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SUMMARY

Induced pluripotent stem cells (iPSCs) are valuable in disease

modeling because of their potential to expand and differentiate

into virtually any cell type and recapitulate key aspects of human

biology. Functional genomics are genome-wide studies that aim to

discover genotype-phenotype relationships, thereby revealing the

impact of human genetic diversity on normal and pathophysi-

ology. In this review, we make the case that human iPSCs (hiPSCs)

are a powerful tool for functional genomics, since they provide an

in vitro platform for the study of population genetics. We describe

cutting-edge tools and strategies now available to researchers,

including multi-omics technologies, advances in hiPSC culture

techniques, and innovations in drug development. Functional ge-

nomics approaches based on hiPSCs hold great promise for

advancing drug discovery, disease etiology, and the impact of ge-

netic variation on human biology.
INTRODUCTION

Advances in understanding disease biology and drug

development depend on the availability of reproducible

and accurate disease models. The alarmingly high failure

rates of drugs in clinical trials, notably in the case of Alz-

heimer’s disease (AD) (Oxford et al., 2020), are a sign of

the inability of current pre-clinical models to fully reca-

pitulate disease biology and predict clinical outcomes.

To date, it has been standard practice to employ animal

models to study how diseases may manifest and progress

in humans. However, the lack of congruence between ani-

mal models and human diseases (Van Norman, 2019) has

led to failures in translation of numerous pre-clinical and

clinical trial results. Besides animal models, in vitro models

of disease have been mostly based on two-dimensional

(2D) culture of immortalized human cancer cell lines,

such as HeLa cells (Augustine et al., 2021; Wolinetz and

Collins, 2020). While these cell lines have proved very use-

ful in the past, it is important for future development of dis-

ease modeling to obtain multiple cell types from a diverse

range of patients. Indeed, by profiling and modeling a dis-

ease in a range of patient cells, one can begin to understand
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the impact of genetic background on disease. Primary cells

from patients would be an ideal solution to address this

gap. The lack of availability of primary cells from patients,

particularly in the case of neuronal, heart, and pancreatic

tissues, due to their limited in vitro proliferative capacity,

is a major problem. However, induced pluripotent stem

cell (iPSC) technologies (Takahashi and Yamanaka, 2006)

allow the establishment of patient-derived cells carrying

all the genetic alterations underlying a particular disease.

Takahashi and Yamanaka (2006) reprogrammed somatic

cells into iPSCs. Since then,manyprotocols havebeen estab-

lished to differentiate hiPSCs into a range of cell types,

including cardiomyocytes (Lemoine et al., 2017), hemato-

poietic cells (Jeong et al., 2020), neurons (Shi et al., 2012),

glia cells (Canals et al., 2018), and pancreatic beta cells (Pa-

gliuca et al., 2014). These have been used for in vitro disease

modeling (Rowe and Daley, 2019), drug screening (Rowe

and Daley, 2019; Silva and Haggarty, 2020), and autologous

transplantation (Barker et al., 2017; Mandai et al., 2017).

hiPSCs are particularly well positioned to generate suitable

in vitropre-clinical diseasemodels as they (1) recapitulate dis-

easebiologyunderphysiological conditions, (2)possesshigh

proliferative capacity, (3) have the potential to yieldmultiple

cell types, and (4) retain patient genetic signatures. Further-

more, bioengineering methods, such as microfluidics and

syntheticmaterials, have been able tomimic developmental

cues, facilitatingautonomouscellularorganizationofhiPSCs

into complex three-dimensional (3D) organoids (Garreta

et al., 2021). The immense potential of hiPSC-based disease

models in advancing disease biology and regenerativemedi-

cinewas recognized very early on, andhas led to a few exten-

sive efforts, such as the Human Induced Pluripotent Stem

Cell Initiative (HipSci), to bank well-characterized hiPSC

lines as a resource for basic and translational research (Leha

et al., 2016). Together, hiPSC-based models offer a route to

recapitulate human disease biology and create in vitro

patient-specific platforms for drug development (Leha

et al., 2016).

Ever since the human genome was sequenced, there has

been strong interest in unraveling the complex interactions
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between genotype and phenotype through population-

wide studies using genome-wide association studies

(GWASs), as well as whole-genome sequencing (WGS) or

whole-exome sequencing (WES). Such approaches, while

useful in identifying potential disease-related loci and

SNPs, lack the capacity to interrogate the molecular basis

of diseases (Visscher et al., 2012). The rise of multi-omics

technologies has enabled unbiased characterization of bio-

logical systems. Combining these technologies, functional

genomics identifies the relationship between genomics and

phenotypic mechanisms (Figure 1).

In this review, we discuss the use of functional genomics

in exploring genetic variation, advancing hiPSC-based dis-

ease modeling, and in drug discovery. First, we examine

how hiPSC technology can be used to investigate rare dis-

ease variants. Then we discuss how functional genomics

can improve 2D and 3D in vitromodels of hiPSCs formono-

genic and complex diseases. Finally, we explore the value of

functional genomics in facilitating drug screens and devel-

oping personalized medicines.

Uncovering disease-linked genetic variants in hiPSCs

Genetic variants, including single-nucleotide variants

(SNVs) and copy number variants (CNVs), in the coding

and non-coding regions of the human genome can play

an important role in human traits and complex diseases.

Discovering the mechanistic interplay through which

these variants are associated with pathological states by

high-throughput methods (metabolomic, transcriptomic,

and proteomic) is one of the main objectives of functional

genomics (Bonder et al., 2021).

Historically, hiPSCs have mostly been used to model

highly penetrant genetic variants, which lead to substan-

tial phenotypic effects (Itzhaki et al., 2011; Lee et al.,

2009; Liu et al., 2011). Nevertheless, the effects of common

genetic variants, which induce moderate phenotypical

changes, is also a growing area of research, as it can provide

key insights into drivers of complex diseases (Warren et al.,

2017). Because of the small effect size of common disease-

associated risk alleles, a major limitation in the use of

hiPSCs to expose subtle effects of genetic variants is posed

by the lack of sufficiently powered genomic tools (Nazor

et al., 2012; Soldner et al., 2016). Thus, coupling the use

of large-scale cohorts of hiPSCs to functional genomic

studies offers the unique opportunity to investigate how

common disease loci and rare genetic variants can

contribute to cell state in both a physiological and patho-

logical context (Table 1).

Seminal studies have focused on the generation of large-

scale, well-characterized hiPSC libraries from healthy

donors, incorporating accompanying genomic and pheno-

typic data (Carcamo-Orive et al., 2017; Kilpinen et al.,

2017). Comprehensive analysis of the data obtained from
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those libraries demonstrates key detectable effects of com-

mon genetic variance at all phenotypic levels, including

effects on the epigenome, transcriptome, and proteome

(Kilpinen et al., 2017). Mapping of expression quantitative

trait loci (eQTL), which are regions in the genome that har-

bor polymorphisms associated with changes in gene

expression levels, is a common approach to link the effect

of genetic background on mRNA expression. In a study by

Kilpinen et al. (2017), the systematic generation, genotyp-

ing, and phenotyping of 711 hiPSC lines from 301 healthy

individuals identified hiPSC-specific eQTLs, which tag loci

associated with disease. For instance, an eQTL regulating

germline telomerase reverse transcriptase (TERT) expres-

sion is suggested to regulate telomerase activity in a

genotype-dependent manner, indicating distinct cancer

susceptibility among different hiPSC lines.

In amore recent study, Bonder et al. (2021) further scaled

up this population-wide approach by integrating data from

1,367 hiPSC lines obtained from five previous studies (Ba-

novich et al., 2018; Carcamo-Orive et al., 2017; Kilpinen

et al., 2017; Panopoulos et al., 2017; Pashos et al., 2017)

to establish the relationship between genotype and RNA

sequencing (RNA-seq) data. This study revealed 21,548

genes whose expression levels are associated with genetic

variants (eGenes), including eQTLs that mapped on exons,

splicing regions, and alternative polyadenylation. Out of

the eGenes detected, 995 had never been described from

previous studies and mapped to loci that are linked to can-

cer and embryo development. Furthermore, analysis of

hiPSCs derived from patients affected by rare diseases high-

lighted enrichment for expression outliers, indicating the

importance of the study in prioritizing genes that have a

causal mechanism in disease pathogenesis. Last, compari-

son between eQTLs and previously knownGWAShits iden-

tified 836 colocalization events that are specific to hiPSCs.

Overall, this work represents a novel approach to generate

reference datasets that will be pivotal in the identification

of rare variants.

By coupling functional genomics tools with hiPSC differ-

entiation protocols, several studies have identified genetic

variants that can affect gene expression in specific contexts

without being associated with steady-state gene expres-

sion. These include developmental stages (Cuomo et al.,

2020; Jerber et al., 2021); exposure to an environmental

stimulus, such as hormones, drugs, and vitamins (Findley

et al., 2021); and disease contexts, including cardiomyopa-

thy (Ward et al., 2021), myeloid leukemia (Wang et al.,

2021b), and autism (Cederquist et al., 2020). In an effort

to understand regulatory effects of genetic variation on

cell stress during cardiomyopathy,Ward et al. (2021) devel-

oped an in vitro model of hypoxia based on hiPSC-cardio-

myocytes derived from 15 genotyped patients. Integrating

gene expression data with DNA methylation and



Table 1. Considerations when using iPSCs for functional genomics studies

Current recommendations Limitations

hiPSC differentiation

and maturation for

omics measurements

careful consideration of the disease/

phenotype to be modeled; e.g., modeling

chronic aging-related diseases or

multi-systemic diseases

to improve efficiency of hiPSC differentiation:

forward programming, optimization of

culture media

to improve homogeneity of organoids:

by bioprinting or automation

multilineage directed differentiation protocol

not well established, time as limiting factor,

variable efficacy depending on hiPSC lines

forward programming relies on manipulations,

such as transgene overexpression, chemical

treatments, that can induce stress and promote

unexpected alterations in genome, epigenome,

and phenotypes

3D modeling may add complexity and variability,

and reduce scalability

automation can be expensive

bioprinting is of limited access

Individual or pooled

genotype study design

pooled genotype study design in cell villages

is suitable for associating phenotypes to natural

variation in population

because of variability in differentiation efficacy

of hiPSC lines, in pooled study the genotypes

present in the initial cell population need to be

reassessed after differentiation and before any

perturbations. This prevents underrepresentation

of genetic variants due to low differentiation efficacy

in individual genotype studies, it is recommended

to incorporate multiple disease lines to improve

statistical power; add isogenic control lines

pooled design does not allow study of non-

cell-autonomous mechanisms

isogenic control lines may harbor unexpected

off-target edits that affect the phenotypes of

interest

Choice of perturbation

technologies

CRISPR-based perturbation is recommended due

to its adaptability to gain- and loss-of-function

approaches. Genome-wide guide RNA libraries

are readily available for pooled CRISPR screens;

sgRNA can also acts as a barcode and simple

readout for enrichment after phenotypic selection

PROTACs as alternative choice for knockdown of lethal

genes at the protein level

limited selection of existing validated

PROTACs; genome-wide library is not

yet available
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chromatin architecture, they identified novel eQTLs and

described their link to complex traits in a disease-

mimicking setting as well to genetic responses under hyp-

oxia-induced cell stress (Ward et al., 2021).

Continuous efforts in banking large amounts of high-

quality, thoroughly characterizedhiPSCshave allowedpop-

ulation-scale studies to increase steadily in sample size and

frequency (Mitchell et al., 2020). Nevertheless, such studies

are still greatly hampered by the requirement of culturing

hundreds to thousands of donor lines, which is expensive

and time consuming. To improve scalability and further

minimize experimental noise, novel computational algo-

rithms have been established to allow the culture of cells

fromseveral unrelated donors together as ‘‘villages’’ in a sin-

gle dish (Mitchell et al., 2020).Mitchell et al. (2020) describe

the use of Census-seq to associate cellular phenotypes to

each individual donor genotype, while other computa-

tional demultiplexing approaches use single-cell RNA-seq

(scRNA-seq) reads to assign each cell to an hiPSC line in

the pool (Huang et al., 2019; Kang et al., 2018; Xu et al.,

2019). Powell co-workers have demonstrated that the
inter-line variation in gene expression is not altered by

the experimental conditions when comparing hiPSC lines

cultured as villages or separately (Neavin et al., 2021).

Thus, researchers can recognize pool effects and differences

between hiPSC lines not previously documented.

Capturing developmental processes involved in cell

maturation requires long-term hiPSC differentiation, and

most multiplexed studies, including the village approach,

are restricted to a shorter time frame. To tackle this issue,

Jerber et al. (2021) used a multiplexed strategy to map

midbrain neuronal development and maturation through

the differentiation of 215 hiPSC lines from the HipSci

collection. Together, their findings show that pooled differ-

entiation of hiPSCs coupled with scRNA-seq enables mech-

anistic studies of genetic variants and fates during several

developmental stages and diseases (Jerber et al., 2021).

Although promising, such population-scale, pooled exper-

imental design might fail to accurately identify and

measure the effects of non-cell-autonomous traits. Further-

more, it is not yet fully clear whether the interaction

between cells obtained from different donors might alter
Stem Cell Reports j Vol. 17 j 1033–1047 j May 10, 2022 1035
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specific cellular networks. Therefore, care should be taken

when investigating biological processes known to heavily

rely on cell-cell communication (Table 1).

Overall, hiPSC differentiation can be an invaluable tool

to identify the molecular targets of non-coding or disease-

linked genetic variants, providing insights into disease

modeling and therapeutic discovery.

Modeling monogenic diseases

Pathogenic mutations in one specific gene of the entire hu-

man genome can lead to monogenic disorders (Chen et al.,

2020). Over 10,000 monogenic diseases are known (Chen

et al., 2020). Examples include cystic fibrosis, Rett syn-

drome, Huntington’s disease (HD), monogenic diabetes,

and polycystic kidney disease. The combination of func-

tional genomics and hiPSCs can shed light on disease

mechanisms that are difficult to model in in vivo systems

and provide information on possible pathological mecha-

nisms and key controllers of cell fate. For example, Mehta

and colleagues have pioneered the use of 2D culture of

hiPSC-derived cortical neurons from patients with juve-

nile-onset HD to investigate the effect of HD on cortical

neurons (Mehta et al., 2018). Delays in corticogenesis

have previously been implicated in HD, but striatal neu-

rons remain the predominant cell type investigated in

HD studies (Mehta et al., 2018). By combining transcrip-

tomic analysis, electrophysiology, andmorphological mea-

surements of neurites, the authors discovered a slower

functional maturation of HD hiPSC-derived cortical neu-

rons, which could contribute to disease etiology (Mehta

et al., 2018).

Monogenic diabetes appears in multiple forms, with

maturity-onset diabetes of the young (MODY) being most

prevalent (El-Khairi et al., 2021). In this context, murine

models often fail to recapitulate defects in b cell function,

including lack of insulin secretion (El-Khairi et al., 2021).

MODY is frequently associated with mutations in tran-

scription factors, including HNF1A (MODY 3), HNF4A

(MODY1), and HNF1B (MODY5) (El-Khairi et al., 2021).

Multiple mutations in the HNF1B gene are associated

with the development of MODY5, including whole-gene

deletions. Patients with a whole-gene deletion have the

same clinical presentation as those with point mutations

in the HNF1B gene (El-Khairi et al., 2021), suggesting hap-

loinsufficiency. To investigate the effects of gene-dosage,

El-Khairi et al. (2021) characterized isogenic HNF1B

mutant hiPSC lines generated using CRISPR-Cas9 editing.

They found that homozygous deletion of HNF1B hampers

the ability of hiPSC to differentiate in vitro into pancreatic

progenitors, while heterozygous deletion results in a

reduced number of functional b-like cells compared with

the wild-type counterparts (El-Khairi et al., 2021). RNA-

seq shed light on the genes that are differentially regulated
1036 Stem Cell Reports j Vol. 17 j 1033–1047 j May 10, 2022
in response to homozygous or heterozygous knockdown

andmight underlie HNF1B-associated diabetes onset in hu-

mans (El-Khairi et al., 2021). Together these findings are

consistent with a model in which HNF1B haploinsuffi-

ciency in vivo in patients might lead to reduced b cell

numbers at birth and increased diabetes susceptibility later

in life.

Recent investigations into the role of TBX5 in Holt Oram

syndrome (HOS) have presented another example of the

power of functional genomics with hiPSCs to identify

gene interactions causing disease phenotypes in vivo. HOS

is a rare monogenic condition (1:100,000) causing limb

and cardiac abnormalities, including ventricular defects,

due to loss-of-function mutations in the TBX5 gene that

lead to haploinsufficiency (Kathiriya et al., 2021). scRNA-

seq of hiPSC mutants for TBX5 enabled the construction

of gene regulatory networks (GRNs) linked to congenital

heart disease (Kathiriya et al., 2021). GRNs showed that

TBX5 dosage is critical formaintaining cardiac network sta-

bility and pointed out potential genetic interactions dis-

rupted in TBX5-dependent congenital heart defects

(CHDs), such as with MEF2C. Thus, by modeling hiPSC-

derived cell types in vitro, one can understand their poten-

tial contribution to disease states. This reductionist

approach can be extremely beneficial as it permits rapid,

applicable, accurate, and in-depth analysis of many aspects

of disease.

In addition to 2D modeling approaches, the past decade

has seen the growth of 3D technologies. This involves the

generation of miniature organ-like structures in vitro,

which are now termed organoids (Hofer and Lutolf,

2021). While traditional 2D cultures provide high scalabil-

ity and replicability, they restrict cell differentiation and

fail to closely resemble in vivo tissue structures. 3D organoid

cultures, on the other hand, support cell differentiation

and recapitulate the cell-type diversity as well as morpho-

logical and functional features of in vivo organs (Langhans,

2018). Additionally, mechanical properties, such as matrix

stiffness or gel degradability, can be adjusted in these 3D

models to better mimic in vivo cellular behavior and struc-

ture (Jowett et al., 2021). Because of these advantages, orga-

noids are increasingly used to elucidate the role of the

microenvironment and cell-cell interaction in diseases.

For example, fragile X syndrome (FXS), the most common

monogenic cause of autism spectrum disorder (ASD), is due

to CGG trinucleotide repeat expansion in the FMR1 gene

(Kang et al., 2021). FXS forebrain organoids established

from patient-derived hiPSCs have provided insights into

the underlying neurodevelopmental abnormalities that

were not apparent in murine models of the disease (Kang

et al., 2021). This might help explain why drugs that

seem promising in in vivo murine models of disease fail at

clinical trial stage and could assist in future drug screens.



Table 2. Perturbation technologies commonly used in functional genomics

No Technologies Level Types of perturbation References

1 CRISPR

technologies

DNA based on CRISPR-Cas9 and its variants

d CRISPR knockout: gene deletion

by Cas9 nucleases

d CRISPRi: reduction of gene

expression using dCas9

d CRISPRa: upregulation of gene

expression using engineered dCas9

fused with transcriptional activator

d gene knockins: inserting gene into the genome

Deneault et al. (2018),

Liu et al. (2020), Ross et al.

(2020), Smargon et al. (2020),

Tian et al. (2021)

RNA based on CRISPR-Cas13

d RNA degradation

d RNA base conversion

Xu et al. (2021)

epigenome based on engineered dCas9 fused with KRAB repressive

domain, DNMT3A, and DNMT3L

d chromatin editing

Nakamura et al. (2021)

2 overexpression

technologies

DNA based on the delivery of foreign gene into target cells

d transient transfection: episomal transgene expression

d stable transfection: transgene integration into

the host genome

Prelich (2012)

3 RNAi RNA based on RNA-dependent gene silencing mechanism induced

by short RNA molecules

d knockdown of mRNA level

Mohr et al. (2010),

Wang et al. (2020)

4 PROTAC protein based on small molecules designed to degrade target proteins

by ubiquitination and proteasomal degradation

d protein knockdown: reversible reduction of target

protein level, suitable for studying embryonic-lethal genes

Gao et al. (2020),

Sun et al. (2019)

Stem Cell Reports
Review
Functional genomics of hiPSCs can also be combined

with novel technologies to provide new insights into dis-

ease mechanisms (Tables 2 and 3). For example, parallel

translating ribosome affinity purification sequencing

(TRAP-seq) combinedwith RNA-seq has been used to inves-

tigate mRNA ribosomal engagement during human devel-

opment (Rodrigues et al., 2020). As mRNA translation is

affected in Rett syndrome, it has been possible to assess

the functional impact of mRNA interaction with the ribo-

some in the disease context (Rodrigues et al., 2020).

Key to the advancement of our knowledge of monogenic

disorders is a deeper understanding of how genotype af-

fects clinical phenotype. While monogenic disorders are

caused by mutations in one gene, the chromosomal loca-

tion, penetrance, and variable expressivity of a given ‘‘path-

ogenic’’ mutation can vary widely (Goodrich et al., 2021;

Shteinberg et al., 2021). In addition, genetic variation

within families, genetic background, sex, and ancestry-

related features may contribute to heterogeneous clinical

manifestation of the disease (Volpato and Webber, 2020).

Indeed, it has been reported that heterogeneity in hiPSC

phenotypes is predominantly due to the genetic back-

ground of the donor rather than to non-genetic factors

(e.g., passage, culture conditions) (Ho et al., 2021; Kilpinen
et al., 2017). Furthermore, hiPSC-specific eQTLs high-

lighted that hiPSCs can significantly differ from their

source cells in several GRNs (DeBoever et al., 2017; Kilpi-

nen et al., 2017). Cumulatively, inter-individual variation

may have significant impact on various levels of cellular

phenotypes and functions. Apart from the genetic back-

ground, the donor-specific epigenetics landscape that is

retained after hiPSC reprogramming may also affect cell

variability. For example, Polycomb repressive complex

and associated targets have been shown to contribute

significantly to the non-genetic variability seen within

and across individuals (Carcamo-Orive et al., 2017).

As we strive tomove towardmore personalizedmodels of

disease, both specific mutations and genetic background

should be considered in order to tailor an effective treat-

ment to each patient. To this end, the creation of isogenic

lines is key (Figure 2). Anastasaki et al. (2020) described the

generation of multiple isogenic lines that harbor seven

different neurofibromatosis 1-causing mutations engi-

neered into one single male hiPSC line. The study showed

different effects of the various neurofibromin mutations in

2D and 3D in vitro models. As the mutations are all engi-

neered into the same isogenic cell line background, the ef-

fects observed are due to the individual mutations and not
Stem Cell Reports j Vol. 17 j 1033–1047 j May 10, 2022 1037



Table 3. Measurement omics approaches commonly used in functional genomics

Level Technologies References

Epigenome ATAC-seq, ChIP-seq Lopes et al. (2021), Martone et al. (2020)

3D chromatin organization Hi-C Ahmed et al. (2021), Lopes et al. (2021)

Transcriptome RNA-seq (bulk or single cell) Cuomo et al. (2020), Jerber et al. (2021),

Park et al. (2021)

Proteome ELISA, mass spectrometry, NMR Park et al. (2021), Yates (2019)

Metabolome mass spectrometry Jalota et al. (2020), Zhao et al. (2018)

Optical phenotype high-content imaging, flow cytometry, mass cytometry Park et al. (2021)

ATAC-seq, assay for transposase-accessible chromatin with sequencing; ChIP-seq, chromatin immunoprecipitation sequencing; Hi-C, chromatin conforma-

tion capture sequencing.
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confounded by factors such as genetic background and sex

(Anastasaki et al., 2020). As an alternative approach, pa-

tient hiPSC lines can be compared with gene-corrected

isogenic control cell lines (Figure 2) (Sladen et al., 2021).

Modeling complex diseases

In addition to monogenic disease, complex diseases that

are affected by environment as well as genetic mutations

can be modeled using hiPSCs and functional genomics.

Recent functional genomics approaches have shed light

on putative causal variants and uncovered molecular

mechanisms underpinning complex cardiovascular dis-

eases and neurological disorders in hiPSC-based disease

models (Doss and Sachinidis, 2019).

Cardiovascular diseases are one of the leading causes of

death globally in hospitals. However, the development of

CHD is underexplored due to our limited ability to model

the human heart in vitro. Recently, Lewis-Israeli et al.

(2021) developed a high-throughput chambered heart

organoid platform from hiPSC lines to study the conse-

quences of pregestational diabetes (PGD) on heart develop-

ment. With increasing recognition that the extracellular

matrix (ECM) can affect cardiac cell state, researchers

have also started seeding hiPSC-derived cardiac cells in sol-

ubilized ECM aswell as synthetic hydrogels to bettermimic

physiological conditions (del Álamo et al., 2016) and devel-

oped newmedia formulations to support long-term cardio-

myocyte maturation (Lewandowski et al., 2018). In

another study, hiPSC-derived cardiac micro-tissues were

printed using a micro-continuous optical printing system

(mCOP). These 3Dmicro-tissues displayed tissue alignment

and higher maturity than 2D cardiomyocytes, making

them a promising system to recapitulate cardiac structures.

The short time from design to printed tissue opens the

possibility for the rapid generation of specialized and pa-

tient-specific complex disease models (Miller et al., 2021).

As in the case of the heart, the complexity of the human

brain and the limited recapitulation of human conditions
1038 Stem Cell Reports j Vol. 17 j 1033–1047 j May 10, 2022
by animal models make it challenging to model neurolog-

ical disorders. The high engineerability of hiPSC-based

in vitro systems empowered by gene-editing tools has pro-

vided new opportunities to study brain biology and disor-

ders (Table 2). Using CRISPR-Cas9 editing, hiPSC lines

harboring mutations in ASD susceptibility genes (CHD8,

ASTN2, and AFF2/FMR2) have been generated (Deneault

et al., 2018; Wang et al., 2015). This allows researchers to

examine the effects of single gene alterations on disease

progression or prevention. Multimodal CRISPR interfer-

ence (CRISPRi) genetic screens have helped to identify

genes that are essential for neuronal survival and differen-

tiation in healthy hiPSC-derived neurons as well as to

modulate the expression of non-coding regulatory variants

to drive ASD-associated phenotypes (Ross et al., 2020).

AD is a multi-factorial disease caused by dysregulation in

various processes, such as trafficking, immunity, and lipid

metabolism (Karch and Goate, 2015; Kunkle et al., 2019).

It involves diverse risk factors and multi-step pathogenic

processes, representing a challenge for disease modeling

and drug screening. Through in silico analysis of multi-

omics data, Wang and colleagues identified ATP6V1A as a

key driver of late-onset AD (LOAD) (Wang et al., 2021a).

To confirm its role in altering neuronal activity, CRISPRi

was utilized in an hiPSC-derivedNGN2-neuron (iN)model,

which efficiently repressed the neuronal expression of

ATP6V1A. ATP6V1A-deficient iNs demonstrated signifi-

cantly reduced neuronal activity, which was further

impaired upon Ab42 exposure. The successful recapitula-

tion of LOAD-related neuronal pathologies highlights the

potential of the ATP6V1A-deficient hiPSC-derived NGN2-

neuron model as a promising in vitro system. CRISPRi can

be applied to precisely modulate the expression of other

neurodegenerative LOAD-related genes, like SNCA,

MAPT, and APP, as well in hiPSC-derived neurons (He-

man-Ackah et al., 2016).

The apolipoprotein E (APOE) polymorphism ApoE4 is a

major risk factor for sporadic AD (Lin et al., 2018; Park



Figure 1. Workflow of hiPSC-based disease modeling and downstream multi-omics analysis
hiPSC-derived control and disease-specific cell lines are generated either from healthy individuals, patients, or via CRISPR-Cas9 editing.
Genomics, transcriptomics, and/or proteomics analyses are performed for each experimental condition. Conditions are cross-compared and
interpreted to elucidate disease mechanisms and identify potential therapeutic targets. Created with Biorender.com.
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et al., 2021). Murine models are less favored in the study

of AD pathology, as mouse APOE shares low homology

with human APOE. Thus, to create a disease model that

better mimics the neuropathological hallmarks of early-

onset AD in vitro, an isogenic hiPSC line harboring the

polymorphism ApoE4 has been generated through

CRISPR-Cas9 modification (Lin et al., 2018; Park et al.,

2021). Nevertheless, hiPSC models do have limitations,

such as incomplete recapitulation of features of mature

physiological neurons.

CRISPR activation (CRISPRa) has been leveraged to

stimulate the neuronal differentiation of hiPSC for dis-

ease modeling and drug screening (Li et al., 2017).

CRISPRa screening machinery also has the power to iden-

tify genes that modulate human neuronal survival or

oxidative stress and provides biological insights that

complement CRISPRi screens. For example, Tian and col-

leagues discovered through combinatorial CRISPRa/i

screens that prosaposin (PSAP) deficiency could result

in redox imbalance and neuronal ferroptosis linked to
neurodegenerative disease (Tian et al., 2021). Apart

from inducing disease phenotypes, CRISPR can be used

to identify and validate plausible drug targets. For

example, the knockdown of the DSCAM gene, which is

overexpressed in Down syndrome (DS) patients, rescued

diminished DSCAM/PAK1 signaling in a DS hiPSC-

derived cerebral organoid model, which in turn restored

neuronal proliferation and reversed impaired neurogene-

sis (Tang et al., 2021). In another example, a CRISPRi

screen of over 5,000 long non-coding RNA (lncRNA)

loci identified lncGRS-1 as a potential lncRNA therapeutic

target in malignant glioma (Liu et al., 2020). These re-

sults highlight the significance of CRISPR-based hiPSC-

derived disease models in mining therapeutic targets to

treat complex neurological conditions.

Functional genomics has also been employed for

modeling non-neurological complex diseases in hiPSC-

based systems, such as cancer. For example, a severe

congenital neutropenia (CN) iPSC model carrying a

RUNX1 mutation associated with leukemia effectively
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Figure 2. Generation of isogenic pairs of cell lines that differ by a single genetic modification
Isogenic control cell lines can be created from healthy pluripotent stem cells to model the effect of a specific patient population.
Alternatively, patient-derived hiPSCs can be corrected to serve as a genetic background control for in vitro disease modeling and drug
screening. Created with BioRender.com.
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recapitulates leukemogenesis in CN (Dannenmann et al.,

2021). This in vitro model system is particularly impor-

tant as there are currently no animal models that can

recapitulate the in vivo stepwise CN transition to acute

myeloid leukemia (AML). In addition an hiPSC-based

clonal evolution model of AML has been established

through sequential induction of three driver mutations

in AML via CRISPR-Cas9 technologies (Wang et al.,

2021b). This leukemogenesis model better represents

the founding clone of AML, shedding light on mutations

that can arise during early AML and its progression. Simi-

larly, known driver mutations of glioblastoma (GBM)

have been introduced into hiPSCs, generating levels of

intra- and inter-tumor heterogeneity similar to those

seen in patient-derived GBM models (Koga et al., 2020).

These represent very useful models for drug repositioning

as well as for developing a broad range GBM drugs of

low-resistance potential.

Functional genomics in hiPSC-based drug screening

hiPSC-based disease models that accurately recapitulate

disease physiology represent invaluable tools for

phenotypic screening to identify druggable targets for
1040 Stem Cell Reports j Vol. 17 j 1033–1047 j May 10, 2022
therapeutic intervention and screen for candidate

drugs. Indeed, all five approved first-in-class drugs for

neurodegenerative diseases discovered in the last 20 years

were developed through phenotypic screening (Swalley,

2020), likely because conventional target-based screens

poorly represent multi-factorial complex diseases.

However, even phenotypic-based endpoints are limited

by the fact that an abnormal phenotype could be the

result of distinct underlying pathophysiological genetic

networks.

In that regard, functional genomic-based screening,

which captures large amounts of biological data through

multi-omics measurements, could improve the success of

developing drugs for diseases with a complex genetic

component. In a recent study, functional genomics com-

bined with hiPSC-based models has been used to map

GRN dysregulated in heart valve disease (Theodoris et al.,

2021) and screen for drugs that ‘‘correct’’ the dysregulated

GRN. This screening approach is unusual, because thera-

peutic hits were identified based on the modulation of

core regulatory elements underpinning the disease, rather

than on downstream effectors of the disease phenotypes

(Theodoris et al., 2021).

http://BioRender.com
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A network-based screening platform could be applied to

any complex disease with a genetic component. For

example, in AD (Karch and Goate, 2015) the identification

of disease-modifying targets has been highly inefficient

when using conventional approaches (Raja et al., 2016).

Leveraging the large amount of omics data from 1,300

hiPSC-derived human cerebral organoids, Park et al.

(2021) validated an AD network-based model constructed

from existing studies, and performed in silico perturbation

analysis on the AD network model to screen for candidate

molecules from US Food and Drug Administration (FDA)-

approved drugs. Candidate drugs were tested using a

high-content screening platform to assess their therapeutic

efficacy. This serves as a good example of how the synergis-

tic combination of functional genomics and hiPSC-based

disease models can capture the underlying dysregulated

GRN of a disease, leading to improved target discovery

and drug screening.

Limitations of the study

Despite the many advantages of hiPSCs for disease

modeling, there are some limitations and challenges that

need to be overcome. One major drawback is the limited

maturation of iPSCs into functional adult cell types within

a reasonable time frame (Subramanian et al., 2019), as the

differentiated cells often display fetal-like characteristics

(Subramanian et al., 2019). Indeed, functional genomics

can be used to define and improve the maturation status

of hiPSC-derived cell types. Recently, Kannan et al. (2021)

combined computational modeling with functional geno-

mics to develop a new benchmarking tool that can be

applied to multiple cell types and across species. They pro-

pose a scoring system, called transcriptomic entropy, to

assign hiPSC-derived cardiomyocytes into maturation cat-

egories based on gene expression (Kannan et al., 2021).

The entropy score was also applied as a pseudotime metric

and validated using in vivo cross-species studies (Kannan

et al., 2021). Similarly, Subramanian et al. (2019) have

developed an analysis pipeline using scRNA-seq to evaluate

the cellular composition of kidney organoids developed

from patient-derived hiPSCs and benchmarked them

against fetal and adult human kidneys.

The pathogenesis of numerous diseases involves cellular

crosstalk, often among different organ systems. For

example, AD pathology is defined by neuronal and micro-

glia crosstalk, and, by using functional genomics tools on

neuronal and microglia co-cultures differentiated from pa-

tient-derived hiPSCs, new drug targets might be discovered

(Li et al., 2017; Tian et al., 2021). There is a need, therefore,

for reproducible, multi-cellular in vitro models that can

capture this complex array of interactions to better

understand and find treatments for diseases. However, con-

current differentiation of multiple lineages can still be
technically challenging, in terms of defining appropriate

culture conditions and unifying the timeline of differenti-

ation protocols (Table 1). While the organoid systems offer

the multicellularity, they suffer from substantial variability

in formation efficiency, end-point morphology, and

function, which is due to the stochastic nature of in vitro

self-organization (Table 1). Reducing this variability will

be essential to fully capitalize on the potential of organoids

in diseasemodeling, drug screening, and regenerativemed-

icine (Hofer and Lutolf, 2021). In this regard, bioprinting

technology has been successfully applied for the genera-

tion of kidney organoids with highly reproducible cell

number and viability (Lawlor et al., 2021). In the future,

such an approach might replace current manual protocol

production for organoids (Hofer and Lutolf, 2021; Lawlor

et al., 2021). Robotic technology is also contributing to

the development of fully automated high-throughput

workflow to generate organoids. For instance, an auto-

mated liquid handling system has enabled high-

throughput-compatible production of brain organoids

with homogeneous cellular composition (Renner et al.,

2020). Finally, methods for high-throughput phenotyping

and scoring cellular heterogeneity in organoids will also be

beneficial, in particular, in the context of drug screening

platforms (Sharick et al., 2020).

hiPSC-based disease modeling will continue to benefit

from rapid advances in gene targeting. For instance, a

new way of introducing perturbations of genes in tandem

via multiplexed single guide RNAs (sgRNAs) (Table 2) al-

lows insights into combinatorial regulation of different

genomic regions. This has proved particularly valuable in

analyzing enhancer regions (Carleton et al., 2017;McCarty

et al., 2020; Yan et al., 2021). Additionally, inducible, tran-

scription factor-mediated forward programming ap-

proaches are increasingly implemented for boosting the

efficiency of hiPSC differentiation toward specific cell types

(Lange et al., 2020). Forward programming coupled to

extensive phenotypic analyses will also provide a platform

for identification of GRNs and enhance our understanding

of differentiation.

Loss-of-function gene perturbation can be lethal and,

thus, difficult to study. To overcome this issue, gene expres-

sion can be knocked down transiently through RNAi or

CRISPRi; however, knockdown duration and efficiency

are difficult to control (Table 2). An alternative might be

the use of protein-level knockdown strategies, such as pro-

teolysis-targeting chimeras (PROTACs) technology, which

is based on bifunctional small molecules designed to knock

down target proteins by ubiquitination and proteasomal

degradation (Gao et al., 2020). PROTACs provide temporal

control, allowing the knockdown of a target protein at spe-

cific time points and enabling the fast recovery of the target

protein upon drug withdrawal (Sun et al., 2019), making it
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suitable for studying essential or lethal genes. Advances in

measuring biological systems also accelerate our ability to

fully characterize the omics beyond genomics and tran-

scriptomics. New multiplexed mass spectrometry of indi-

vidual ions (I2MS) can determine proteoforms, localized

modifications on the proteins, as well as the denatured

forms. In the future, comparing I2MS in disease genetic

backgrounds could result in new insights as to the relation-

ship between the genome and post-translational modifica-

tions of proteins (Yates, 2019).

In parallel with the application of new technologies, it is

also important to tackle the challenges of big data analysis

and data integration. Tarazona et al. (2021) highlighted

some of the main challenges, such as sample size require-

ment to achieve high statistical power, signal-to-noise ratio

within data, online storage and availability of linked data-

sets, and missing values skewing analyses. New workflows

are being developed to overcome some of the issues,

including targeted Perturb-sequencing (TAP-seq), which

interrogates only a predefined panel of genes that are asso-

ciated with pathways of interest (Schraivogel et al., 2020).

This approach restricts the hypothesis space and tests

needed for uncovering statistical significances, has

increased sensitivity, and lowers sequencing requirements

by 50-fold. At the same time, TAP-seq is platform indepen-

dent and automatable, allowing large-scale screens (Schrai-

vogel et al., 2020).

Finally, many studies are still based on the use of single

cell lines (Cruz et al., 2017). Currently, there is debate as

towhether any statistical analysis using biological replicates

fromone cell line is appropriate, or whether these replicates

are subsamples or pseudoreplicates, resulting in incorrectly

performed statistical tests with limited robustness or

reproducibility. According to simulations, most single-cell

studies are underpowered (Zimmerman et al., 2021). This

is challenging as hiPSC lines frommultiple relevant sources

may be hard to acquire and/or expensive to grow, so trans-

parency is needed from single-cell-type studies and conclu-

sions are of limited value when additional cell lines are not

available. When examining monogenic diseases, it may be

beneficial to reproduce mutations with gene-editing or

knockdown approaches in wild-type hiPSCs to increase

sample size. Additionally, using appropriate statistical tests

according to sample size and replicate hierarchies should

be prioritized (Serdar et al., 2021; Tirrell et al., 2018). Never-

theless, for the ultimate goal of functional genomics,

different independent hiPSC lines are needed toward the

identification of disease mechanisms and therapeutic

targets that are broadly applicable to multiple individuals.

Concluding remarks

Functional genomics aims to characterize the relationship

between genotype and phenotype, by perturbing,
1042 Stem Cell Reports j Vol. 17 j 1033–1047 j May 10, 2022
measuring, and comparing different biological systems at

multi-omic levels. iPSC technology provides a powerful

approach to elucidate disease biology and develop thera-

peutic interventions. High-throughput analyses should

be employed routinely to characterize hiPSC lines and un-

derstand the long-term impacts of reprogramming effects.

hiPSC-based functional genomics provides unique value

for a holistic understanding of multi-factorial complex dis-

eases and, consequently, tackling the challenges of transla-

tional research. It is expected to continue benefitting from

the rapid development of multi-omics technologies as well

as advancement in the generation of better hiPSC-based 2D

and 3D models.

AUTHOR CONTRIBUTIONS

I.R.B., C.M.G., C.K., C.S.K., S.S., and J.Z.X. wrote the manuscript.

F.M.S. and F.M.W. edited the manuscript.

CONFLICT OF INTERESTS

The authors declare no competing interests.

ACKNOWLEDGMENTS

Our apologies go to all authors whose importantwork could not be

mentioned due to space limitations. We gratefully acknowledge

the financial support of the Wellcome Trust PhD program

Advanced Therapies for Regenerative Medicine (218461/Z/19/Z).

We thank Dr. Fay Minty for her support of the program.
REFERENCES

Ahmed,M., Soares, F., Xia, J.-H., Yang, Y., Li, J., Guo,H., Su, P., Tian,

Y., Lee, H.J., Wang, M., et al. (2021). CRISPRi screens reveal a DNA

methylation-mediated 3D genome dependent causal mechanism

in prostate cancer. Nat. Commun. 12, 1781. https://doi.org/10.

1038/s41467-021-21867-0.
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