nikon Co., Tokyo, Japan) with
a monochromatic light source (wavelength 492± 8 nm)
and a 12‐bit CCD camera (ORCA‐ER; Hamamatsu
Photonics K.K., Hamamatsu, Japan). Three sections
per sample were averaged, and the calibration was
conducted using neutral density filters ranging from 0
to 3.0.

The severity of OA was evaluated along three his-
tological grading systems: Mankin score,37 Osteo-
arthritis Research Society International (OARSI)
grading,38 and International Cartilage Repair Society
(ICRS) grading.39 For Mankin grading system, ab-
normalities in structure (from 0 to 6 points), cellu-
larity (0–3), Safranin‐O staining (0–4), and tidemark
integrity (0–1) were evaluated. In OARSI grading the
lesion depth, size, and cartilage condition were eval-
uated (points from 0 to 6). ICRS grade (0–4) was set
based on the lesion depth. Randomly ordered and
blind‐coded sections were scored by four assessors
(M. Honkanen, N. Hänninen, M. Prakash, and
R. Shaikh). Finally, the scores of the three sections per
sample were averaged. Same sections were utilized for
DD and histological grading.

Statistical Analysis
The relations between the measured and the true con-
trast agent concentrations in the mixture phantoms
were evaluated with Pearson’s correlation analysis. The
statistical dependency between contrast agent parti-
tions within cartilage and biomechanical data (equili-
brium and instant modules), and PG content (OD) were
assessed with Pearson’s correlation, and dependency
between contrast agent partitions and histological
score and gradings (Mankin score, ICRS grading, and
OARSI grading) were assessed with Spearman’s cor-
relation. The improvement in correlation by the nor-
malization of the CA4+ partition with that of
gadoteridol was tested according to Steiger40 for Pear-
son’s correlations and with bootstrapping for Spear-
man’s correlations. All the statistical analyses were
conducted using SPSS (v. 25.0; SPSS Inc., IBM Com-
pany, Armonk, NY).

RESULTS
The microCT measured composition of the contrast
agent mixture phantoms agreed with the true composi-
tion (Pearson’s correlation, R2 = 1.000, p< 0.0001). The
difference between the true and measured concen-
trations were 1.46± 0.37% for iodine and 2.62± 1.11%
for gadolinium (Table 1).

The contrast agent partition profiles within cartilage for
CA4+ and gadoteridol at 2‐ and 72‐h diffusion time points
are presented in Fig. 5. At the 2‐h diffusion time point,
CA4+ and gadoteridol partition showed a decreasing trend
as a function of cartilage thickness and had mean full
thickness partitions of 66.1± 21.9% and 32.8± 6.2%, re-
spectively. After 72h of diffusion the CA4+ and gadoteridol
partitions showed increasing and decreasing trends,
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Figure 4. Non‐contrast (baseline) X‐ray attenuation profiles of
cartilage samples acquired with X‐ray energies of 32 and 34 keV.
In horizontal axis, 0 refers to articular surface and 1 to cartila-
ge–bone interface [Color figure can be viewed at wileyonlineli-
brary.com]
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respectively, toward the deep cartilage and had mean full
thickness partitions of 658.7± 155.2% for CA4+ and
103.4± 9.9% for gadoteridol. The 2‐h CA4+ partition pos-
itively correlated with increasing PG content (i.e., OD,
0.463< r < 0.736, 0.000<p< 0.002, Table 2) in superficial
and middle zones (0–10 and 10–40%). A significant neg-
ative correlation (rS =−0.570, p< 0.000, Table 3) was found
between the superficial CA4+ partition and Mankin score
at the 2‐h time point. In addition, the 2‐h CA4+ partition
in superficial and middle zones, and in full cartilage
correlated significantly with equilibrium modulus
(0.331< r< 0.659, 0.000<p< 0.037) and instantaneous
modulus (0.378< r< 0.511, 0.001<p< 0.016, Table 2). At
the 2‐h time point, gadoteridol partition in superficial

and middle zones and in full cartilage negatively corre-
lated to equilibrium modulus (−0.499< r<−0.389,
0.001< p< 0.013) and instantaneous modulus
(−0.376< r<−0.361, 0.017< p< 0.022, except in full car-
tilage thickness). Further, 2‐h gadoteridol partition in all
zones and in full cartilage correlated significantly with
Mankin score (0.334< rS<0.651, 0.000< p< 0.033),
OARSI score (0.322< rS< 0.659, 0.000< p< 0.040), and
ICRS score (0.328< rS< 0.643, 0.000< p< 0.037). At dif-
fusion equilibrium CA4+ partition correlated significantly
(0.685< r< 0.766, p< 0.0001) with PG content in full
cartilage and all zones. Importantly, at 2‐h time point, the
Spearman’s correlation coefficients were significantly
(p< 0.05) higher between the normalized CA4+ partitions
in the superficial and middle zones, and in full cartilage
thickness and histological score and grades (Mankin,
OARSI, and ICRS) than for non‐normalized CA4+ parti-
tions (Table 3). Furthermore, at 2‐h time point, the
Pearson correlation coefficients were significantly
(p< 0.05) higher between the normalized CA4+ partitions
in the middle zone and in full cartilage thickness and
optical density, equilibrium, and instantaneous modules
than for non‐normalized CA4+ partitions (except for OD
in full thickness cartilage; Table 2). At 72‐h time point
significant (0.366< r< 0.824, 0.000< p< 0.020) correla-
tions were found between normalized CA4+ partition and
reference parameters (OD, equilibrium and instant
moduli, and Mankin score) in the superficial and middle
layers, and in full thickness cartilage. The normalization
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Table 1. The True and the Measured Contrast Agent
(Iodine/Gadolinium) Concentrations and Their Errors in
the Mixture Phantoms

True (mg/ml) Measured (mg/ml) Error (%)

3/18 3.04/17.63 1.17/2.06
6/16 5.90/15.65 1.68/2.20
10/14 9.83/13.50 1.74/3.56
16/12 16.09/11.76 0.58/1.97
20/10 19.69/9.56 1.54/4.37
26/8 25.53/8.02 1.82/0.31
32/6 31.43/5.80 1.79/3.39
40/3 39.44/3.09 1.40/3.07
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Figure 5. Contrast agent partitions (n = 41, dashed lines) and the mean partition (thick line) as a function of the cartilage relative
thickness for (A) CA4+ and (B) gadoteridol at 2‐h diffusion time point and, (C) CA4+ and (D) gadoteridol at 72 h after diffusion. In the
horizontal axis, 0 refers to the articular surface and 1 refers to cartilage–bone interface.
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significantly improved the correlation between CA4+
partition and the reference parameters in superficial (OD,
equilibrium and instant moduli, OARSI, and ICRS),
middle (equilibrium and instant moduli, OARSI, and
ICRS), deep (equilibrium modulus) zones, and full thick-
ness cartilage (equilibrium and instant moduli).

DISCUSSION
As compared with anionic contrast agents, cationic
agents provide better contrast and are more sensitive to
variation in PG content.17 However, the clinical poten-
tial of cationic contrast agent (CA4+) suffers from dif-
ferent degeneration‐related factors having opposite
effects on CA4+ diffusion. At early diffusion time
points, degeneration‐induced PG loss decreases the
diffusion while the increase in water content and per-
meability increase the diffusion. The dual contrast
technique overcomes this limitation and enhances
the detection of PG content in human cartilage at dif-
fusion equilibrium19 as well as at early diffusion time
points in bovine34 and in human22 cartilage. In this
study, we have shown that dual contrast‐enhanced
synchrotron microCT enables detection of the decreased
PG content in osteoarthritic human articular cartilage.
Furthermore, the normalization of the CA4+ partition
with the gadoteridol partition significantly (p < 0.05)
improved the correlations with the reference

parameters at an early diffusion time point and at
diffusion equilibrium.

The measured CA4+ and gadoteridol concentrations
in the mixture phantoms correlate linearly with the true
concentrations (R2 = 1.000, p < 0.0001). This correlation
along with minor error between the true and measured
concentrations, reflects that the determination of the
concentrations is accurate and linear within whole range
of concentrations with the present dual contrast tech-
nique. A similar correlation between measured and true
concentrations in the mixture phantoms was observed in
our recent synchrotron microCT study with different
X‐ray energies (25 and 37 keV).34 In the present study,
we took advantage of the narrow X‐ray beam energy
bandwidth and used the image acquisition energies (32
and 34 keV) very close to iodine k‐edge (33.2 keV) to
minimize the time difference between the measure-
ments due to energy change and to maximize the image
contrast.

CA4+ distributions within cartilage were as ex-
pected (at 2 h decreasing and at 72 h increasing trends
toward cartilage–bone interface) and in line with the
previous studies at both diffusion time points measured
in human19,22 and bovine articular cartilage.34 For ga-
doteridol, the shapes of the distribution profiles were
similar to those reported earlier at both diffusion time
points.19,22,34 However, the gadoteridol partitions (over
100%) at the diffusion equilibrium were unexpectedly
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Table 2. Pearson’s Correlation Coefficients for CA4+, Normalized CA4+ (CA4+ norm), and Gadoteridol Partitions When
Compared With Optical Density (Proteoglycan Content), and Biomechanical Properties (Equilibrium and Instant Moduli)
of Cartilage

Significantly (p< 0.05) higher correlations for normalized CA4+ partition than for
non‐normalized CA4+ partition are highlighted with light gray.
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high (Fig. 5D) as gadoteridol should diffuse into carti-
lage according to cartilage water content (which is
around 80%41). Moreover, the CA4+ partitions were
slightly higher than those reported earlier19,22 even
though the sample preparation and experimental con-
ditions were similar. Beam hardening cannot explain
the high gadoteridol partitions as a monochromatic
beam was used. The applied relatively high radiation
doses could lead to ionization of the contrast agent and
cartilage matrix. However, the image acquisition time
was short (around 2min), and the imaging was con-
ducted in air. In addition, the same samples were im-
aged only once (72 h) or twice (baseline and 2 h), so the
high gadoteridol partition was likely not due to ion-
ization. Possibly, the very high diffusion flux of CA4+
may have increased the diffusion of the gadoteridol. We
have observed this phenomenon also in another (un-
published) study where diffusion of the dual contrast
agent as a time series was investigated using a con-
ventional microCT system. However, this is purely
speculation at this moment and requires further in-
vestigation. A similar high gadoteridol partition has
been observed also by Gillis et al.42

The correlations between CA4+ partition in the su-
perficial zone and reference parameters were significant
(p< 0.05) at 2 h after contrast agent immersion. In
general, the correlation coefficients between CA4+

partition and all the reference parameters (PG content,
biomechanical properties, Mankin score, OARSI, and
ICRS grades, Tables 2 and 3) were significantly
(p< 0.05) greater when the CA4+ partition was nor-
malized with that of gadoteridol in the superficial and
middle zones, and in full cartilage thickness at both
diffusion time points. At the 2‐hour time point, the dif-
fusion profiles show minimal CA4+ and gadoteridol ac-
cumulation in the deep cartilage (Fig. 5). This explains
the lack of correlations between the contrast agent
partitions in the deep cartilage and reference parame-
ters. At early time points, diffusion of CA4+ is controlled
by fixed charge density, permeability and water content,
while diffusion of gadoteridol depends strongly on per-
meability and water content. Therefore, the normal-
ization improves the discrimination between the healthy
and degenerated cartilage tissue at an early diffusion
time point, which agrees with the literature.22,34 At
diffusion equilibrium, the very high gadoteridol parti-
tion (over 100%) affects the accuracy of the normal-
ization, and therefore, explains the lack of statistically
significant difference between the correlations with the
overall condition (Mankin score) and PG content of non‐
normalized and normalized CA4+ partitions.

Several limitations are present in this synchrotron
microCT study with human osteochondral samples.
First, the theory behind the dual contrast technique
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Table 3. Spearman’s Correlation Coefficients for CA4+, Normalized CA4+ (CA4+ norm), and Gadoteridol When Com-
pared With Mankin Score, Osteoarthritis Research Society International (OARSI) Grading and International Cartilage
Repair Society (ICRS) Grading

Significantly (p< 0.05) higher correlations for normalized CA4+ partition than for
non‐normalized CA4+ partition are highlighted with light gray.
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assumes that the images are acquired simultaneously
with two separate energies. This was not possible in the
present study. However, the time difference between
the 32 and 34 keVacquisitions was approximately only
5min 31 s. Furthermore, the 34 keV acquisitions con-
ducted at the beginning and end of the imaging se-
quence were averaged to more closely match the 32 and
34 keV acquisitions. This was especially necessary for
the 2‐h time point when the diffusion is very fast. After
averaging, the time difference between the 32 and
34 keV acquisitions was minimal and the effect to the
results is assumed to be negligible. The FOV height
(~3.5mm) was close to the thickness of the thickest
(~3.2mm) cartilage samples. To ensure the visibility of
the cartilage surface, a safety margin was left at the top
of the image. Therefore, the cartilage–bone interface
was invisible for 9/41 samples, and a region of max-
imum 200 µm of the deepest cartilage was lost, re-
sulting in a minor shift of the zones and therefore, a
minor error in the contrast agent partition in every
zone for those samples. Another limitation of this study
was the low number of cadavers (n = 4; eight knee
joints). As from two to eight osteochondral samples
were extracted from the same knee joint, there is a
dependency between the samples. In addition, the
samples were extracted from tibia and femur as well as
both medial and lateral sides of the joint. This causes
degeneration independent variation in cartilage com-
position, which cannot be differentiated with scoring
and grading systems and therefore, might have led to
weaker correlations. Furthermore, the samples were
frozen and thawed three times before the synchrotron
microCT experiment, which may have caused some
degeneration. However, this degeneration can be as-
sumed to be similar between the samples and with no
major effect on biomechanical properties.43–45

In vivo, the diffusion of an anionic contrast agent
reaches its maximum concentration in the cartilage at
30–60min after the injection7 being a result of phys-
iological clearance, while it takes longer for cationic
contrast agents (hours; currently the only in vivo report
is with rabbit knee joints).46 The diffusion time and in
vitro conditions of the contrast agents are limitations of
this laboratory study and for the clinical applicability.
However, for post‐mortem analysis, ex vivo studies, and
pre‐clinical in vitro and in vivo studies this is less of a
concern. The primary focus of this laboratory study was
to evaluate the potential of the dual contrast technique
for imaging cartilage composition using a synchrotron
microCT. The next step toward clinical setting is an
extensive time series with ex vivo measurements (ca-
daveric knee joints) at early diffusion time points to
refine the method and to explore alternative strategies
to increase the diffusion rate.

To conclude, the present results show that the dual
energy technique combined with the dual contrast
agent enables determination of overall condition,
equilibrium and instantaneous moduli, and water and
PG contents in human osteoarthritic cartilage at a

clinically relevant diffusion time point (2 h). This
synchrotron microCT study reveals the potential of
the dual contrast technique and provides the proof‐of‐
concept for assessment of cartilage composition, as
imaging‐related uncertainties were minimized. The
results are in line with our earlier studies with con-
ventional CT systems and indicate that beam hard-
ening error is minimal with conventional CT scanners
when imaging in vitro samples. The dual contrast
technique offers significant diagnostic potential for
detection of articular cartilage degeneration.
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