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Parkinson’s disease (PD) is one of the most common progressive degenerative diseases,
and its diagnosis is challenging on clinical grounds. Clinically, effective and quantifiable
biomarkers to detect PD are urgently needed. In our study, we analyzed data from two
centers, the primary set was used to train the model, and the independent external
validation set was used to validate our model. We applied amplitude of low-frequency
fluctuation (ALFF)-based radiomics method to extract radiomics features (including
first- and high-order features). Subsequently, t-test and least absolute shrinkage and
selection operator (LASSO) were harnessed for feature selection and data dimensionality
reduction, and grid search method and nested 10-fold cross-validation were applied to
determine the optimal hyper-parameter λ of LASSO and evaluate the performance of
the model, in which a support vector machine was used to construct the classification
model to classify patients with PD and healthy controls (HCs). We found that our
model achieved good performance [accuracy = 81.45% and area under the curve
(AUC) = 0.850] in the primary set and good generalization in the external validation set
(accuracy = 67.44% and AUC = 0.667). Most of the discriminative features were high-
order radiomics features, and the identified brain regions were mainly located in the
sensorimotor network and lateral parietal cortex. Our study indicated that our proposed
method can effectively classify patients with PD and HCs, ALFF-based radiomics
features that might be potential biomarkers of PD, and provided further support for
the pathological mechanism of PD, that is, PD may be related to abnormal brain activity
in the sensorimotor network and lateral parietal cortex.

Keywords: Parkinson’s disease, amplitude of low-frequency fluctuation, radiomics, support vector machine,
machine learning, biomarker, sensorimotor network
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INTRODUCTION

Parkinson’s disease (PD) is the second most common progressive
neurodegenerative disease, affecting 1% of the population
over 60 years (Lin et al., 2020; Ren et al., 2021), and it
is becoming more and more prevalent and associated with
increased mortality (Shu et al., 2021). The clinical symptoms of
PD are heterogeneous, presenting a variety of motor symptoms
(e.g., static tremor, bradykinesia, or rigidity) and non-motor
symptoms (e.g., sensory and autonomic dysfunction, cognitive
deficits, or disorders of mood) (Kim et al., 2017; Amoroso et al.,
2018; Lin et al., 2020; Sheng et al., 2021). The diagnosis of
PD is mainly based on clinical manifestations, imaging scans,
and related biochemical examinations, which remain clinically
challenging (Badea et al., 2017; Heim et al., 2017). However,
accurate diagnosis of PD is essential for effective treatment
and favorable prognosis. Moreover, even the main neural and
pathophysiological mechanisms of PD are the degeneration of
the nigrostriatal dopaminergic system; it cannot fully explain
the heterogeneity of symptoms (Tuovinen et al., 2018; Sheng
et al., 2021). The exact mechanism of PD is still not well
understood (Tuovinen et al., 2018; Cao et al., 2020; Lin et al.,
2020; Sheng et al., 2021). Therefore, quantifiable biomarkers
are urgently needed for a more comprehensive understanding
of the physiological mechanism of PD and improving the
diagnosis accuracy.

Resting-state functional magnetic resonance imaging (rs-
fMRI), as one of the most commonly used non-invasive
techniques in neuroimaging, has been widely used in the
diagnosis (Heim et al., 2017; Rubbert et al., 2019; Pang
et al., 2021; Shi et al., 2021a), monitoring of treatment effects
(Morgan et al., 2017; Ge et al., 2020), clinical score prediction
(Hou et al., 2016), and conversion prediction (Hojjati et al.,
2018) in neuropsychiatric diseases. The amplitude of low-
frequency fluctuations (ALFF) is one of the most commonly
used measurements of rs-fMRI. It can detect the amplitude of
spontaneous, low-frequency oscillations of blood oxygen level-
dependent signals to reflect the regularity and physiological state
of neuron autonomous activity in different brain regions (Qian
et al., 2020). This approach provides a reliable and sensitive
measurement to characterize the spontaneous neural activity and
has been widely used in PD (Cao et al., 2020; Tian et al., 2020;
Pang et al., 2021; Shi et al., 2021b).

Radiomics is a data mining method proposed by Lambin et al.
(2012), which can extract high-throughput features from medical
images to characterize the characteristics of the lesions (Lambin
et al., 2012; Aerts et al., 2014). Subsequently, the machine learning
methods are performed for data mining. Recently, rs-fMRI-
based radiomics has been applied to explore neurological disease
biomarkers for disease diagnosis and underlying mechanisms
(Sun et al., 2018; Mo et al., 2019; Wang Y. et al., 2020; Zhao
et al., 2020), including PD (Cao et al., 2020; Shi et al., 2021b).
However, the sample sizes of the above studies are limited and
come from a single center, and the extracted features are the
intensity histogram-based features.

In this study, we aimed to use data from two centers (one
for model training and the other one for external validation of

the model), and ALFF-based multi-order radiomics (including
first- and high-order features) to identify potential neuroimaging
biomarkers for distinguishing patients with PD from healthy
controls (HCs) and explore the underlying mechanisms of PD.
To the best of our knowledge, our study is the first to apply
multi-order radiomics to identify PD biomarkers.

MATERIALS AND METHODS

Participants
The data for this study were obtained from two independent
public available databases. The primary set included 59 patients
with PD and 41 age- and sex-matched HCs (Hu et al., 2015).1

The independent external validation set included 27 patients
with PD and 16 HCs from the NEUROCON dataset, which
were available at Functional Connectomes Project/International
Neuroimaging Data-Sharing Initiative (FCP/INDI) (Badea et al.,
2017).2 Clinical measurements were obtained, which included
the Mini-Mental State Examination (MMSE) and the 17-item
Hamilton Depression Rating Scale (HDRS-17) for the primary
set and the Hoehn and Yahr staging scale (H&Y) and Unified
Parkinson’s Disease Rating Scale (UPDRS, on/off medication)
motor score for the external validation set. Demographic and
clinical information of participants are listed in Table 1. Ethical
approval was obtained by each institution, and all participants
provided written informed consent.

Data Acquisition
Primary Set
All subjects underwent structural and functional MRI scanning
on a 3-T Siemens Verio scanner. Data acquisition parameters can
be found in previous studies (Hu et al., 2015; Shi et al., 2021b).
The structural images were acquired with high-resolution three-
dimensional T1-weighted sequences [slices = 128, repetition
time (TR)/echo time (TE) = 2,530/3.43 ms, field of view
(FOV) = 256 × 256 mm, slice thickness/gap = 1.33/0.5 mm,
matrix = 256 × 192, voxel size = 1 × 1.33 × 1.83 mm3,
and flip angle (FA) = 7]. Rs-fMRI images were acquired
with a gradient-recalled echo-planar imaging (GRE-EPI) pulse
sequences (140 volumes, slices = 31, TR/TE = 2,000/30 ms,
FOV = 220 × 220 mm, slice thickness/gap = 3.5/0.6 mm,
matrix = 64× 64, voxel size = 3.4× 3.4× 4.1 mm3, and FA = 90◦).

External Validation Set
All subjects underwent structural and functional MRI scanning
on a 1.5-T Siemens Avanto scanner. Data acquisition parameters
can be found in the previous study (Badea et al., 2017) and
online (see text footnote 2). The structural images were acquired
with T1-weighted magnetization prepared rapid acquisition
gradient-echo sequences (TR/TE = 1,940/3.08 ms and voxel
size = 0.97× 0.97× 1 mm3). Rs-fMRI images were acquired with
EPI sequences (137 volumes, slices = 27, TR/TE = 3,480/50 ms,
voxel size = 3.8× 3.8× 5 mm3, and FA = 90◦).

1http://dx.doi.org/10.6084/m9.figshare.1433996
2http://fcon_1000.projects.nitrc.org/indi/retro/parkinsons.html
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TABLE 1 | Demographic and clinical data of the two datasets.

Primary set External validation set

PD HC P-value PD HC P-value

Age (years)a 56.46 ± 9.16
(32–71)

56.37 ± 5.01
(47–70)

0.95 68.70 ± 10.55
(45–86)

67.62 ± 11.89
(46–82)

0.76

Sex (M/F)b 35/24 20/21 0.32 16/11 5/11 0.12

Education (years) 11.31 ± 3.43
(2–19)

11.29 ± 4.58
(2–22)

0.99 − − −

MMSEc 29 (28–30)
(24–30)

30 (29–30)
(24–30)

0.017 − − −

HDRS-17c 9 (5–17)
(0–28)

2 (1–3)
(0–10)

<0.001

H&Y − − − 2 (2–2)
(1.0–2.5)

−

UPDRS motor score (off) − − − 28.33 ± 9.27
(10–43)

− −

UPDRS motor score (on) − − − 9.22 ± 5.27
(0–19)

− −

Data are presented as the mean ± SD (range) for normally distributed data or median (interquartile range) (range) for non-normally distributed data.
aThe P-value was calculated using t-test.
bThe P-value was calculated using the chi-square test.
cThe P-value was calculated using the Mann-Whitney test.
Abbreviations: MMSE, Mini-mental State Examination; HDRS-17, 17-item Hamilton Depression Rating Scale; H&Y, Hoehn and Yahr staging scale; UPDRS, Unified
Parkinson’s Disease Rating Scale; M, male; F, female.

Data Preprocessing and Amplitude of
Low-Frequency Fluctuation Calculation
In this study, the data preprocessing was performed using
the toolbox for Data Processing and Analysis of Brain
Imaging (DPABI) (Yan et al., 2016).3 The primary set has
completed the data preprocessing and ALFF calculation, and
the processing flow is detailed in the previous study (Hu
et al., 2015). A similar procedure as described above was used
for processing the external validation set data. In brief, the
preprocessing procedures included the following: removal of
the first six time points (20.88 s); slice timing and spatial
realignment (subjects with head motion >2.5 mm or >2.5◦
were excluded); segmentation of 3D T1-weighted anatomical
images by new segment and registration by the Diffeomorphic
Anatomical Registration Through Exponentiated Lie Algebra
(DARTEL); spatial normalization by DARTEL and resampling
(3 × 3 × 3 mm3); smooth with a 6-mm full-width-half-
maximum Gaussian kernel; band-pass filter (0.01–0.10 Hz);
linear drift, nuisance signal (white matter, cerebrospinal fluid,
and global signal), and 24 head motion parameters were removed.
Subsequently, we obtained the mean ALFF maps by DPABI’s
default algorithm.

Feature Extraction
The mean ALFF maps were segmented into 246 regions of
interest (ROIs) using the Brainnetome 246 atlas (Supplementary
Material). In this study, a total of 432 multi-order radiomics
features were extracted from each ROI, including first-order
intensity histogram-based features (15 features), texture features

3http://rfmri.org/DPABI

(33 features), and features of wavelet transformation in eight
directions [(15 + 33) × 8 = 384 features]. In our study, the
intensity histogram-based features are first-order features, which
are used to characterize the gray level intensity in the image,
using first-order statistics, calculated from the histogram of all
voxels in the image. The texture features and wavelet features are
high-order features. The texture features were able to quantify
the spatial heterogeneity of the intensity level in the image.
For wavelet features, wavelet filters are applied to the original
images to convert original images to versions that focus on the
information at different scales. Wavelet decomposition with all
possible combinations of high (H)- or low (L)-pass filters in each
of the three dimensions (LLL, LLH, LHL, LHH, HLL, HLH, HHL,
and HHH) is applied. In this study, the first-order and texture
features of eight directions were calculated. The definitions and
detailed descriptions of the features can also be found in previous
studies (Aerts et al., 2014; Feng et al., 2018; Zhao et al., 2020; Cui
et al., 2021; Peng et al., 2021) and are listed in the Supplementary
Material. The whole feature extraction process is illustrated in
Figures 1A,B.

Feature Selection, Model Construction,
and Evaluation
In our study, we used the primary set for hyper-parameter
optimization, feature selection, and model training and used the
independent external validation set for external validation of the
model. For feature selection, t-test and least absolute shrinkage
and selection operator (LASSO) were applied, and the support
vector machine (SVM) model with a linear kernel and default
parameter value (i.e., C = 1) was chose as the classifier. The
performance of the model was evaluated with receiver operating
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FIGURE 1 | Schematic outline of the whole study analysis procedure. (A) ALFF maps and brain segmentation with Brainnetome 246 atlas. (B) Intensity histogram-,
texture-, and wavelet transformation-based features were extracted from ALFF images. (C) Feature selection was performed using t-test and LASSO to select
significant features and reduce dimensionality. (D) SVM model was constructed, and ROC curve analysis was employed to quantify the performance of the classifier
in the primary set and independent external validation set. (E) The discriminative features were identified, and correlation analyses were performed to explain the
underlying pathological mechanism of PD. Abbreviations: ALFF, amplitude of low-frequency fluctuation; BN, Brainnetome; LASSO, least absolute shrinkage and
selection operator; SVM, support vector machine; ROC, receiver operating characteristic; PD, Parkinson’s disease.

characteristic (ROC) curve analysis. In addition, the independent
external dataset was applied for validating the generalization of
our model. The whole procedure is illustrated in Figures 1C,D, 2.

First, we performed Z-score standardization on the features
to reduce the influence of the different units imposed by the
units of each feature and improve the performance of the
model. The normalization of the primary and validation set
were performed, respectively. Subsequently, we applied the t-test
(P < 0.05) to select the features with significant differences
between the patients with PD and HCs. Then, LASSO logistic
regression was utilized to further reduce the dimensionality
of the data. For LASSO logistic regression, the regularization
parameter λ controls the number of model features and affects
the performance of the model. So, the grid search method
was optimized to determine the optimal hyper-parameter λ.
According to the previous study (Chen X. et al., 2017; Zhao
et al., 2018), the value of λ in our study was set to (0.05,
0.10, . . ., 0.60). The nested 10-fold cross-validation method
(Ding et al., 2015, 2017; Zhao et al., 2018; Wottschel et al.,
2019; Tu et al., 2020; Zhou B. et al., 2020) was performed
to determine the optimal hyper-parameter λ of LASSO and
evaluate the performance of the model. The outer 10-fold
cross-validation was applied to estimate the performance of the

model, and the inner 10-fold cross-validation was performed to
determine the optimal hyper-parameter (optimal λ), in which
the λ with the highest accuracy was selected as the optimal
λ value.

To avoid the category information leakage, t-test and LASSO
were carried out in a training set of inner 10-fold cross-
validation, not for all subjects. Specifically, in each fold of the
inner 10-fold cross-validation procedure, we had conducted
the above t-test and LASSO on all subjects except one fold
that was taken out. In other words, t-test and LASSO were
only performed in the training set in the inner training set;
no statistical tests were performed on the independent hold-
out test data (inner and outer test set). Thus, analyses were
unbiased in the sense that the training features were selected
independently of test subjects. The whole procedure of nested
10-fold cross-validation was illustrated in Figure 2. To obtain
unbiased estimates of classification error, we repeated the nested
10-fold cross-validation framework 20 times (Oh et al., 2019;
Lin et al., 2020).

For model construction, we used an SVM to construct the
model, where the SVM model adopted linear kernel function
and default parameters (i.e., C = 1). The 10-fold cross-
validation method (repeated 20 times) was applied to evaluate the
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FIGURE 2 | Schematic overview of the nested 10-fold cross-validation classification framework. We determined the optimal λ by grid-search from the set of (0.05,
0.10,. . .,0.60) with 10-fold cross-validation. The λ with the highest classification accuracy was selected as the optimal λ. Abbreviations: LASSO, least absolute
shrinkage and selection operator; SVM, support vector machine.

performance of the SVM model. The mean accuracy, area under
the curve (AUC), sensitivity, specificity, precision, F1 score, and
balance accuracy across all folds (10-folds) and all repetitions (20
times) (Chen et al., 2016; Chen X. et al., 2017; Zhao et al., 2018)
were employed to quantify the performance of the classifier. The
accuracy, sensitivity, specificity, precision, F1 score, and balance
accuracy were defined as follows:

Accuracy = (TP + TN)/(TP + TN + FP + FN)

Sensitivity = TP/(TP + FN)

Specificity = TN/(TN + FP)

Precision = TP/(TP + FP)

Recall = TP/(TP + FN)

F1 score = 2 × Precision × Recall/(Precision + Recall)

Balance Accuracy = 0.5 × (Sensitivity + Specificity)

where TP represents the number of positive samples correctly
classified; TN represents the number of negative samples
correctly classified; FP represents the number of negative samples
incorrectly classified; FN represents the number of positive
samples incorrectly classified.

To obtain the final model, all the participants in the primary
set were used to train the model with the optimal λ value
(Shen et al., 2019; Zhao et al., 2020). Due to the different data
of each fold, the optimal hyper-parameter might be different.
We chose the λ with the highest frequency selected in all folds
as the optimal hyper-parameter. In addition, to evaluate the
generalization of the model, the independent external validation
set was conducted to validate the performance of our model,
where the model parameters (linear kernel function, C = 1)
and selected features were the same as our final model. The
accuracy, AUC, sensitivity, specificity, precision, F1 score, and
balance accuracy were calculated to quantify the performance of
the classifier in the external validation set.

To test the significance of model performances (AUC and
accuracy), permutation tests were performed (Tang et al., 2017;
Shen et al., 2019; Tian et al., 2020). Specifically, we shuffled
the class labels (PD or HC) 1,000 times without replacement
and performed the above-mentioned feature selection and model
construction analysis process each time to obtain the permutated
accuracies and AUCs. The P-value was defined as follows:

P = (1 + NGP)/(1 + N)

where NGP represents the number of permutations that obtained
greater accuracy or AUC than the actual value, and N was the
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TABLE 2 | Classifier performances in the primary and external validation sets.

Accuracy AUC Sensitivity Specificity Precision F1 score Balance accuracy P-value (accuracy) P-value (AUC)

Primary set 81.45% 0.850 86.86% 73.66% 82.59% 83.68% 80.26% 0.001 0.001

Validation set 67.44% 0.667 70.37% 62.50% 76.00% 73.08% 66.44% 0.035 0.030

Abbreviation: AUC, area under the curve.

FIGURE 3 | Classification performances in the primary and independent external validation sets. The receiver operating characteristic curves of the primary (A) and
independent external validation sets (D). The distributions of the permutated accuracy values of the primary (B) and validation set (E). The distributions of the
permutated AUC values of the primary (C) and validation set (F). The red line indicates the values obtained using the real labels. Abbreviation: AUC, area under the
curve.

times of permutation. In this study, the value of N is 1,000. We
performed this analysis on the primary and external validation
set, respectively.

Identification of Discriminative Features
Since we implemented 10-fold cross-validation to evaluate the
performance of our model, the training sets were different
in each fold, and the selected features were also different.
We sorted the selected feature frequencies and selected
features in the top 10 discriminative regions as discriminative
features (Zhou B. et al., 2020; Figure 1E). In each fold, we
could also obtain feature weights. We calculated the mean
weight of discriminative features across all folds. The greater
the absolute value of the feature weight, the greater the
contribution to the model.

Relationship Between the Discriminative
Features and Clinical Measurements
Spearman’s correlation coefficients were calculated to assess
the association between the discriminative features and clinical
measurements of patients with PD in the primary and
external validation set (Figure 1E). P < 0.05 was considered
statistically significant.

RESULTS

Demographic and Clinical Information
The demographic and clinical characteristics of the participants
in the primary and external validation set are summarized
in Table 1. There were no significant differences in age, sex,
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and education duration between patients with PD and HCs
(P > 0.05). The MMSE and HDRS-17 of patients with PD were
significantly lower/higher than that of HCs in the primary set
(Z =−2.39, P = 0.017; Z =−7.07, P < 0.001, respectively).

Classification Performance
In our study, we applied the grid search method to determine
the optimal hyper-parameter λ of nested 10-fold cross-validation
in the primary set. The mean accuracy was 81.45%, and AUC
was 0.850 in the primary set. We chose the λ with the highest
frequency selected in all folds as the optimal λ (λ = 0.45,
Supplementary Figure 1) and constructed the final model. In
the external validation set, our model also achieved great model
generalization (accuracy = 67.44% and AUC = 0.667). The
permutation test showed that the AUCs and accuracies were
significantly higher than chance (P < 0.05). More detailed results
are shown in Table 2 and Figure 3.

Discriminative Features
To determine which features contributed the most to the
classification of patients with PD, we reported discriminative
features and the feature weights. The features of the top 10
discriminative regions were selected as discriminative features
in this study (Table 3 and Figure 4). The discriminative
regions (including 17 features) included the bilateral superior

TABLE 3 | Discriminative features for patients with PD classification.

Lobe Gyrus
regions

Anatomical and
modified cyto-
architectonic
descriptions

Feature Weight

Frontal lobe PrG_L_6_4 Area 4 (trunk region) Minimum 0.2093

Frontal lobe PrG_R_6_4 Area 4 (trunk region) Minimum −0.0612

Temporal lobe ITG_L_7_3 Rostral area 20 Mean-HHL −0.1392

Frontal lobe SFG_L_7_5 Medial area 6 Median-HLL −0.3554

Parietal lobe SPL_L_5_3 Lateral area 5 Minimum-LLL −0.3194

Frontal lobe SFG_R_7_5 Medial area 6 Minimum-HLL −0.3867

Frontal lobe SFG_R_7_5 Medial area 6 Range-HLL 0.2307

Parietal lobe PCun_R_4_3 Dorsomedial
parietooccipital

sulcus

Entropy-HHH −0.1593

Frontal lobe PrG_R_6_4 Area 4 (trunk region) CT-HLL 0.3091

Frontal lobe SFG_R_7_5 Medial area 6 Contrast-LHH −0.4821

Frontal lobe PrG_R_6_4 Area 4 (trunk region) Correlation-HLL 0.1678

Parietal lobe SPL_L_5_2 Caudal area 7 Homogenetity
2-HHH

0.4561

Frontal lobe PCL_R_2_2 Area 4 (lower limb
region)

IMC1-HHH −0.0929

Frontal lobe SFG_R_7_4 Dorsolateral area 6 SRE-HLH −0.1312

Frontal lobe SFG_R_7_5 Medial area 6 GLN-HHL 0.2744

Frontal lobe PrG_L_6_4 Area 4 (trunk region) GLN-HHH 0.1876

Frontal lobe SFG_R_7_5 Medial area 6 RLN-HHH −0.4933

Abbreviations: PD, Parkinson’s disease; PrG, precentral gyrus; ITG, inferior
temporal gyrus; SFG, superior frontal gyrus; SPL, superior parietal lobule; PCun,
precuneus; SPL, superior parietal lobule; PCL, paracentral lobule; CT, cluster
tendency; IMC, informational measure of correlation; SRE, short-run emphasis;
GLN, gray level non-uniformity; RLN, run-length non-uniformity; L, left; R, right.

FIGURE 4 | Discriminative brain regions. The discriminative regions included
the bilateral superior frontal gyrus, precentral gyrus, right paracentral lobule,
precuneus, left inferior temporal gyrus, and superior parietal lobule. The color
bar value represents the absolute value of the weight value of the brain
regions.

frontal gyrus [SFG, SFG_R_7_4, and SFG_L(R)_7_5], precentral
gyrus [PrG, PrG_L(R)_6_4], right paracentral lobule (PCL,
PCL_R_2_2), precuneus (PCun, PCun_R_4_3), left inferior
temporal gyrus (ITG, ITG_L_7_3), and superior parietal lobule
(SPL, SPL_L_5_2, and SPL_L_5_3). The brain regions were
mainly located in the frontal lobe, especially SFG.

Correlations Between the Discriminative
Features and Clinical Measurements
The results of correlation analyses are shown in Figure 5. In
primary set, SFG_R_7_5-GLN-HHL was negatively correlated
with HDRS-17 (Spearman’s correlation r =−0.31 and P = 0.015).
In addition, in external validation set, we found positive
correlations between SFG_R_7_4-SRE-LHL and UPDRS motor
score (on medication) and UPDRS motor score (off medication)
(Spearman’s correlation r = 0.43, P = 0.024; Spearman’s
correlation r = 0.39, P = 0.043).

DISCUSSION

In our study, we selected brain region ROIs and extracted
radiomics features based on Brainnetome 246 atlas, including
intensity histogram-, texture-, and wavelet transformation-based
features, and applied an SVM classifier to construct a model
to classify patients with PD and HCs. We found that the
classification accuracy of the model was 81.45%, and the AUC
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FIGURE 5 | The correlation analyses between the discriminative features and clinical measurements in patients with PD in the primary (A) and external validation (B)
set. Abbreviations: SFG, superior frontal gyrus; HDRS-17, 17-item Hamilton Depression Rating Scale; UPDRS, Unified Parkinson’s Disease Rating Scale; GLN, gray
level non-uniformity; SRE, short-run emphasis; PD, Parkinson’s disease.

was 0.850 in the primary set. In the independent external
validation set, our model has good generalization ability with
an accuracy of 67.44% and an AUC of 0.667. More importantly,
we are the first to apply multi-order (including first- and high-
order features) radiomics to identify PD biomarkers, and our
study demonstrated that radiomics features may be potential
biomarkers of PD.

Previous studies have confirmed the value of rs-fMRI in
neuropsychiatric diseases (Szewczyk-Krolikowski et al., 2014;
Hu et al., 2015; O’Callaghan et al., 2016). Recently, with
the development of machine learning technologies, more
and more studies have used machine learning methods to
explore the classification, prognosis prediction, and physiological
mechanism of neuropsychiatric diseases, including PD (Cao
et al., 2020; Lin et al., 2020; Pang et al., 2021; Shu et al., 2021;
Talai et al., 2021; Zhang et al., 2021). The ROI-based feature
extraction is the most commonly used feature extraction method
(Wang L. et al., 2020; Zhao et al., 2020; Shi et al., 2021b;
Talai et al., 2021), and it is a useful method to reduce the

data dimensionality (Wang L. et al., 2020). Functionally defined
parcelation and high spatial resolution segmentation might be
able to detect a more significant difference, and the anatomical
boundary might not match the functional boundary that has been
reported in previous literature (Rosenberg et al., 2016; Chen et al.,
2018). Therefore, we chose Brainnetome 246 atlas to segment
brain region ROIs in our study. The previous ROI-based feature
extraction methods mostly only extracted intensity histogram-
based features (Peng et al., 2017; Cao et al., 2020; Jin et al.,
2020; Tian et al., 2020; Zhou B. et al., 2020). In recent years,
the value of high-order features (texture and wavelet features)
had been confirmed and widely used in various studies (Feng
et al., 2018; Mo et al., 2019; Zhao et al., 2020; Shu et al., 2021).
To the best of our knowledge, the application of multi-order
radiomics (including first- and high-order features) on PD has
not been reported. We found that our method achieved perfect
classification performance (accuracy = 81.45% and AUC = 0.850)
and also obtained great performance in the independent external
validation set (accuracy = 67.44% and AUC = 0.667), indicating
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that our model had good generalization (Zhao et al., 2020). In
addition, our study indicates that the features that significantly
contributed to the classification were mainly high-order features
(wavelet features). Additionally, only two of the 17 discriminative
features identified by this study were first-order features, the
remaining 15 features were high-order features, and the brain
region identified by both the two features based on first-order
features was also identified by high-order features. Those results
confirmed the value of high-order radiomics features, which may
be a better characterization of lesions than first-order radiomics
features and more suitable as potential biomarkers for PD (Feng
et al., 2018; Mo et al., 2019; Zhao et al., 2020). Those findings are
consistent with the previous results mentioned earlier.

Radiomics can extract high-throughput features from medical
images (Lambin et al., 2012; Aerts et al., 2014; Feng et al.,
2018; Sun et al., 2018; Zhao et al., 2020), and the dimension of
features is much higher than the sample size, which may easily
make the model fall into a “curse of dimension” and model
overfitting. Especially, we extracted not only first-order features
but also high-order features. In addition, many features may
be uninformative, irrelevant, or redundant; therefore, feature
selection and data dimensionality reduction were performed
before our SVM model construction. First, we performed the
t-test (P < 0.05) to identify the significant features between
the patients with PD and HCs. Subsequently, LASSO logistic
regression was performed to choose the most important features
for classification. The t-test is a filter method to reduce the data
dimensionality. It can simply and quickly remove features with
no or less information and has been widely used in machine
learning (Lanka et al., 2020a; Tu et al., 2020; Wang Y. et al., 2020).
It is a built-in algorithm of many software, such as BrainNetClass
(Zhou Z. et al., 2020), MALINI (Lanka et al., 2020b), and MANIA
(Grotegerd et al., 2014), and it is recommended as the first
step in data dimensionality reduction (Lanka et al., 2020b).
LASSO is very suitable for high-dimensional data processing
(Chen X. et al., 2017; Zhao et al., 2018; Wang Y. et al., 2020;
Shu et al., 2021). It can select the most important features,
compress unimportant feature coefficients to zero, and eliminate
multicollinearity between features to achieve the purpose of data
dimensionality reduction and feature selection (Chen et al., 2016;
Chen X. et al., 2017; Zhao et al., 2018; Huang et al., 2020; Wang
Y. et al., 2020; Shu et al., 2021). We used the grid search method
(λ = 0.05, 0.10. . .0.60) and nested 10-fold cross-validation to
determine the optimal lasso hyper-parameter λ and evaluate the
performance of the model. The outer 10-fold cross-validation was
applied to estimate the performance of the model, and the inner
10-fold cross-validation was performed to determine the optimal
hyper-parameter (optimal λ). In our study, in each fold of 10-
fold cross-validation, the mean number of remaining features
after LASSO analysis was 16. LASSO analysis greatly reduced the
number of features, and most of the features appeared repeatedly
in multiple folds. Those confirmed the effectiveness of LASSO
and the stability of the features that we identified (Feng et al.,
2018; Mo et al., 2019; Zhao et al., 2020; Shu et al., 2021). Those
are consistent with the above-mentioned previous results.

Support vector machine is one of the most commonly used
machine models, especially in neuroimaging studies in which

the sample size is relatively limited (Hong et al., 2017; Tian
et al., 2020; Shu et al., 2021; Talai et al., 2021; Zhang et al.,
2021). SVM incorporates several advantageous properties to
reduce overfitting and deliver good generalization performance
despite a small sample size (Hong et al., 2017; Mo et al., 2019).
The SVM classifier was selected to construct the model in our
study. The results demonstrated that our method achieved perfect
classification performance and also obtained great generalization
performance in the external validation set (Table 2 and Figure 3).

We found that, in addition, the discriminative regions
included bilateral SFG, PrG, right PCL, precuneus, left ITG,
and SPL. The features of bilateral SFG and PrG served as
the most important features in classification, and the features
of SFG were correlated with clinical measurements [HDRS-17
and UPDRS motor score (on/off medication)]. The SFG and
PrG are important components of the sensorimotor network,
which plays a central role in the preparation and execution
of motor functions. Multiple previous studies have reported
the sensorimotor network dysfunction in patients with PD
(Tuovinen et al., 2018; Rubbert et al., 2019; Cao et al., 2020;
Chen et al., 2021; De Micco et al., 2021; Wang et al., 2021).
Abnormal brain activation of SFG and PrG was also revealed in
previous studies (Lin et al., 2017; Peng et al., 2017; Cao et al., 2020;
Guo et al., 2020; Tian et al., 2020; Pang et al., 2021). Our study
found that the SFG features were correlated with UPDRS motor
score and HDRS, indicating the association between SFG and PD
symptoms. Many studies indicated that the lateral parietal cortex
(including SPL) plays an important role in PD with movement
dysfunction (Tian et al., 2020), and the precuneus is located in
SPL and involved in visuospatial processing, episodic memory,
self-reflection, and consciousness (Guo et al., 2020). Abnormal
spontaneous brain activities in right PCL (Chen B. et al., 2017;
Guo et al., 2020; Sheng et al., 2021; Suo et al., 2021), left ITG
(Jiang et al., 2016; Chen B. et al., 2017; Guo et al., 2020; Tian et al.,
2020), and STG (Chen B. et al., 2017; Lin et al., 2017) in patients
with PD had also been reported. Those are consistent with the
previous results. Our results indicated that our method could
effectively identify the brain spontaneous abnormal activities of
patients with PD and could be used as a potential biomarker for
PD and provided further support for the pathological mechanism
of PD, that is, PD may be related to abnormal brain activity in the
sensorimotor network and lateral parietal cortex.

Several issues need to be addressed in this study. First,
although the sample size of our study is relatively larger than
that of some machine learning studies (Hou et al., 2016; Tang
et al., 2017) and our data come from two centers, the sample
size is still relatively limited. Therefore, future study with more
participants and multiple centers will improve the generalizability
of our findings. Second, although the field strength of the MRI
scanners and data acquisition parameters of the two datasets are
different, we analyzed the data of the two centers separately.
One was used to train the model; the other one was used to
validate the performance of the model. Both the two datasets
had good classification performance, which further indicated
the good classification performance and generalization of our
model. Third, it has been reported that combining multimodal
data and clinical data can improve the performance of the

Frontiers in Aging Neuroscience | www.frontiersin.org 9 March 2022 | Volume 14 | Article 806828

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-14-806828 February 25, 2022 Time: 15:46 # 10

Shi et al. fMRI-Based Radiomics in PD Detecting

machine learning model (Shi et al., 2021a; Talai et al., 2021),
but the primary set in this study only contained ALFF data.
A subsequent study should incorporate other modal MRI
data, metrics, and clinical data to construct and evaluate
the model. Fourth, previous studies (Lin et al., 2017; Pang
et al., 2021) have reported that patients with PD have
structural and functional abnormalities in the cerebellum, but
the Brainnetome 246 atlas we used in this study did not include
the cerebellum.

CONCLUSION

This study uses the ALFF-based radiomics method to extract
multi-order features and uses an SVM to construct the
model to classify patients with PD and HCs. Good model
performances were achieved in both primary and independent
external validation sets, most of the discriminative features were
high-order features and moderately related to PD symptom
scores, and the identified brain regions were mainly located
in the sensorimotor network and lateral parietal cortex. Our
results indicated that our proposed method can effectively
classify patients with PD and HCs, in which ALFF-based
radiomics features might be potential biomarkers of PD,
and provided further support for the pathological mechanism
of PD, that is, PD may be related to abnormal brain
activity in the sensorimotor network, thalamus, and lateral
parietal cortex.
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