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Objectives: To examine the direct effects of risk factors associated with the 5-year costs of care in persons with alcohol use 
disorder (AUD) and to examine whether remission decreases the costs of care. Methods: Based on Electronic Health Record 
data collected in the North Karelia region in Finland from 2012 to 2016, we built a non-causal augmented naïve Bayesian 
(ANB) network model to examine the directional relationship between 16 risk factors and the costs of care for a random 
cohort of 363 AUD patients. Jouffe’s proprietary likelihood matching algorithm and van der Weele’s disjunctive confounder 
criteria (DCC) were used to calculate the direct effects of the variables, and sensitivity analysis with tornado diagrams and 
analysis maximizing/minimizing the total cost of care were conducted. Results: The highest direct effect on the total cost 
of care was observed for a number of chronic conditions, indicating on average more than a €26,000 increase in the 5-year 
mean cost for individuals with multiple ICD-10 diagnoses compared to individuals with less than two chronic conditions. 
Remission had a decreasing effect on the total cost accumulation during the 5-year follow-up period; the percentage of the 
lowest cost quartile (42.9% vs. 23.9%) increased among remitters, and that of the highest cost quartile (10.71% vs. 26.27%) 
decreased compared with current drinkers. Conclusions: The ANB model with application of DCC identified that remission 
has a favorable causal effect on the total cost accumulation. A high number of chronic conditions was the main contributor 
to excess cost of care, indicating that comorbidity is an essential mediator of cost accumulation in AUD patients. 
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I. Introduction

Alcohol use disorders (AUDs) are characterized as chronic 
and relapsing conditions associated with high cost of care 
[1-3]. The overall economic burden of AUDs is remarkable, 
varying between 40 and 58 billion euros (€) in Europe [4,5]. 
	 The clinical course and prognosis of AUD in treated sam-
ples are known to be affected by several factors, including 
severity of the AUD, demographic and socio-economic fac-
tors, and mental health comorbidity [6-9], and long-term ab-
stinence rates in treated populations vary only around 5.8% 
[10,11]. However, long-term studies on predictors of the 
future cost accumulation across social and healthcare service 
systems among this patient group have found mixed results, 
especially regarding the role of achieving stable remission 
[12-14]. Age, gender, employment status, co-occurring men-
tal health problems, and abstinence status have all been asso-
ciated with healthcare cost accumulation among individuals 
with AUD [14,15]. 
	 Electronic Health Records (EHRs) provide extensive in-
formation on individual health, and the performance of the 
treatment system and machine learning techniques have 
proved to be useful in predictive modeling based on these 
data [16-20]. Research on predicting healthcare costs in 
high-need patients is also gaining interest [21]. However, 
there has still been very little research regarding the causal 
links and direct effects between various risk factors and 
treatment costs among high-need AUD patients.
	 In this study, we aimed to identify the causal associations of 
various socio-economic and health-related factors with the 
5-year cost of care for a clinical cohort of AUD patients. The 
specific aim was to assess the causal effect of AUD remission 
on the cost of care. We hypothesized that remission has a 
cost decreasing effect. We further produced a profile of inde-
pendent variables’ values maximizing and minimizing costs 
during 5 years of follow-up, based on sensitivity analysis (SA) 
among variables. 

II. Methods

1. Sample
To examine the magnitude of 16 risk factors on cost ac-
cumulation, we used a random sample (n = 363) of AUD 
patients identified through EHRs based on alcohol-related 
ICD-10 (the International Statistical Classification of Diseas-
es and Related Health Problems, 10th revision) codes. Figure 
1 presents the research flow. The study cohort was randomly 
sampled from the regional EHR system in the North Karelia 

region in Finland based on the following alcohol-related 
ICD-10 diagnosis codes: G312, G405, G4050, G4051, G4052, 
G621, I426, K292, F100, F101, F102, F103, F104, F105, F106, 
F108, F109, K860, K700, K701, K702, K703, K704, K709, 
T510, T511, T512, T513, T518, T519, X45, and X69 (see 
Appendix 1 for more detailed information). Retrospective 
sampling included the years 2011 and 2012. Of the identified 
overall AUD population of (n = 6,246) individuals, we first 
formed a random cohort of 396 individuals by using Excel 
random sampling, and their health service use cost data were 
retrieved from the EHRs for the years from 2011 to 2016. 
We then excluded individuals who died or remitted in 2011 
because we were not able to explicitly identify which costs in 
2011 were caused before remission and which were caused 
after. Thus, the final study sample included 363 individuals. 
Based on the manual assessment of the EHR data conducted 
by two reviewers, the principal researcher and research as-
sistant, we identified that the cohort represented individuals 
with a severe form of AUD. AUD was defined according to 
the Diagnostic and Statistical Manual of Mental Disorders 
(DSM‐V) and ICD‐10 to include both harmful use and alco-
hol dependence. 

2. Measurement
The examined outcome was the total cost of care. Data on 
the cost of care were used for the years from 2012 to 2016, 
and cost data from 2011 were used as a priori information. 
Specialized care costs were retrieved from the hospital EHR 
system, including all hospitalizations, outpatient visits and 
admissions, and their costs derived from the hospital’s cost 
accounting systems. Primary care costs were retrieved from 
the outpatient EHR system but were underestimates of the 
true costs, as the primary care database did not include e.g. 
private health service use costs (see Appendix 2 for more 
information). Total costs were discretized to quartiles. In the 
assessment of the causal effect of AUD remission on patients’ 
costs of care, those with continual AUD were used as a refer-
ence, and those who died before the year 2012 were excluded 
from analysis.
	 We identified 16 factors associated with AUD trajectories 
and their costs based on the literature [14,15,22], including 
socioeconomic variables encompassing age, gender, marital 
status, unemployment status, and social problems like home-
lessness, illicit drug use, criminal record, and drunk driving. 
Data on drinking status and socioeconomic variables were 
manually collected from EHRs and the municipal social ser-
vices database mainly as dichotomous variables. In addition, 
clinical variables included the number of ICD-10 diagnoses 
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of chronic conditions (i.e., permanent diagnoses). Diagnoses 
were classified into three groups, according to number: (1) 
none, (2) one, and (3) two or more. Mental health diagnoses 
included ICD-10 codes F00 to F99 (mental and behavioral 
disorders), excluding F10 codes. Drinking status was defined 
as continual AUD or stable AUD remission. Stable remission 
was defined as sustained abstinence or managed use that 
lasted until the end of the follow-up period, with a minimum 
duration of 6 months. Time estimate in AUD remission was 
based on health professionals’ objective notes and diagnosis 
information. Individuals with any shorter abstinence periods 
were included in the continual AUD group. 

3. Ethical Considerations
The study was approved by the Research Ethics Committee 
of the Northern Savo Hospital District (No. IRB00006251). 
Consent was not obtained, as the study was based on registry 
information. Patients were not contacted.

4. Statistical Analysis
We performed the statistical analysis using the Bayesian net-
work approach with the BayesiaLab 9.0 tool [23]. The visual 
form of a Bayesian network is a directed acyclic graph (DAG), 
from which direct and indirect effects, common causes, and 
effects can be discovered and mathematically expressed. A 
DAG consists of nodes presenting random variables Xi, and 
arcs or lines presenting associations between a pair of vari-
ables. A DAG defines a factorization of joint probability of a 
Bayesian network into a product of local probability distri-
butions, one for each variable:
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Sampling:
Individuals with alcohol-related ICD-10 diagnosis

recorded in 2011 2012 in EHRs in North Karelia region
(n = 6,246) 1. Non-residents of

North Karelia were
excluded (n = 468)

2. Only working aged
population (18 65 years)
included

Random sampling of cases

n = 3,935

n = 396

1. Register data gathered for the years 2011 2016
2. Manual revision of EHRs by the principal

researcher and research assistant

Data extraction:

Socio-economic variables:
age, gender, marital status,

unemployment,
homelessness, illicit-drug

use, drunk driving, criminal
record

Clinical variables:
number of chronic

conditions (none, one, 2+),
mental health diagnoses,

drinking status, primary care
costs, specialized care costs

Outcome
variable:

total costs

n = 363

Total included n = 363 individuals
and data for the years 2012 2016

Final study cohort:

Those who died in
2011 2012 were excluded

(n = 33)

Data for the year 2011 was
used as a priori

information

Figure 1. ‌�Diagram of sampling and 
data extraction process. 
ICD-10: the 10th revi-
sion of the International 
Statistical Classification 
of Diseases and Related 
Health Problems, EHR: 
Electronic Health Record.
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able. 
	 Bayesian networks are used for both non-causal (predic-
tive or explanatory) and causal modeling. In the non-causal 
model, the arc describes probabilistic relationships between 
the parent variable(s) and the child variable(s), whereas in 
the causal model it describes the existence of a direct causal 
dependence between two variables. A Bayesian network 
structure is constructed by using a bottom-up modeling ap-
proach (i.e., using structural and parameter learning from 
data), a top-down approach (i.e., manual construction based 
on existing expert knowledge), or a hybrid of the bottom-
up and top-down methods. Multiple algorithms exist for 
structural learning. A supervised learning method with a 
minimum description length (MDL) score [24] uses a naive 
structure, such as augmented naive Bayesian (ANB) and tree 
augmented naive Bayesian (TAN), whereas an unsupervised 
learning method uses greedy search (e.g., maximum span-
ning tree, taboo, and hill climbing) with MDL scoring to 
construct a non-naive Bayesian network. Supervised learning 
is used mainly for predictive modeling, and unsupervised 
learning is adapted for clustering and for the construction of 
a causal Bayesian network. However, human intervention is 
required to verify the correctness of causal directions. 
	 The MDL score optimizes the model complexity against 
the model fit to data and can be expressed at a high level as

for structural learning. A supervised learning method with a minimum description length 

(MDL) score [26] uses a naive structure, such as augmented naive Bayesian (ANB) and tree 
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of causal directions.      
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where BN is a Bayesian network including parameters, DL is a description length in bits, G is 

the graph part of a BN, CPTs are conditional probability tables for each variable X
i in the 

model, and SC is the structural coefficient. With the SC, the effect of the complexity of the 

network to the score can be increased (SC < 1) or decreased (SC > 1). A more detailed level 

MDL equation is provided in Appendix 3. 
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	 A true causal network between the variables and the target 
variables is hard to estimate. Especially in settings with nu-
merous variables, information of a complete causal structure 
is often unknown. Nevertheless, causality can be estimated 
by applying van der Weele and Shiptser’s modified disjunc-
tive confounder criteria (DCC) for calculating the direct 
causal effect of a variable on the target variable from a non-
causal Bayesian network [25,26]. According to the DCC, 
correctly selected confounders are the key for successful 
blocking of all backdoor and frontdoor paths between the 
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Table 1. Characteristics of the study cohort (n = 363)

  Value

Age (yr) 47.28 ± 10.99
Gender
    Male 268 (73.8)
    Female 95 (26.2)
Marital status
    Single, divorced, or widowed 275 (75.8)
    Married or cohabiting 88 (24.2)
Municipality
    Province capital 176 (48.5)
    Other 187 (51.5)
Number of permanent diagnoses
    0 83 (22.9)
    1 78 (21.5)
    2+ 202 (55.6)
Number of mental health diagnoses
    0 277 (76.3)
    1 47 (12.9)
    2+ 39 (10.7)
Income support
    Yes 234 (77.2)
    No 69 (22.8)
Drunk driving
    Yes 71 (22.5)
    No 244 (77.5)
Unemployment
    Yes 179 (49.3)
    No 116 (32.0)
    Missing 68 (18.7)
Illicit drug use
    Yes 65 (17.9)
    No 269 (74.1)
    Missing 29 (8.0)
Total costs 2012–2016 (euro)
    ≤4,486.54 91 (25.1)
    4,486.55–15,746 90 (24.8)
    15,747.10–46,864.35 91 (25.1)
    ≥46,864.36 91 (25.1)
Status 2012
    Drinking 335 (92.3)
    Remitted 28 (7.7)

Values are presented as mean ± standard deviation or number 
(%).
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ment, or of the target, or both”. Van der Weele [26] added 
two additional qualifications to the DCC for practical use for 
confounder controlling and re-named it the modified dis-

junctive confounding criterion, called in this article modi-
fied DCC. Additional definitions are (1) discarding any vari-
able known to be an instrumental variable and (2) including 
variables that do not satisfy criteria but are good proxies for 
unmeasured common causes of treatment.
	 Continuous variables were discretized using a convenience 
distribution for the variable age with 10-year intervals. The 
variables implying costs were discretized to quarters having 
25% of observations in each class. The outcome variable was 
cumulative healthcare costs (totalcost_2012–2016), which 
was discretized into equal quartiles, qualitatively described 
as “low cost” (≤€4,486.54), “medium cost” (€4,486.55–
€15,746.10), “high cost” (€15,746.11–€46,864.36), and “very 
high cost” (€46,864.37–€1,180,863.75). 
	 Supervised ANB learning was used in the study to con-
struct a Bayesian network. To find the optimal complexity 
of the model in the ANB learning phase, an SC analysis was 
performed as part of MDL scoring, and the value SC = 0.6 
was used in the analysis.
	 The result was a non-causal ANB network model with 16 
independent variables. BayesiaLab allows every variable and 
their combinations to be fixed to certain values. For example, 
the variable “status2012” can be fixed to the value “remitted” 
= fixed to 100%. Then the model gives the values of the out-
come in that hypothetical case that individuals had an AUD 
remission. We analyzed the probabilistic effect of indepen-
dent variables by fixing each variable’s values separately to be 
100%.

Criminal background

Number psychiatric diagnoses

Totalcost_2012 2016

Drunk driving

Gender
Marital status

Income support

Number somatic diagnoses

Status 2012

PHC costs 2011

Specialized care costs 2011
Unemployment

Homelessness

Municipality

Age

Druguse

Figure 2. ‌�The augmented naive Bayes 
model of factors associated 
with the outcome variable total 
costs (totalcost_2012–2016). 
Node sizes express each vari-
able’s direct effect on the tar-
get node. Node colors indicate 
node force, with green being 
the highest and red lowest, 
and yellow in between. Lines 
between nodes indicate the 
relationship between them 
(Kullback-Leibler divergence).

Table 2. Variables’ direct effects on and contributions to the tar-
get (totalcosts_2012–2016)

Variable
Direct effect 

on target (€)

Contribution 

(%)

Number of somatic diagnoses 26,345.44 37.5
Specialized care costs in 2011 1.10 13.6
Drunk driving –12,896.21 11.1
Age 454.26 8.8
Income support 12,269.91 8.3
Gender 8,105.01 6.2
Unemployment –5,668.21 4.6
Homelessness –7,900.20 3.4
Primary health care costs in 2011 2.05 1.7
Municipality –234.42 1.4
Drug use 1,465.75 1.2
Marital status –1,038.56 0.7
Number of psychiatric diagnoses 553.47 0.6
Status in 2012 –326.87 0.3
The direct effect of each variable was calculated as the delta 
mean of the target variable when conditioning on maximum vs. 
minimum value of the variable one at a time, while others were 
fixed.
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Table 3. Fixation table demonstrating values of the outcome variable (totalcosts_2012–2016) when the model is fixed to selected 
values (socio-economic variables)

Model# Fixation Quartile Values of total costs of care (%)

1 No fixation Q1 25.1
Q2 25.1
Q3 25.1
Q4 24.7

4 Municipality, province capital = 100% Q1 21.6
Q2 23.9

  Q3 25.6
  Q4 29.0

5 Age, ≤35 yr = 100% Q1 36.0
Q2 23.0

  Q3 19.7
  Q4 21.3

6 Age, 36–45 yr = 100% Q1 25.3
Q2 28.2

  Q3 25.4
  Q4 21.1

7 Age, 46–55 yr =100% Q1 20.7
Q2 30.4

  Q3 28.2
  Q4 20.7

8 Age, ≥56 yr =100% Q1 24.0
Q2 16.7

  Q3 23.9
  Q4 35.4

9 Marital status 0 (single, divorced, widowed) = 100% Q1 24.7
Q2 25.1

  Q3 25.1
  Q4 25.1

10 Marital status 1 (married or cohabiting) = 100% Q1 26.1
Q2 25.0

  Q3 25.0
  Q4 23.9

11 Gender, male = 100% Q1 26.9
Q2 24.2

  Q3 26.5
  Q4 22.4

12 Gender, female = 100% Q1 20.0
Q2 27.4

  Q3 21.0
  Q4 31.6

Model 1 shows results of an unfixed model; Models 2–38 are done by fixing one separate value. Q1 and Q4 represents the lowest 
costs and highest costs, respectively.
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Table 4. Fixation table demonstrating values of the outcome variable (totalcosts_2012–2016) when the model is fixed to selected val-
ues (clinical variables)

Model# Fixation Quartile Values of total costs of care (%)

13 Status in 2012, Continuous drinking = 100% Q1 23.6
Q2 23.4

  Q3 26.3
  Q4 24.7

14 Status in 2012, Remission = 100% Q1 42.9
Q2 21.4

  Q3 10.7
  Q4 25.0

15 Number of somatic diagnoses, 0 (no diagnosis) = 100% Q1 44.6
Q2 38.5

  Q3 14.5
  Q4 2.4

16 Number of somatic diagnoses, 1 (one diagnosis) = 100% Q1 37.2
Q2 33.3

  Q3 21.8
  Q4 7.7

17 Number of somatic diagnoses, 2 (two or more diagnoses) = 100% Q1 12.4
Q2 16.3

  Q3 30.7
  Q4 40.6

18 Number of psychiatric diagnoses, 0 (no diagnosis) = 100% Q1 28.2
Q2 26.7

  Q3 24.2
  Q4 20.9

19 Number of psychiatric diagnoses, 1 (one diagnosis) = 100% Q1 17.0
Q2 17.0

  Q3 34.1
  Q4 31.9

20 Number of psychiatric diagnoses, 2 (two or more diagnoses) = 100% Q1 12.8
Q2 23.1

  Q3 20.5
  Q4 43.6

21 Specialized care costs in 2011, Q1 = 100% Q1 30.7
Q2 28.6

  Q3 19.8
  Q4 20.9

22 Specialized care costs in 2011, Q2 = 100% Q1 28.6
Q2 20.9

  Q3 26.3
  Q4 24.2

Continued on the next page.
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	 Following the modified DCC, we examined the effect of 
AUD remission in 2012 (continuous drinking vs. remission) 
by fixing marginal distributions of all other independent 
variables except drinking status (status2012). We analyzed 
the variables associated with the variable status2012 (con-
tinuous AUD/AUD remission) by a semi-structured search 
with status2012 as the target. The following variables were 
associated with status2012: drug use (strongest effect), 
homelessness, criminal background, gender, marital status, 
and income support, fulfilling the criteria of the DCC. In a 
similar analysis, we found the following variables to be as-
sociated with the outcome totalcost_2012–2016: number of 
somatic diagnoses, age, income support, municipality, and 
specialized care costs 2011. The variable “income support” 
was the only variable associated with both the outcome and 
index variable status2012. We also used the variable “number 
of psychiatric diagnoses” in ANB modeling for a measure-

ment of psychiatric background.
	 We used Jouffe’s proprietary likelihood matching (PLM) al-
gorithm, which implements the modified DCC and allowed 
us to estimate the independent variables’ causal effect on the 
target while holding others constant [27]. 
	 An SA among variables allows the identification of com-
binations of variable values that have the maximum or 
minimum effect on the target variable. SA was performed 
twice using hard evidence, showing first the maximum and 
then the minimum effect on costs (target variable totalc-
ost_2012–2016).
	 A tornado diagram is a design for SA. The diagram consists 
of two-sided horizontal bars to visualize the factors with the 
largest impact (positive or negative) on the outcome variable. 
The widest bar showing the largest impact is placed at the 
top. Bars to the right of the midline show the positive effect 
on the outcome variable, whereas bars to the left represent a 

Table 4. Continued

Model# Fixation Quartile Values of total costs of care (%)

23 Specialized care costs in 2011, Q3 = 100% Q1 24.2
Q2 35.1

  Q3 26.4
  Q4 14.3 

24 Specialized care costs in 2011, Q4 = 100% Q1 16.7
Q2 15.5

  Q3 27.8
  Q4 40.0

25 Primary health care costs in 2011, Q1 = 100% Q1 29.5
Q2 23.8

  Q3 22.9
  Q4 23.8

26 Primary health care costs in 2011, Q2 = 100% Q1 24.7
Q2 28.5

  Q3 20.8
  Q4 26.0

27 Primary health care costs in 2011, Q3 = 100% Q1 24.2
Q2 26.4

  Q3 26.4
  Q4 23.0

28 Primary health care costs in 2011, Q4 = 100% Q1 21.1
Q2 22.2

  Q3 30.0
  Q4 26.7

Model 1 shows results of an unfixed model; Models 2–38 are done by fixing one separate value. Q1 and Q4 represents the lowest 
costs and highest costs, respectively.
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Table 5. Fixation table demonstrating values of the outcome variable (totalcosts_2012–2016) when the model is fixed to selected 
values (social deprivation variables)

Model# Fixation Quartile Values of total costs of care (%)

29 Drunk driving, 0 (no) = 100% Q1 24.7
Q2 24.6

  Q3 24.0
  Q4 26.7

30 Drunk driving, 1 (yes) = 100% Q1 26.8
Q2 26.7

  Q3 29.6
  Q4 16.9

31 Income support, 0 (no) = 100% Q1 39.1
Q2 24.6

  Q3 21.8
  Q4 14.5

32 Income support, 1 (yes) = 100% Q1 21.8
Q2 25.2

  Q3 25.8
  Q4 27.2

33 Unemployment, 0 (no) = 100% Q1 29.3
Q2 17.2

  Q3 24.2
  Q4 29.3

34 Unemployment, 1 (yes) = 100% Q1 23.1
Q2 26.7

  Q3 25.5
  Q4 22.7

35 Drug use, 0 (no) = 100% Q1 26.5
Q2 24.8

  Q3 23.2
  Q4 25.5

36 Drug use, 1 (yes) = 100% Q1 18.5
Q2 26.2

  Q3 33.8
  Q4 21.5

37 Homelessness, 0 (no) = 100% Q1 26.0
Q2 24.6

  Q3 24.0
  Q4 25.4

38 Homelessness, 1 (yes) = 100% Q1 12.0
Q2 32.0

  Q3 40.0
  Q4 16.0

Continued on the next page.
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negative effect. The diagram is presented separately for each 
value of the outcome variable.

III. Results

The dataset with discretization of numerical variables is 
presented in Table 1. Until the end of 2016, 62.8% continued 
drinking, 16.5% died, and 20.7% remitted. The research data 
contained 335 missing values (4.2% of the dataset), whose 
type was missing at random. We input the missing values by 
using an expectation-maximization algorithm. The predic-
tive performance of the model as an area under ROC curve 
(AUC) was 79.2%. 
	 The ANB model is presented in Figure 2. The correspond-
ing table of direct effects is Table 2, and the fixation table of 

the model is Tables 3–5. The main finding was that a high 
number of somatic diagnoses was the strongest contributor 
to the 5-year total costs, causing over €26,000 mean excess 
cost per patient. 
	 Secondly, the causal effect of an AUD remission was pro-
duced by fixing the variable “status2012” by turns to values 
1 = continuous drinking and 3 = remitted. All other vari-
ables were controlled by fixing them to their original value 
distributions. The results presented in Figure 3 confirm our 
hypothesis that remission had a cost-decreasing effect on 
the cost accumulation, as the percentage of the lowest cost 
quartile was 42.86%, compared with the respective figure of 
25.07% for current drinkers. Correspondingly, the percent-
age of the high-cost quartile was among remitters (10.71%) 
and among current drinkers (26.27%), while the proportion 

Table 5. Continued

Model# Fixation Quartile Values of total costs of care (%)

39 Criminal background, 0 (no) = 100% Q1 25.6
Q2 24.9

  Q3 25.9
  Q4 23.6

40 Criminal background, 1 (yes) = 100% Q1 22.9
Q2 25.7

  Q3 21.4
  Q4 30.0

Model 1 shows results of an unfixed model; Models 2–38 are done by fixing one separate value. Q1 and Q4 represents the lowest 
costs and highest costs, respectively.

Low cost

Medium cost

High cost

Very high cost

Totalcost_2012-2016
Mean: 38470.247 Dev: 88678.536
Value: 38470.247 ( 3999.472)

42.86%

21.43%

10.71%

25.00%

Status2012
Mean: 3.000 Dev: 0.000
Value: 3.000 (+2.000)

0.00%

100.00%

Drinking

Remitted

Panel 3

Status2012
Mean: 1.000 Dev: 0.000
Value: 1.000 ( 0.154)

100.00%

0.00%

Drinking

Remitted

Low cost

Medium cost

High cost

Very high cost

Totalcost_2012-2016
Mean: 42469.720 Dev: 87119.104
Value: 42469.720 (+308.499)

23.58%

25.37%

26.27%

24.78%

Panel 2

Low cost

Medium cost

High cost

Very high cost

Totalcost_2012-2016
Mean: 42161.220 Dev: 87246.909
Value: 42161.220 (+3690.973)

25.07%

25.07%

25.07%

24.79%

Status2012
Mean: 1.154 Dev: 0.534
Value: 1.154 ( 1.846)

92.29%

7.71%

Drinking

Remitted

Panel 1

Figure 3. ‌�Panels showing the outcome variable “total cost_2012–2016” in relation to drinking “status2012”. Cost quartiles include: 
low costs, ≤€4,486.54; medium cost, €4,486.55–€15,746.10; high cost, €15,746.11–€46,864.36; and very high cost, 
€46,864.37–€1,180,863.75 and drinking status in 2012 was defined as continuous drinking versus remitted. In Panel 1, 
both variables are unfixed. Panel 2 shows the distribution of costs in the outcome variable “totalcost_2012–2016” when the 
variable “status2012” is fixed for the value drinking=100% and all other variables (not shown) are fixed to their original 
distribution. In Panel 3, the variable “status2012” is fixed for the value remitted=100%, demonstrating the causal change in 
costs (totalcost_2012–2016) after achieving remission.
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of very high costs remained on a rather similar level.
	 Comparative SAs with tornado diagrams are presented in 
Figure 4. The diagrams show that the number of somatic dis-
eases, specialized care costs, number of psychiatric diagno-
ses, age, and drug use have the strongest impact on high and 
very high costs of care. SAs of values that (1) maximize the 
costs and (2) minimize the costs during the 5-year follow-
up are presented in Tables 6 and 7. These profiles strongly 
suggest that the excess costs of AUD patients are caused by 
multimorbidity. Joint probability values less than 1 (in both 
Tables 6 and 7) indicate the results in this cohort, but we 
consider them ungeneralizable outside this cohort. 

IV. Discussion

This is the first time that causality between multiple risk fac-
tors and cumulative healthcare costs among AUD patients 
was studied by using EHR data with the application of van 
der Weele and Shiptser’s modified DCC [24]. As the etiol-

ogy and clinical course of AUD are complex and affected 
by numerous variables, a true causal network between the 
variables and the outcome variable remain unknown. In this 
study, causality was estimated by using the modified DCC 
to calculate the direct causal effect of individual variables on 
the cumulative healthcare costs from a non-causal Bayesian 
network. The results suggest that multiple chronic conditions 
together with high specialized care costs, receiving income 
support, region capital as a place of residence, and age over 
55 years fulfilled the DCC and were the strongest explana-
tory factors maximizing the 5-year total costs. Respectively, 
the prevalence of the lowest cost quartile increased notably 
among those who remitted.
	 The clearest causal relationship was observed between the 
number of chronic conditions and the total costs of care. The 
SA of values maximizing the total cost of care identified a 
high number of chronic conditions to be the main contribu-
tor to the excess cost of care in this cohort and to increase 
the mean total cost by €26,000 per patient. Furthermore, SA 
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Figure 4. ‌�Tornado diagrams showing variables with the strongest impact on the outcome variable. Bars pointing to the right represent 
a positive impact, and bars to the left a negative impact. (A) Panel 1 shows the effect on “low cost” value of the outcome 
variable, (B) Panel 2 on “medium cost”, (C) Panel 3 on “high cost”, and (D) Panel 4 on “very high cost”.
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with tornado diagrams showed that the variables that had 
the strongest impact on the total cost of care varied; for low 
cost value (<€4,486) of the target interval, the number of 
chronic conditions and baseline drinking status (status2012) 
had the strongest role. For the high (≤€46,864) and very 
high cost value (>€46,864.4) of the target interval, the role 
of comorbidity, social problems such as illicit drug use and 

homelessness, specialized care costs, psychiatric comorbid-
ity, and age had the strongest impact.
	 However, there were certain limitations, and they should 
be considered when interpreting the findings. First, the 
cohort was formed retrospectively, and then follow-up was 
managed prospectively. We consider this method better than 
a completely retrospective method. Also, follow-up data 

Table 6. Dynamic profile of values maximizing the outcome variable total 5-year cost (totalcosts_2012–2016)

Node Optimal state Mean value (€) 95% credible interval Joint probability (%)

A priori   42,161 5,315 100
Number of somatic diagnoses 2+ 60,782 575 23.4
Specialized care costs in 2011 >4,588 78,479 5,733 5.3
Income support Yes 81,799 5,668 5.4
Drunk driving No 85,528 5,615 4.4
Municipality Region capital 90,348 5,471 2.6
Gender Female 98,883 5,160 0.8
Unemployment No 104,284 4,849 0.3
Age >55 114,029 4,046 0.04
Criminal background Yes 120,624 3,263 0.02
Drug use Yes 127,284 1,892 >0.00
Homelessness No 127,607 1,803 >0.00
Number of psychiatric diagnoses 2+ 128,804 1,416 >0.00
Primary health care costs in 2011 ≤130 129,191 1,264 >0.00
Status in 2012 Stable remission 130,042 829 >0.00
Marital status Single, divorced, or widowed 130,049 825 >0.00

Table 7. Dynamic profile of values minimizing the outcome variable total 5-year costs (totalcosts_2012–2016)

Node Optimal state Mean value (€) 95% credible interval Joint probability (%)

A priori   42,161 5,315 100
Number of somatic diagnoses No 12,711 23 8.1
Specialized care costs in 2011 ≤191 10,418 1,958 2.6
Income support No 7,602 1,434 0.5
Age ≤35 5,454 1,199 0.09
Municipality Other 5,015 1,063 0.06
Homelessness No 4,836 1,055 0.08
Gender Male 4,621 991 0.07
Unemployment No 411 1,008 0.03
Primary health care costs in 2011 ≤27.4 3,691 917 0.01
Status in 2012 Stable remission 271 683 >0.00
Drug use No 2,601 671 >0.00
Criminal background No 2,565 639 >0.00
Drunk driving Yes 2,505 530 >0.00
Marital status Married or cohabiting 2,474 512 >0.00
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from 33 individuals were missing (8.3%). Second, the DCC 
is used in situations in which the exact causal relations be-
tween variables are unknown. In this study, we were able to 
recognize only a few clear causal relations, such as the effect 
of multiple diseases, to increasing costs. Causalities between 
independent variables remained mostly unknown. The use 
of the DCC has two requirements. All independent variables 
should be known in pre-treatment condition, in this study, 
before the year 2012. Only variables fulfilling this criterion 
were used in this DCC analysis. The other requirement is 
that any unmeasured variable should have no effect on the 
index variable (status2012), the outcome, or both. For ex-
ample, the genetic basis of AUD and motivation to adhere to 
treatment are potential unmeasured variables with an effect 
on AUD remission and costs. We consider these unmea-
sured variables as parent variables to the measured ones, and 
with regard to the motivation, status in 2012 is thought to 
function as a marker condition for motivation. However, we 
cannot rule out the potential bias generated by unmeasured 
variables. Third, the direct effect on the outcome variable 
shown in Table 2 requires that the impact of independent 
variables should be linear. However, some variables show 
an increasing nonlinear association with the outcome in the 
highest values. This was seen in the following variables: age, 
number of psychiatric diagnoses, and drug use. We consider 
that the direct effect analysis showed in Table 2 moderately 
underestimates their impact.
	 Although the results cannot be directly compared with 
those of previous studies due to differences in the study de-
sign and methodologies used, our findings support the pre-
vious evidence regarding the cost-decreasing effect of AUD 
remission [12,13]. Application of the DCC to study patients 
with AUD provided evidence that achieving stable remission 
decreased the total cost of care during the 5-year follow-up. 
Likewise, previous studies have indicated that high preva-
lence of comorbidities explains the increases in cost accu-
mulation, especially among high-cost patients [22], which 
include patients with addictions [28]. Thus, our results are in 
line with those of previous studies identifying an association 
between the number of comorbidities and increased costs of 
care among patients with chronic conditions [22,29,30]. This 
research identified factors that minimize and maximize the 
total cost among AUD patients. The information provided 
by this study, especially regarding the cost-offset pattern of 
achieving AUD remission, supports decision-making in both 
clinical settings and at the policy level.
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Appendix 1.  Alcohol-related ICD-10 codes used in sampling

ICD-10 code Label

G31.2 Degeneration of nervous system due to alcohol
G40.5 Special epileptic syndromes
G40.50 Epilepsia partialis continua [Kozhevnikof]
G40.51 Epileptic seizures related to alcohol
G40.52 Epileptic seizures related to drugs
G31.2 Degeneration of nervous system due to alcohol
G62.1 Alcoholic polyneuropathy
I42.6 Alcoholic cardiomyopathy
K29.2 Alcoholic gastritis
F10 Mental and behavioral disorders due to psychoactive substance use
F10.0 Acute intoxication
F10.1 Harmful use
F10.2 Dependence syndrome
F10.3 Withdrawal state
F10.4 Withdrawal state with delirium
F10.5 Psychotic disorder
F10.6 Amnesic syndrome
F10.8 Other mental and behavioral disorders
F10.9 Unspecified mental and behavioral disorder
K86.0 Alcohol-induced chronic pancreatitis
K70.0 Alcoholic fatty liver
K70.1 Alcoholic hepatitis
K70.2 Alcoholic fibrosis and sclerosis of liver
K70.3 Alcoholic cirrhosis of liver
K70.4 Alcoholic hepatic failure
K70.9 Alcoholic liver disease, unspecified
T51 Toxic effect of alcohol
T51.0 Ethanol
T51.1 Methanol
T51.2 2-Propanol
T51.3 Fusel oil
T51.8 Other alcohols
T51.9 Alcohol, unspecified
X45 Accidental poisoning by and exposure to alcohol
X69 Intentional self-poisoning by and exposure to other and unspecified chemicals and noxious substances

ICD-10: the 10th revision of the International Statistical Classification of Diseases and Related Health Problems.
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Appendix 2. Costing methodology

In this study, patient-level cost data was directly available from two linked EHR (Electronic Health Record) systems. Direct costs 
from specialized care were retrieved from the central hospital’s cost accounting systems for the years 2011 to 2016 including all hos-
pitalizations, outpatient costs, and admissions. Direct costs from primary care were retrieved from municipal EHRs, which include 
patient-level costs. Overall, the accuracy and coverage of the publicly funded social and healthcare services’ cost accounting data are 
considered reliable, especially regarding expensive treatments. North Karelia is a sparsely populated region with only a few private 
social and healthcare providers; thus the coverage of the public data sources is considered comprehensive. However, it should be 
noted that cost data regarding private healthcare was lacking from the primary care EHR registers.
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Appendix 3. Mathematical formula of minimum description length (MDL) score
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where ej is the n-dimensional observation of the row j, PB is the joint probability of this observation from the Bayesian network, n is 
the number of random variables, Xi ||πi|| is the number of parents of a variable Xi, and Si is the number of states of random variable 
Xi [29].


