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Purpose: Microbial keratitis is an urgent condition in ophthalmol-
ogy that requires prompt treatment. This study aimed to apply deep
learning algorithms for rapidly discriminating between fungal
keratitis (FK) and bacterial keratitis (BK).

Methods: A total of 2167 anterior segment images retrospec-
tively acquired from 194 patients with 128 patients with BK
(1388 images, 64.1%) and 66 patients with FK (779 images,
35.9%) were used to develop the model. The images were split
into training, validation, and test sets. Three convolutional neural
networks consisting of VGG19, ResNet50, and DenseNet121
were trained to classify images. Performance of each model was
evaluated using precision (positive predictive value), sensitivity
(recall), F1 score (test’s accuracy), and area under the
precision–recall curve (AUPRC). Ensemble learning was then
applied to improve classification performance.

Results: The classification performance in F1 score (95%
confident interval) of VGG19, DenseNet121, and RestNet50 was
0.78 (0.72–0.84), 0.71 (0.64–0.78), and 0.68 (0.61–0.75), respec-
tively. VGG19 also demonstrated the highest AUPRC of 0.86
followed by RestNet50 (0.73) and DenseNet (0.60). The ensemble
learning could improve performance with the sensitivity and F1
score of 0.77 (0.81–0.83) and 0.83 (0.77–0.89) with an AUPRC
of 0.904.

Conclusions: Convolutional neural network with ensemble learn-
ing showed the best performance in discriminating FK from BK
compared with single architecture models. Our model can potentially
be considered as an adjunctive tool for providing rapid provisional
diagnosis in patients with microbial keratitis.
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Microbial keratitis (MK), a nonviral corneal infection, is
an urgent condition in ophthalmology that requires

prompt treatment to avoid severe complications of corneal
perforation and vision loss.1 The global incidence of MK is
estimated to be 1.5 to 2.0 million cases per year,2 ranging
from 11 per 100,000 in Minnesota3 to as high as 799 per
100,000 in Nepal.4 The organisms causing MK vary among
different countries depending on climate, contact lens
use, socioeconomic status, and accessibility to healthcare
service.1,5–7 For instance, a large-scale multicountry study in
Asia including 6626 eyes from 6563 subjects showed that
fungi were the commonly isolated organisms [eg, Fusarium
spp. (18.3%) and Aspergillus flavus (8.3%)],5 whereas
bacteria were the main causative pathogen in Australia,
Europe, and the United States (64.6%–90.6%).6–9 Fungal
keratitis (FK) is more severe, requires appropriate antifungal
therapy, and has a higher risk of progression to endoph-
thalmitis compared with bacterial keratitis (BK).10,11 There-
fore, discriminating between bacterial and fungal infection is
a crucial step for proper treatment and preventing further
complications of MK.

The gold standard for diagnosis of MK is corneal tissue
culture, the results of which take at least 48 hours. Although
the test has high specificity, the sensitivity is low and varies
among centers, ranging from 34.2% to 65%.9,12 Several
adjunctive diagnostic tools have been proposed to help
clinicians, including polymerase chain reaction (PCR) and
confocal microscopy to make more rapid diagnoses and
increase the detection rate while being less invasive for
patients. However, these alternative tests have some limita-
tions such as the amount of corneal tissue sample required
and high technology/cost, which limit generalizability. Clin-
ical history and corneal findings can be important clues for
discrimination between BK and FK. However, previous
studies have shown that approximately 30% of corneal
infections were misdiagnosed using clinicians’ experience
based on corneal findings alone.13,14 Incorporating both
patient history and clinical findings into a prediction model
could improve discrimination performance compared with
models with clinical findings alone.15,16 All conventional
models still require information on patient history and corneal
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findings, which, in turn, are based on the clinical experience
of the evaluators.

Recently, deep learning (DL) has been applied as an
effective choice to solve various problems related to screen-
ing, diagnosis, and management of eye disease.17,18 The
number of publications in this area is increasing continu-
ally.19,20 Many types of DL algorithms can be applied for
prediction purposes; among them, transfer learning is one
training strategy commonly used when the size of the training
samples is relatively small compared with the number of
model parameters to be trained. The transfer learning
approach leverages parameters from a pretrained model that
has previously learned from one data set to initialize the new
model on another data set. In addition, several pretrained
convolutional neural networks (CNN) for image classifica-
tions have been proposed.21–27 Such pretrained models were
trained on a very large image data set called ImageNet.28

Although several DL models have been proposed in ophthal-
mology, few have addressed for infectious keratitis.29,30

Therefore, we conducted this study to apply DL in the
classification of FK and BK. Our findings should be helpful in
aiding specialists and nonspecialists in diagnosing MK.

METHODS
This study was a retrospective chart review of patients

who were diagnosed with either BK or FK in the Department
of Ophthalmology, Faculty of Medicine, Ramathibodi Hos-
pital, Mahidol University, from 2012 to 2020. This study had
been approved by the Ethics Committee of Ramathibodi
Hospital (MURA2019/317).

Patients were eligible if they met the following criteria:
1) diagnosed with either FK or BK by positive culture or PCR
or pathological reports or complete response to a definitive
therapy (therapeutic diagnosis) and 2) available anterior
segment images during the active phase of infection. Patients
were excluded for the following reasons: 1) had low-quality
images, that is, unfocused, decentered, and/or inadequate light
exposure and 2) had mixed infections (bacteria and fungus) or
other coinfections (ie, Pythium, Acanthamoeba, and virus).

Data Acquisition
A total of 194 patients met eligibility criteria and were

included in our study. We retrieved slit-lamp anterior segment
images from the database of the Ophthalmology Department
from 2012 to 2020. The images were taken using a slit-lamp
biomicroscope (Haag-Streit BX900; Haag-Streit AG, Swit-
zerland) mounted with a digital single-lens reflex camera
(Canon EOS 7D) by a single experienced technician. Only
images undertook at initial presentation and at the follow-up
period with disease progression before receiving definite
treatments with good centration, sharp focus, and adequate
coverage of corneal lesions judged by an ophthalmologist
(P.J.) were included. Multiple images captured by the diffuse
illumination technique (with or without slit beam enhance-
ment) from the same patient were also used for developing the
model with the following reasons: 1) patient’s eye position to
the slit lamp and light exposure could be varied accordingly

to different shots, 2) different images may contain different
aspects of the lesion and also different quality, and 3) using
multiple images could be equivalent to realistic data aug-
mentation and thus could add more information to
the algorithm.

Data Preparation
A total of 2167 images of 194 patients were randomly

split into training, validation, and test sets with a targeted ratio
of 80:10:10 using GroupShuffleSplit in Scikit-learn version
0.23.231 based on the following conditions: 1) distribution of
BK and FK was similar among 3 data sets and 2) each patient
was assigned in each data set only once. To meet these
conditions, the final ratio was 85:5:10 for training, validation,
and test sets, respectively. The training set comprised 1159
images of BK and 673 images of FK. The validation
comprised 67 images of BK and 45 images of FK. The test
set comprised 162 images of BK and 61 images of FK, as
shown in Figure 1. Original images had variation in size and
resolution (ranging from 4 to 18 megapixels). Taken into
account of image quality and model performance, the original
images were considered to be resized to 256 · 256 pixels
before entering into the DL analysis. Light reflections and
other artifacts were handled by performing the mean subtrac-
tions following recommendation for each method.21,22,26

Modeling
We constructed the model called DeepKeratitis on top

of 3 pretrained CNNs, which were selected from open-source
Keras version 2.3.1, VGG19,21 ResNet50,22 and Dense-
Net121.26 All of them were trained on the ImageNet data

FIGURE 1. Distribution of BK and FK in each data set. (The full
color version of this figure is available at www.corneajrnl.
com.)
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set,28 which is an exceptionally large data set for the image
classification task. Each pretrained architecture was extended
with 2 more extension layers: GlobalAveragePooling2D and
1 dense layer with 2 outputs. The output returned the
probability of BK and FK which were mutually exclusive.

Additional configuration techniques were applied to
each model, including early layer freezing, data augmentation
with horizontal flip, weight decay, early stopping, and Grad-
CAM.32 Early layer freezing aims to use low-level features of
pretrained architecture for transfer learning purposes. Because
pretrained models had different architecture, the number of
early layers to be frozen was different starting from the first to
the kth layers. The first 11 layers of 28 layers were frozen in
VGG19. The first 141 layers of 433 layers were frozen for
DenseNet121. The first 80 layers of 181 layers were frozen
for ResNet50. A weight decay (ReduceLROnPlateau) penalty
of 10% was applied to the learning rate for every 5 epochs if
validation loss did not improve to allow faster model
convergence. Early stopping was applied if validation loss
did not improve for 20 epochs continuously to prevent
overfitting. Grad-CAM was applied to reveal which regions
in a given image (represented as heatmap) influenced the
model decision for further analysis of errors.32 Our experi-
ment set color map as jet, which consisted of blue–green–red
color gradient, indicating a different degree of influence on
model prediction in an ascending order. The selected opti-
mizer was Minibatch Gradient Descent33 with hyper-
parameter tuning by varying batch size (8, 16, and 32) and
learning rate (0.001 and 0.0001). The optimum decision
thresholds were calibrated to maximize classification perfor-

mance for VGG19, ResNet50, and DenseNet121. For the
ensemble model (random forest), the number of estimators
was set at 100. Other hyperparameters were used as the
default parameters.

Performance evaluation metrics, including precision
(positive predictive value), sensitivity (recall), and F1 score,
along with 95% confidence interval (CI), were estimated. The
F1 score is the harmonic mean of the precision (P) and recall
(R), that is, [2 PR/(P + R)], where precision is the number of
true positive results divided by the total number of positive
tests. This parameter measures a test’s performance; the value
closes to 1.0, reflecting high precision and recall. Area under
the precision–recall curve (AUPRC) was estimated to evalu-
ate discriminative performance. Curves close to the right
upper quadrant indicate a better performance level than those
close to the baseline.

RESULTS
Of 194 included patients with 2167 images, 128

patients (1388 images) were with BK and 66 patients (779
images) were with FK. Most of the included patients (119
patients, 61.3%) were diagnosed based on laboratory/
pathological report, whereas 75 patients (38.7%) were
classified based on therapeutic criteria.

Classification Performance
VGG19 and ResNet50 were optimized to a batch size

of 16, whereas DenseNet121 was optimized to a batch size of

TABLE 1. Optimum Hyperparameters and Performance of all Models (N = 223 images)

Model

Optimum Hyperparameters Classification Performance (95% CI)

Batch Size Learning Rate Threshold Precision Sensitivity F1 Score

VGG19 16 0.001 0.39 0.88 (0.83–0.93) 0.70 (0.63–0.77) 0.78 (0.72–0.84)

DenseNet121 32 0.001 0.53 0.61 (0.54–0.68) 0.85 (0.80–0.90) 0.71 (0.64–0.78)

RestNet50 16 0.0001 0.60 0.57 (0.49–0.65) 0.85 (0.80–0.90) 0.68 (0.61–0.75)

Ensemble N/A N/A 0.60 0.91 (0.87–0.95) 0.77 (0.81–0.83) 0.83 (0.77–0.89)

FIGURE 2. Precision–recall curves in
the test data set obtained by 4 dif-
ferent models. (The full color version
of this figure is available at www.
corneajrnl.com.)
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32. All pretrained architectures were optimized to 0.001 of the
learning rate except ResNet50, which was optimized to
0.0001. The optimum decision thresholds to classify FK were
0.39, 0.53, and 0.60 for VGG19, DenseNet121, and
ResNet50, respectively.

The classification performance of DeepKeratitis (single
architecture of the CCN) and ensemble models at the optimal
threshold is summarized in Table 1. The model performance
metrics were reported at 95% CI in the format of x (y, z), where
x is the performance, y is the lower bound, and z is the upper
bound. Among pretrained CNN models, VGG19 showed
highest overall performance followed by DenseNet121 and
RestNet50 with the F1 score, precision, and sensitivity of 0.78
(0.72–084), 0.88 (0.83–0.93), and 0.70 (0.63–0.77), respec-
tively. Although DenseNet121 and RestNet50 yielded lower
F1 score and precision, they gained higher sensitivity than
VGG19 with the corresponding values of 0.85 (0.80–0.90),
0.85 (0.80–0.90), and 0.70 (0.63–0.77). Applying the ensemble
learning model could achieve higher classification performance
compared with that from a single architecture with F1 score,
precision, and sensitivity of 0.83 (0.77–0.89), 0.91 (0.87–0.95),
and 0.77 (0.81–0.83), respectively.

The AUPRCs were constructed (Fig. 2), indicating that
the ensemble model yielded the highest discriminative perfor-
mance followed by VGG19, DenseNet121, and ResNet50 with
the AUPRCs of 0.904, 0.862, 0.728, and 0.599, respectively.

Analysis of Misclassification Errors
Misclassified images from VGG19, Densenet121, Re-

snet50, and ensemble were 13, 23, 26, and 12, respectively.
Misclassified images from the best single DL architecture
(VGG19) were further explored and investigated against the

original observed samples using Grad-CAM. Figure 3B
demonstrates the dominant areas that contributed to the model
classification. All 11 images in Figure 3 were obtained from a
patient with FK. The warmer colored gradient indicated the
more influencing areas. Image (E) was misclassified as BK
because the probability of being FK (0.21) was lower than the
decision threshold (0.39). Compared with other correctly
classified images, that is, (D), (I), and (K), the heatmap of
image (E) highlighted the inferonasal area of the eye without
considering the areas on the pathologic cornea. Findings from
Grad-CAM analysis implied that image composition was very
important for model prediction; however, the factors affecting
area selection were unexplained because of the black box
nature of DL. However, we also observed that images with
similar composition could result in different predictive prob-
abilities. We subsequently investigated the effect of image
brightness on the model prediction and found that the
probability of FK varied across different adjusted brightness
using the misclassified image. Image brightness was defined as
the average of pixel value in gray scale, ranging from
0 (darkest) to 225 (brightest). The misclassified image could
be correctly classified as FK (probability of FK higher than
0.39) when the image brightness was adjusted to be within the
optimal range (optimal brightness category) of 24.70 6 11.46,
as shown in Figure 4.

DISCUSSION
We constructed DeepKeratitis on top of pretrained DL

architectures to distinguish patients with FK from BK. Our
findings indicated that for single DL-based methods, VGG19
showed the highest performance, with the F1 score of 78%
followed by DenseNet121 (71%) and ResNet50 (68%). We

FIGURE 3. Misclassification analysis using Grad-CAM in patients with FK. The optimal decision threshold of FK in VGG19 was
0.39. The probability of FK [P(FK)] is presented at the top of each image. The overlay heatmap with Grad-CAM analysis high-
lighted the areas that influenced model prediction. Image (E) was misclassified as BK with the P(FK) of 0.21; this was lower than
the decision threshold.
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further adopted the ensemble technique, which used multiple
learning algorithms to obtain better predictive performance;
the F1 score increased to 83%.

Because for MEDLINE searching ("corneal ulcer" OR
keratitis) AND [artificial intelligence (MeSH Terms), December
2019], we found only 1 study using CNN-based models to
diagnose canine ulcerative keratitis and classify lesions into
superficial and deep corneal ulcers.29 The authors showed that
ResNet and VGGNet achieved accuracies over 90% for
classifying normal corneas, corneas with superficial ulcers, and
corneas with deep ulcers.29 They suggested that a CNN with
multiple image classification models could be used as an
effective tool for determining corneal ulcers but did not take
this step themselves29 and did not take into account the type of
infection. In 2020, Xu et al30 published a study that used 3 classic
deep architectures: VGG16, GoogLeNet-v3, and DenseNet on a
large data set of 2284 images (867 patients) to classify 4 types of
infectious keratitis (ie, BK, FK, herpes simplex keratitis, and
others). The authors demonstrated that deep models achieved an
accuracy of 50.83% in VGG16, 55.83% in GoogLeNet-v3, and
64.17% in DenseNet.30 Despite using a large image data set, over
half of the images were of herpes simplex keratitis and other
corneal diseases. Moreover, mixed infection between bacteria
and fungus and other infections were not considered. This
heterogeneous data set might result in limited model performance
when using image-level features. Although the authors applied
sequential-ordered sets technique to reform the model, centroid
annotation of the lesion and complex partitioning were required.
Gu et al34 showed promising results of applying DL for diagnosis
corneal disease (ie, infectious keratitis, noninfectious keratitis,
corneal dystrophy or degeneration, and corneal neoplasm),
although the specific types of infectious keratitis were not taken
into account in their algorithm and only 1 CNN architecture
(Inception-v3) was studied. Recently, Kuo et al proposed a DL

approach based on 288 images using a single architecture
(DenseNet algorithm) for diagnosis between FK and non-FK.
Their model achieved a diagnostic accuracy at 69.4% with the
sensitivity and specificity of 71.1% and 68.4%, respectively.35

Unlike our study, we used a larger data set of MK (2167 images)
and compared the performances of 3 different architectures.
Although we included cases with both therapeutic and definite
diagnosis, we confirmed that all patients with therapeutic
diagnosis were resolved by only single treatment approach
(either antibacterial or antifungal medication). In addition, the
standard regimen for BK in our center is the combination of
fortified antibacterial eye drops: cefazolin (50 mg/mL) and
gentamicin (14 mg/mL), not fluoroquinolone, which contains
antifungal activity.36 As a result, we found that the accuracy for
the MK classification was highest in VGG19 (78%), and this
value was improved after applying an ensemble model (83%).

Previous estimates of clinician accuracy in classifying
infectious keratitis have ranged from 49.29% for the average
performance of an ophthalmologist provided with the image
only to 57.16% for the average performance of an ophthal-
mologist provided with the image together with medical
history.30 Those with more experience fellows and attending
staff performed significantly better than residents, indicating
that the human level classification essentially depends on
clinical expertise.30 Given a large data set training, a DL-based
model can achieve higher performance compared with human
ability and conventional predictive models.14–16,30 For images
that were misclassified, we performed further analysis and
found that the probability of FK varied with image brightness.
Therefore, good image composition and optimal brightness
were required for achieving the optimal model performance.

For clinical applications, our CNN models, particularly
ensemble learning, are potentially helpful for clinicians in
discriminating between BK and FK. They can be considered as

FIGURE 4. Variation of prediction
probability on brightness adjustment
in a misclassified image. A, Images
with brightness adjustment by adding
a constant of 2200, 2100, 0, 100,
and 200 to all pixels and (B) graph
demonstrates prediction probability (y
axis) at different pixel value adjust-
ments (x axis). C, Box plot illustrates an
optimal brightness range of image for
achieving correct classification which
was 24.70 (range 9.63–45.20). The
lower and higher image brightness
can lead to image misclassification.
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an adjunctive tool that provides rapid provisional diagnosis apart
from laboratory tools, for example, smear, cultures, and PCR. The
DL-based models provide several benefits for high-yield, non-
invasive, and rapid response (within a few minutes). Moreover,
they can be applied simply and in most clinical settings if
configured using online interfaces or mobile applications.

There are some limitations to this study. First, our study
only focused on BK and FK. Therefore, our model cannot be
used for other types of corneal infections, such as viral,
protozoal, or mixed corneal infections; excluding these other
cases may overestimate the diagnostic properties. Further
studies using DL with more complicated classification models
are necessary to establish a comprehensive model for
diagnosing all kinds of infectious keratitis. Second, we also
included images from patients with therapeutic diagnosis
(38.7%); thus, misclassification bias could not be ruled out.
Third, the DL-based image analysis approach depends greatly
on image orientation, focus, light exposure, camera settings,
resolution, and overall image quality. The current model was
developed based on a single-center data set derived from a
high-resolution camera setting. The model accuracy possibly
dropped when using low-resolution images or images sent
through instant messaging platforms. Furthermore, the model
could be sensitive to the brightness of images, in which
augmentation for brightness was not applied. Finally, the
performance of the model could be reduced if used with eyes
that have a different anatomical structure, that is, other
populations with different ethnicities, having other ocular
pathology (eg, pterygium, pingueculae, and arcus senilis), and
patients with previous corneal surgeries (eg, corneal trans-
plantation, limbal stem cell transplantation, and intracorneal
ring segment insertion). Clinical expertise and laboratory
investigation should be considered.

In conclusion, we developed a DL prototype called
DeepKeratitis to assist ophthalmologists to rapidly discrimi-
nate between FK and BK. Our findings, when developed,
should have positive impacts on public health, especially in
developing countries where specialists and laboratory facili-
ties are limited. Moreover, this approach could reduce the
number of unnecessary cornea specialist consultations and
facilitate telehealth consultation. Further studies with large
image data sets using various types of infectious keratitis and
realistic data augmentation such as brightness randomization
would be necessary for making the model more robust before
adoption in real-world clinical settings.
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