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Facile synthesis of sewage sludge-
derived in-situ multi-doped 
nanoporous carbon material for 
electrocatalytic oxygen reduction
Shi-Jie  Yuan & Xiao-Hu Dai

Developing efficient, low-cost, and stable carbon-based catalysts for oxygen reduction reaction (ORR) 
to replace the expensive platinum-based electrocatalysts remains a major challenge that hamper 
the practical application of fuel cells. Here, we report that N, Fe, and S co-doped nanoporous carbon 
material, derived via a facile one-step pyrolysis of sewage sludge, the major byproduct of wastewater 
treatment, can serve as an effective electrocatalyst for ORR. Except for the comparable catalytic 
activity with commercial 20% Pt/C via a nearly four-electron transfer pathway in both alkaline and 
acid medium, the as-synthesized co-doped electrocatalyst also exhibits excellent methanol crossover 
resistance and outstanding long-term operation stability. The organic compounds in sewage sludge act 
as the carbon source and the in-situ N and S dopant in the fabrication, while the inorganic compounds 
serve as the in-built template and the in-situ Fe dopant. Our protocol demonstrates a new approach in 
the economic and eco-friendly benign reuse of sewage sludge, and also provides a straightforward route 
for synthesizing excellent carbon-based electrocatalysts as promising candidates for ORR directly from 
a type of waste/pollution.

The high efficiency and environmental benignity of fuel cells has led to them being considered as one of the most 
promising energy conversion technologies today1,2. The cathode oxygen reduction reaction (ORR) is crucial in 
controlling the performance of fuel cells3,4. However, the sluggish kinetics, high cost, and poor stability of com-
mercially available Pt-based cathode ORR electrocatalysts, such as 20% Pt/C, has been a major limiting factor in 
the practical application of the fuel cells5,6. Much effort has therefore been devoted to exploring efficient, durable, 
and low-cost alternative ORR electrocatalysts based on precious metal-free and even metal-free materials7,8.

Recent research efforts have focused on carbon-based materials doped with metal or nonmetal heteroatoms7,8. 
Most carbon-based nanomaterials have desirable mechanical and electrical properties, such as large surface 
areas and high electrical conductivity, making them promising supports and substrates for heteroatom doping. 
Carbon-based nanomaterials have been used as supports for nonprecious metals, mainly geologically abundant 
transition metals such as iron and cobalt, to enable high ORR catalytic performance9,10. Furthermore, metal or 
nonmetal heteroatom doped carbon nanomaterials, particularly M-doped C (M: Fe or Co) and N-doped C, have 
also been demonstrated as promising electrocatalysts for ORR due to their pronounced electrocatalytic perfor-
mance, remarkable methanol tolerance, long-term stability, and relatively low cost. Indeed, many previous studies 
confirm that binary/multi-doped carbon-based nanomaterials (S-N-C, P-N-C, B-N-C, M-N-C, etc.) can signif-
icantly improve the ORR performance of N-doped materials11–15. Significant progress has been achieved in the 
synthesis of heteroatoms of doped carbon-based electrocatalysts. Most of the previous doped carbon nanomate-
rials were derived from multiple hazardous chemicals precursors7,8, so it is challenging but extremely desirable 
to develop high activity multi-doped carbon-based nanomaterials from waste or pollutants via facile methods 
without any activation that are suitable for large-scale production16,17.

Sewage sludge, the major byproduct of wastewater treatment, is defined as a pollutant by the US 
Environmental Protection Agency18. The increasing amount of sewage sludge generated worldwide, and the 
imposition of more stringent regulations, means that its disposal and reuse has become a thorny issue in water 
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and sanitation engineering19,20. The need to develop a method of reusing sewage sludge that is economically, 
socially, and environmentally sustainable is of particular concern. Sewage sludge mainly consists of organic mate-
rial, such as bacterial cells, extracellular polymeric substances, and cellulose, and inorganic compounds in the 
form of various oxides and salts, and a wide variety of heavy metals. Sludge pyrolysis can convert approximately 
half of the organic matter in sewage sludge into renewable liquid fuels and chemical feedstock, and immobilize 
the remainder and the inorganic matter into a stabilized form of pyrolytic residue (biochar)21,22. This residue, a 
carbonaceous matrix byproduct containing various heteroatoms (N, S, Fe, etc.), is generally recognized as an 
alternative adsorbent23.

In this study we demonstrate the synthesis of multi-doped nanoporous carbon materials, as efficient electro-
catalysts for ORR in both alkaline and acid medium, from sewage sludge via a facile, low-cost, and scalable pyrol-
ysis approach without any activation. The organic matter in sewage sludge, some of which is abundant in nitrogen 
and sulfur, is exhibited as the structure-directing substance and the in-situ N, S dopant precursor during this 
pyrolysis process. The iron compounds in sewage sludge can function as both the catalyst, increasing the degree 
of graphitization, and the source of iron for in-situ Fe-doped. Other special inorganic compounds in the sewage 
sludge, particularly the SiO2, act as an in-built template, which prevents agglomeration and results in the forma-
tion of unique porous structures. The sewage sludge-derived in-situ multi-doped nanoporous carbon material, 
with a high specific surface area and numerous heteroatoms, presents remarkably high ORR activity, excellent 
ability for immune methanol crossover, and superior durability in both alkaline and acid medium. Our protocol 
reveals a new approach for the value-added reuse of sewage sludge, and confirms its true potential as a candidate 
for the synthesis of multi-doped nanoporous carbon material as a highly active ORR catalyst.

Results
Textural properties of the as-synthesized catalysts.  The surface morphology and composition of the 
as-synthesized nanoporous carbon material were examined using SEM-EDX. The typical images are shown in 
Figs 1, S2 and S3. Porous structures and complicated composition were observed both for SS-800 and SS-AW. The 
specific porous structure of SS-800 (Figs 1a,b, and S2) was formed during the pyrolysis process, with the pyrol-
ysis and the carbonization of the organic matter in the sewage sludge occurring simultaneously. The inorganic 
content in the sewage sludge, particularly the special component SiO2, acted as the in-built template during the 
synthesized process preventing agglomeration. This resulted in the formation of mesoporous structures with 
complicated compositions (Figs 1a,b, and S2). The obvious Fe and S content observed in the SS-800 suggests that 
the in-situ self-doped heteroatom of this sewage sludge-derived nanomaterial, with the special component of Fe 
and S compounds innate in the sewage sludge as an ideal precursor and nature dopant (Figure S2 and Table 1). 
Many sheets, which were mixture of the C, Ca, Mg, Al, Si, and so on (Figure S2a), can be observed (Fig. 1b). 
Compared with SS-800, SS-AW displayed rougher hierarchical-pore structures with the disappearance of these 

Figure 1.  SEM images of the as-prepared SS-800 (a,b) and SS-AW (c,d) at different magnification.
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sheets (Fig. 1c,d). These sheets were destroyed along with the increase in porosity during the acid washing step, 
which partially removes the inorganic compound and decreasing the ash content (Figure S2b). This also increased 
the surface area of the catalyst. This increase was further evident by the increased BET surface area of the SS-AW, 
compared with that of the SS-800 (Table 1). The continued presence of Fe and S content in the SS-AW (Figure S3 
and Table 1) confirmed the possible Fe and S self-doped heteroatom of this sewage sludge-derived nanomaterial. 
TEM images of the as-synthesized catalyst further reveals specific nanoporous structure of the as-synthesized 
catalyst (Figure S3).

The surface area and pore structure were assessed on the basis of the nitrogen adsorption-desorption  
isotherms. The isotherm curves of SS-800 and SS-AW show the type IV feature (according to the IUPAC clas-
sification), revealed the typical mesoporous features of the sewage sludge-derived nanomaterials (Fig. 2a)24,25. 
The upward trend of the isotherms at a low relative pressure (P/Po <​ 0.4) implied the presence of micropores in 
the nanomaterials24,25, while the upward-type H3 hysteresis loop at P/Po >​ 0.4 suggest that SS-800 and SS-AW 
were rich in mesopores. The slight upward tendency before 1.0 could be ascribed to the internal macropores 
between the accumulation particles in the nanomaterials, which could be observed in the SEM (Fig. 1b,d). The 
BET surface area and total pore volume of SS-AW is 390.14 m2 g−1 and 0.69 cm3 g−1, respectively, much higher 
than that of SS-800 due to the etch-out of the ash content. This surface area increase was accompanied by an 
increase in the average pore size from 3.83 to 6.89 nm, due to the mesopores generated during the acid washing 
process (Table 1 and Figure S4). The pore size distributions curves, calculated from the desorption branch by the 
Barrett-Joyner-Halenda method, further revealed the hierarchically mesoporous structure of SS-800 and SS-NC 
(Figure S4). The intrinsically rough morphology, favorable surface area, and hierarchically porous structure could 
largely expose catalytic active sites and effectively improve the absorption and reduction of oxygen molecules, 
thus facilitating the accessibility of the reactant for ORR13,17.

Molecular structures and surface chemical compositions of the as-synthesized catalysts.  
Raman spectra were used to probe the molecular structures of the as-synthesized catalysts (Fig. 2b). Two char-
acteristic peaks of carbon nanomaterial were clearly observed on both curves of the SS-800 and SS-AW, with the 
vibration band at about 1530 cm−1 assigned to the amorphous graphitic phase. The D peak, centered at 1294 cm−1, 
reflected the degree of disorder, and the G peak, centered at 1580 cm−1, reflected the level of graphitization26,27. 
ID/IG, the ratios of integrated intensity of the D and G band ratios, is widely used to assess the density of defects in 
graphite materials. The ID/IG ratios of SS-800 and SS-AW, obtain from the peak height of the D and G band peak, 
were 1.97 and 2.04, respectively, indicating that the framework structures and functional groups were analogous 
to each other before and after the acid washing process (Fig. 2c,d). Thus, the acid washing process only etched out 
the ash content, rather than changing the carbon network of the as-synthesized catalysts. The much larger ID/IG 
ratios for the as-synthesized catalysts may be caused by the insertion of heteroatoms into the carbon framework, 
thereby resulting in a defective structure26,27.

XPS analysis was used to further examine the surface chemical compositions of the as-synthesized catalysts 
(Fig. 3). Obvious C 1s and O 1s peaks and fine N 1s, S 2p, Si 2p, and Fe 2p peaks were all observed, which is 
consistent with the results of elemental analysis, EDX, and ICP (Fig. 3a and Table 1). The C atoms were formed 
from the organic materials in the sewage sludge, which were subject to carbonization and graphitization during 
the pyrolysis process under the catalytic action of the critical toxic heavy metals uniformly distributed in the 
sewage sludge28. The N, S, and Fe atoms mainly originated from the intrinsic organic and inorganic compounds, 
such as proteins and iron salts, in the sewage sludge abundant in N, S, and Fe, while the Si atom derives from the 
residual SiO2. After the acid washing process, the contents of C increased, due to the etch-out of the ash content. 

SS-800 SS-AW

SBET (m2/g) 29.92 390.14

average pore size (nm)a 3.83 6.89

conc. (wt %)

  Cb 36.57 56.16

  Nb 0.77 1.38

  Sc 0.88 0.45

  Fed 14.10 6.14

  Sic 2.94 0.20

  Ald 1.56 0.01

  Mgd 4.29 0.02

  Cad 0.89 0.02

  Crd 0.05 –

  Mnd 0.40 –

  Nid 0.10 –

  Cud 0.13 –

Table 1.  Properties of the as-synthesized sewage sludge-derived catalysts. aCalculated from the Barrett-
Joyner-Halenda equation using the desorption isotherm. bThe contents of C, N, and S were obtained by 
Elemental Analyze. cThe content of Si was obtained by EDX. dThe contents of metals were obtained by ICP.
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The wishing process could remove most of the unwanted elements (Table 1). The correspondingly increase in N 
content clearly indicated the doped N atoms in the as-synthesized catalysts. The relative levels of S and Fe decrease 
with the leaching of the soluble S and Fe compounds, while the retained S and Fe elements appeared to covalently 
bond in the bulk of the material, instead of on the surface.

High-resolution scans of C, N, and S were performed and de-convoluted to obtain the corresponding atom 
binding states (Figs 3 and S5). In the case of the C1s XPS spectrum, the three peaks at 284.4, 286.0, and 288.4 eV 
were attributable to the sp2-hybridized graphitic carbon C-C, C-O/N/S, and C =​ O configurations, respectively 
(Figure S5a)26,27. The characteristic C-N/S bonds peaks found in the as-synthesized catalysts further confirmed 
that N and S heteroatoms were in-situ doped into the carbon framework during the pyrolysis process. The 
high-resolution N 1s peak of the as-synthesized catalyst fits into four types of nitrogen-containing groups at 
about 399.4, 401.4, 403.0 and 405.5 eV (Fig. 3b)13,14,26, which are typically observed in N-doped carbons. The 
peak located at about 399.4 eV was attributed to pyridinic N species, which was obtained by doping at the edge of 
the graphene layer. The peak located at 403.0 eV was attributed to quaternary N, which was the result of in-plane 
doping. The pyrrolic N species located at about 401.4 eV was assigned to nitrogen atoms in a pentagon structure, 
while the nitrogen species with a high binding energy (405.5 eV) can be assigned to oxidized nitrogen13,14,26. The 
doped N species, particularly the pyridinic and quaternary N species acting as n-type carbon dopants with the 
content of 36.6% and 23.5%, respectively, assist in the high surface polarity and fast charge-transfer rate which are 
favorable to proton and electron transfer for the ORR.

Figure 2.  N2 adsorption–desorption isotherms (a) (A represents absorption and D represents desorption) and 
Raman spectra of the SS-800 and SS-AW (b–d).
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High-resolution S 2p XPS spectra was also used to analyze the sulfur doping in SS-AW (Fig. 3c). The two 
characteristic thiophene-S peaks located at 163.7 eV and 164.7 eV further indicate that S atoms were successfully 
doped into the carbon framework13,14. The presence of O originates from the possible residual oxygen-containing 
groups in the organic precursors (Figure S5b), while the identified Fe3+ in the bulk (Figure S5c) further implied 
the in-situ self-doped iron atoms into the carbon framework of the as-synthesized catalyst13. Thus it can be con-
cluded that the pyrolysis process causes the in-situ N, Fe, and S self-doped into the carbon framework of the 
as-synthesized catalyst, and leads to the formation of pyridinic and quaternary N species and thiophene-S species 
which act as the electrocatalytic active sites13,14,26.

Electrocatalytical activities.  CV measurements were carried out to investigate the electrocatalytic ORR 
activities of the as-synthesized catalysts (Fig. 4a). For the SS-AW, no obvious redox peak except a quasi-rectangular 
voltammogram, the typical supercapacitance effect of nanoporous carbon material, was obtained under N2 sat-
urated solutions. In contrast, a well-defined characteristic ORR peak centered at about 0.72 V, which is close to 
commercial Pt/C (0.73 V) and SS-800, was observed under O2-saturated conditions, indicating a facile ORR pro-
cess on this sewage sludge-derived in-situ self-doped nanoporous carbon material (Fig. 4a). Compared with that 
of SS-800, the larger peak current density of SS-AW is attributable to a synergetic combination of more crumpled 
morphology, larger surface area, and higher pore volume, which can largely expose catalytically active sites and 

Figure 3.  X-ray photoelectron spectra of the as-synthesized SS-800 and SS-AW (a). The high resolution N 1s 
and S 1s XPS spectra of the SS-AW are shown in (b,c), respectively.
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enhance the O2 transport within the catalyst layer, thus facilitating the accessibility of the reactant for ORR10,11,13. 
In addition, the larger peak current density of SS-AW compared with the commercial Pt/C further suggests that 
the self-doped N, Fe, and S would be very effective in enhancing ORR activity and creating larger numbers of 
active sites. The almost identical CV curves of SS-AW electrode before and after the 5000 cycles confirmed the 
long-term operation stability of the as-synthesized sewage sludge-derived carbon-based catalyst.

LSV measurements were performed on an RDE to gain further insights into the ORR catalytic activity of 
the as-synthesized nanoporous carbon materials. The onset potential and current density for the SS-AW in 
O2-saturated 0.1 M KOH solutions were 0.89 V vs. RHE and 5.62 mA cm−2 at 0.45 V vs. RHE, both of which were 
comparable to those of 20 wt % Pt/C (0.91 V vs. RHE and 5.59 mA cm−2 at 0.4 V vs. RHE, respectively), suggesting 
an excellent electrocatalytic activity of the ORR in alkaline media (Fig. 4b). Typically, as the potential became more 
negative the current density simultaneously increased. It can be clearly observed that SS-800 has a higher limiting 
current density than that of nanoporous carbon materials derived at other pyrolysis temperatures (Figure S6a).  
With the acid washing process, the greatly increased limiting current density of SS-AW, which is comparable to 
that of commercial Pt/C, strongly indicates the excellent catalytic activity of ORR in the alkaline environment and 
further supports the CV observations described above.

LSV measurements performed on the RDE under different rotation speeds ranging from 400 rpm to 2000 rpm 
were recorded to gain further insight into the kinetics of the ORR at the SS-AW electrode, and for comparison 
with the commercial Pt/C electrode (Figs 4c and S6b). The limiting current density increases with the increasing 
rotation rate, verified the intrinsic diffusion-controlled ORR. The transferred electron number (n) per oxygen 
molecule can be calculated by the slopes of the K-L plots13,26. The plots of the inverse of limiting current density 
(j−1) versus the inverse of the square root of rotation speed (ω−1/2) for SS-AW and commercial Pt/C both exhibited 
favorable linearity at potentials ranging from 0.2 to 0.5 V versus the RHE electrode (Fig. 4d). The n for SS-AW 
calculated from the slope of the K-L plots was 3.26–3.66, which is close to the commercial Pt/C of 4.0, indicating 
that this sewage sludge-derived in-situ self-doped nanoporous carbon material dominantly proceeds with an 
almost four-electron reduction pathway for ORR, which is similar to the commercial Pt/C catalyst. Therefore, the 
superior ORR properties of SS-AW are highly desirable to reduce O2 almost entirely via a four-electron pathway, 
obtaining maximum energy capacity with a high current13,14,26.

As the stability of the catalysts and the resistance to methanol crossover are two major concerns for practical 
application to fuel cells, the SS-AW was further assessed by the chronoamperometry approach, and compared 

Figure 4.  CVs curves of the as-synthesized SS-800, SS-AW and commercial Pt/C in N2 or O2 saturated 0.1 M 
KOH solutions with a scan rate of 50 mV s−1 (a). The SS-AW-O2-5000 represents the CV of SS-AW after 
continuous cycling of 5000 cycles. LSV curves of SS-800, SS-AW, and commercial Pt/C catalysts in O2-saturated 
0.1 M KOH solutions at the scan rate of 5 mV s−1 with the rotation speed of 2000 rpm (b). LSV curves of SS-AW 
with different rotation speed in O2-saturated 0.1 M KOH solutions at the scan rate of 5 mV s−1 (c), and the K-L 
plots of SS-AW compared with commercial Pt/C (d).
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with the commercial Pt/C catalyst (Fig. 5). A 13.9 h test of SS-AW under constant potentials in O2-saturated 0.1 M 
KOH aqueous solutions showed no obvious catalytic current density attenuation, compared with a 17% decrease 
in the commercial Pt/C under the same conditions, indicating the superior stability of SS-AW over the Pt/C cata-
lyst (Fig. 5a). This higher stability can be attributed to the strongly bonded heteroatoms in the carbon framework, 
particularly after the acid washing process. The strength of the covalent heteroatom-carbon bonds in SS-AW 
could improve its chemical stability and effectively prevent the loss of active sites13,14. The methanol crossover is 
different from that of the Pt/C catalyst, which suffers from a sharp 49% decrease in current after the addition of 
3 M methanol, while the catalytic current density of the SS-AW only show a subtle declination (Fig. 5b). These 
results indicate that the sewage sludge-derived in-situ self-doped nanoporous carbon material SS-AW catalyst 
exhibits excellent durability and outstanding immunity toward methanol crossover effects, thus having potential 
as an ideal ORR electrocatalyst that can be practically applied in direct methanol fuel cells.

Furthermore, the SS-AW also exhibited favorable electrocatalytic activity of the ORR in acidic media (Fig. 6), 
with an onset potential (0.94 V) and reduction current (3.35 mA cm−2 at 0.20 V vs. RHE) a little lower to those of 
the commercial Pt/C (0.95 V and 3.61 mA cm−2 at 0.20 V vs. RHE, respectively) in an O2-saturated 0.5 M H2SO4 
solution (Fig. 6a). The calculated n for SS-AW in acidic environment were 3.17–3.52 (Fig. 6b), which is slightly 
lower than those of the Pt/C catalyst (4.0), reveals it almost four-electron reduction pathway for ORR13,14,26. 
Fig. 6c shows that the SS-AW has a better stability than the Pt/C in acidic environment, while the excellent toler-
ance to methanol poisoning effects in acidic environment was exhibited in Fig. 6d.

Discussion
A unique heteroatom (N, Fe, and S) doped nanoporous carbon material, SS-AW, was synthesized via a facile 
direct pyrolysis process with sewage sludge acting as the “all-in-one” precursor. The as-synthesized nanoporous 
carbon material, which proceeds dominantly with an almost four-electron reduction pathway for ORR, exhib-
ited favorable catalytic activity in both alkaline and acidic environments, with excellent durability and outstand-
ing immunity to methanol crossover effects in alkaline environments. The excellent performance of this carbon 
nanomaterial could be attributed to the synergistic effect of the in-situ N, Fe, and S self-doped into the carbon 
framework, which act as active sites of ORR, and the hierarchically porous structure facilitating mass transport.

The inconspicuous limiting current density is due to the changed O2 penetration depth inside the electrode 
structure along with the changed potential29,30. For the Pt/C electrocatalyst, the O2 reduction is fast enough at 
high overpotential, thus the O2 reduction reaction is limited only on the outer part of the porous electrode, 
and a flat limiting plateau is observed. For the carbon based electrocatalysts, the distribution of electrocatalytic 
sites on the electrode surface is less uniform and the O2 reduction reaction is relatively slower, then some of the 

Figure 5.  Chronoamperometric responses of SS-AW and commercial Pt/C catalyst at −​0.30 V in O2-saturated 
0.1 M KOH solutions at a rotation rate of 1600 rpm (a) and with 3 M methanol added after around 1000 s (b).
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electrocatalyst particles inside the electrode might be in contact with O2 even at high overpotential. Thus no obvi-
ous current density plateau can be observed29,30.

The relatively lower catalytic activity of the as-synthesized SS-AW in H2SO4 solution may be due to quinine 
system of the carbon based electrocatalysts which is capable of reducing oxygen catalytically only in a strong 
base media31,32. It has been proposed that the semiquinone radical anion of the quinine systems is responsible 
for the high oxygen reduction activity of carbon materials in the solutions of high pH. In the solutions of low pH 
the semiquinone radical is protonated and in this case there is no evidence for the electrocatalysis of the oxygen 
reduction process31. Quantum chemical calculations further confirmed these experimental observations32.

The sewage sludge, which consists of organic material, mainly bacterial cells and bio-macromolecules, and 
inorganic components in the form of silica, iron salts, calcium oxide, alumina, magnesium oxide, and a wide 
variety of transition metals, act as a “all-in-one” precursor during the pyrolysis process18–20. The chemical con-
tamination in the sewage sludge have important influence on this preparation. The special carbon framework of 
the as-synthesized catalyst stemmed from the carbonization and graphitization of organic materials in the sewage 
sludge under the catalytic action of the critical toxic heavy metals, with an in-built inorganic template to prevent 
agglomeration during the pyrolysis process. The special component of N, Fe, and S compounds innate in the 
sewage sludge, such as proteins and iron salts, worked as an ideal precursor and nature dopant for the in-situ N, 
Fe, and S self-doped into the carbon framework of the as-synthesized catalyst. All those type of chemicals, which 
were properly provided for the synthesis of this efficient and stable electrocatalyst, were the usually composed of 
sewage sludge. Thus, although the chemical contamination in the sewage sludge would vary from one wastewater 
treatment plants to another, the sewage sludge-derived catalyst in this research could be taken as a representative 
materials.

The acid washing step not only increased the electrocatalytic active contents, the surface area, and the total 
pore volume of the catalyst, but also enhanced the formation of the intrinsically rough morphology and the hier-
archically porous structure of the catalyst, which could largely expose catalytic active sites and effectively improve 
the absorption and reduction of oxygen molecules, thus facilitating the accessibility of the reactant for ORR. 
Furthermore, the leaching of solubility compounds also ensured the high stability of the SS-AW.

Accordingly, the unique in-situ N, Fe, and S self-doped nanoporous carbon material we synthesized via direct 
pyrolysis of the “all-in-one” precursor sewage sludge exhibited favorable electrocatalytic activity, with excellent 
stability and durability. The efficient electrocatalytic properties of the SS-AW may be attributable to the com-
bined effects of the intrinsically rough morphology, favorable surface area, and hierarchically porous structure, 
which largely exposes catalytically active sites and effectively improves the absorption and reduction of oxygen 

Figure 6.  LSV curves of SS-800, SS-AW, and commercial Pt/C catalysts in O2-saturated 0.5 M H2SO4 solutions 
at the scan rate of 5 mV/s with the rotation speed of 2000 rpm (a), the K-L plots of SS-AW compared with 
commercial Pt/C (b), Chronoamperometric responses of SS-AW and commercial Pt/C catalyst at 0.30 V in  
O2-saturated 0.5 M H2SO4 solutions at a rotation rate of 2000 rpm (c) and with 3 M methanol added after around 
1000 s (d).
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molecules. The synergistic effect of the in-situ N, Fe, and S self-doped into the carbon framework also acted as 
electrocatalytically active sites for ORR13,14,26. In other words, the unique qualities of this carbon nanomaterial 
and it excellent catalytic activity of ORR stem from the particular composition of sewage sludge and the proper 
utilization of almost all the components during the synthesized process.

Although there are several carbon nanomaterials generated for natural biomass been reported13,14,26, to the best of 
our knowledge, this is a rare report on cost-effective fabrication of multi-doped nanoporous carbon material without 
activation from waste/pollution as an efficient electrocatalyst for ORR in both alkaline and acidic environments. 
The levels of sewage sludge worldwide are increasing, with about 30 million tons in China, 74 million tons in Japan, 
5.6–7 million dry tons in the US, and 9.8 million dry tons in the EU produced annually. The development of more 
cost-effective and environmentally benign value-added reuse of sewage sludge is therefore of particular concern33,34. 
Our protocol demonstrates the utilization of a proven pyrolysis technique, which is easy to handle and suitable for 
large-scale industrial production, to incrementally convert sewage sludge into an excellent electrocatalyst for ORR. 
Considering that most other doped carbon nanomaterials are derived from multiple hazardous chemicals precur-
sors, our approach of developing high activity in-situ self-doped carbon-based nanomaterials from waste/pollution 
via facile methods suitable for large-scale production deserves particular attention.

Methods
Preparation of the sewage sludge-derived nanoporous carbon material.  A dewatered sewage 
sludge sample, as the precursor for the process, was obtained from the Anting wastewater treatment, located in 
Shanghai, China24. All reagents were of analytical grade and were used as received.

The sewage sludge-derived heteroatom-doped nanoporous carbon material was synthesized by a facile 
one-step pyrolysis process in a quartz tube furnace (Figure S1). In brief, the sewage sludge was first freeze-dried 
to remove the water, and the lyophilized sewage sludge was placed in a quartz tube furnace under 100 ml min−1 
of N2 flow for 30 min to completely remove the air. The furnace was heated to the 800 °C at a heating rate of 5 °C 
min−1 under a 50 ml min−1 of N2 flow, and maintained at that temperature for 2 h. After being naturally cooled 
to ambient temperature in the N2 flow, the resultant black powder was obtained and denoted as SS-800. The 
SS-800 was immersed in 20 wt% HF to etch-out the SiO2, leached in 20 wt% HCl at 80 ◦​C for 2 hour three times 
to remove any soluble impurity, then washed until the pH reached 7, and dried at 100 °C to obtain the sewage 
sludge-derived nanoporous carbon material (SS-AW).

Characterization.  Scanning electron microscopy (SEM; EDAX XL30, The Netherlands) was carried out to 
image the morphology of the as-synthesized sewage sludge-derived nanomaterials. Nitrogen sorption/desorp-
tion measurements were taken with an AUTOSORB-IQ instrument (Quantachrome Co., USA) to analyze the 
Brunauer-Emmett-Teller (BET) surface area and the pore size distribution of the nanomaterials. X-ray diffraction 
(XRD) patterns were measured (X’Pert PRO, Philips Co., The Netherlands) to determine the crystal structure of 
the nanomaterials. The Raman spectra were determined by a laser Raman spectrometer (SPEX/403, JY., France), 
with a 532 nm laser excitation. The surface electronic environment of the nanomaterials was investigated by X-ray 
photoelectron spectroscopy (XPS, PHI-5000C, Perkin-Elmer Co., USA). The composition of the as-synthesized 
carbon nanomaterials was measured via an energy-dispersive X-ray spectroscopy (EDX) system directly and an 
inductively coupled plasma spectrometry (ICP, Agilent 720ES, USA) after total digestion in a microwave using 
a mixture of HNO3 +​ HCl +​ HF. The contents of C, N, and O were also determined by an Elemental Analyzer 
system (vario EL III, GmbH, Germany).

Electrochemical characterization.  All the electrochemical tests were carried out on a CHI760E electrochem-
ical workstation (Shanghai Chenhua Instruments Co., China) connected to a rotating disk electrode (RDE) system 
(Pine Research Instrumentation Inc., USA) at room temperature. 0.1 M KOH solution and 0.5 M H2SO4 solution were 
used as the alkaline and acid electrolyte, respectively, and were saturated with N2 or O2 for 30 min prior to electro-
chemical testing. A graphite rode was used as the counter electrode and an Hg/HgO and Hg/HgSO4 electrode were 
used as the reference electrode in the alkaline and acid electrolyte, respectively. The working electrodes were prepared 
by dropping the catalyst ink onto a glassy carbon disk (5.0 mm in diameter) substrate. For each sample, 6.0 mg of the 
as-synthesized sewage sludge-derived nanoporous carbon material or commercial 20 wt % Pt/C catalyst (Alfa Aesar) 
was ultrasonically dispersed in 3 ml of ethanol for 30 min. Then, 10 μ​L of this uniform, well-dispersed ink was dropped 
on the glassy carbon electrode and dried at room temperature. A 5 μ​L solution of Nafion (0.05 wt %) was then pipetted 
on the surface of the catalyst layer and dried at room temperature to form a protective film.

Cyclic voltammetry (CV) curves were obtained in N2 or O2 saturated electrolyte solutions with a scan rate of 
50 mV s−1. Before the measurements, all the CV curves were repeatedly swept in O2 saturated 0.1 M KOH solu-
tions until a steady CV curve was obtained. Linear sweep voltammetry (LSV) measurements were conducted in 
O2 saturated electrolyte solutions with rotating speeds varying between 400 rpm to 2000 rpm at a rate of 5 mV 
s−1. Methanol crossover and durability tests were conducted using the chronoamperometric technique in O2 
saturated electrolyte solutions with a rotation rate of 2000 rpm. The Koutecky-Levich (K-L) equation was utilized 
to calculate the transferred electron number (n) at various electrode potentials13,17. For comparison, the ORR 
activity and stability of a commercial Pt/C catalyst were also measured following the same procedures under the 
same conditions.
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