By medicina

Article

Predicting the Cochlear Dead Regions Using a Machine
Learning-Based Approach with Oversampling Techniques

Young-Soo Chang ', Hee-Sung Park ? and I1-Joon Moon 3-*

check for

updates
Citation: Chang, Y.-S.; Park, H.-S.;
Moon, I.-]. Predicting the Cochlear
Dead Regions Using a Machine
Learning-Based Approach with
Oversampling Techniques. Medicina
2021, 57,1192. https://doi.org/
10.3390/medicina57111192

Academic Editor: Giuseppe Magliulo

Received: 28 September 2021
Accepted: 27 October 2021
Published: 2 November 2021

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

Department of Otorhinolaryngology-Head and Neck Surgery, Sanggye Paik Hospital, College of Medicine,
Inje University, Seoul 01757, Korea; yschang83@gmail.com

Communication Sciences and Disorders, James Madison University, Harrisonburg, VA 22807, USA;
park29hx@dukes.jmu.edu

Samsung Medical Center, Department of Otorhinolaryngology-Head and Neck Surgery, School of Medicine,
Sungkyunkwan University, Seoul 06351, Korea

*  Correspondence: moon.iljoon@gmail.com; Tel.: +82-2-3410-3579

Abstract: Background and Objectives: Determining the presence or absence of cochlear dead regions
(DRs) is essential in clinical practice. This study proposes a machine learning (ML)-based model
that applies oversampling techniques for predicting DRs in patients. Materials and Methods: We
used recursive partitioning and regression for classification tree (CT) and logistic regression (LR) as
prediction models. To overcome the imbalanced nature of the dataset, oversampling techniques to
duplicate examples in the minority class or to synthesize new examples from existing examples in
the minority class were adopted, namely the synthetic minority oversampling technique (SMOTE).
Results: The accuracy results of the 10-fold cross-validation of the LR and CT with the original data
were 0.82 (+0.02) and 0.93 (£0.01), respectively. The accuracy results of the 10-fold cross-validation of
the LR and CT with the oversampled data were 0.66 (£0.02) and 0.86 (+0.01), respectively. Conclusions:
This study is the first to adopt the SMOTE method to assess the role of oversampling methods on
audiological datasets and to develop an ML-based model. Considering that the SMOTE method
did not improve the model’s performance, a more flexible model or more clinical features may be
needed.

Keywords: cochlear dead region; machine learning; prediction model; oversampling method;
synthetic minority oversampling technique

1. Introduction

The existence of cochlear dead regions was first suggested by Brian C. J. Moore in
2000 [1]. The inner hair cells, which are the transducers of the cochlea and are responsible
for converting vibration patterns on the basilar membrane into action potentials in the
auditory nerve, may be non-functional over a certain region of the cochlea, leading to a
loss of transduction of the auditory signal from outside the cochlea to the auditory nerve.
A region of the cochlea which has lost its characteristic transducing ability is defined as a
cochlear dead region (DR).

Patients with cochlear dead regions have shown poor understanding of speech in noisy
conditions and report less satisfaction with hearing aids than patients with no cochlear
dead regions [2,3]. To achieve better clinical outcomes, a correct differential diagnosis of
cochlear dead regions is imperative to help clinicians provide the best possible care to their
patients. However, it is still challenging to predict DRs in patients with hearing loss based
on clinical and audiologic findings [4].

In our previous study, we adopted a machine learning (ML)-based approach to develop
and validate cochlear dead region prediction models as a function of frequency [5]. ML
continues to evolve with advances in computing power and the field of computer science.
However, we observed some limitations in our approach; the prevalence of cochlear dead
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regions is about five percent in the overall data if prevalence is counted by frequency.
This produces an imbalanced class distribution. The predictive power or accuracy of
the model might be affected by these uneven distributions in the data. A chief problem
with imbalanced classification datasets is that standard machine learning algorithms do
not perform well on imbalanced datasets, because many machine learning algorithms
rely upon class distribution in the training dataset to gauge the likelihood of observing
examples in each class when the model is used to make predictions. Therefore, the minority
class is sometimes deemed as less important than the majority class, resulting in greater
attention to and better performance in the majority class.

To overcome this imbalanced dataset issue, the present study adopted oversampling
techniques to duplicate examples in the minority class or to synthesize new examples from
the existing examples in the minority class, and then comparing the model performance of
the two different datasets: the original data and the oversampled data.

2. Materials and Methods
2.1. Subjects

Patients who visited the outpatient clinic at Samsung Medical Center between Septem-
ber 2010 and May 2015 and who agreed to participate were enrolled in the study. Medical
records, audiology results, and threshold-equalizing noise (TEN) (HL) tests were retrospec-
tively reviewed. Patients with any signs of acute infection were excluded. All participants
provided written informed consent to participate in this study. The Institutional Review
Board of Samsung Medical Center approved this study (IRB No. 2010-03-004).

We used the same dataset which included the patients who were described and en-
rolled in our previous study [5]. Among the dataset, we used the patients’ clinical data
such as sex, age, affected ear, diagnosed cause for the hearing loss, word recognition scores
(WRS), types of audiogram, and pure-tone thresholds at each of the standard frequencies.
Six disease groups, which we set in our previous study (sensorineural hearing loss with
unknown etiology (SNHL), sudden sensorineural hearing loss (SSNHL), vestibular schwan-
noma (VS), Méniere’s disease (MD), noise-induced hearing loss (NIHL), and age-related
hearing loss (ARHL)) were adopted [5].

2.2. TEN (HL) Test

The TEN (HL) test was performed following the protocol described by Moore et al. [6];
the detailed study protocol was mentioned in our previous study [5]. For the TEN (HL) test,
a pure tone and a threshold-equalizing noise were played through a CD player connected
to an audiometer that was calibrated to an audio player (RCD-M75U; Samsung, Suwon,
Korea). The threshold-equalizing noise was shaped so that the masked threshold of a
given pure tone was the same for all frequencies from 250 to 10,000 Hz in normal-hearing
subjects.

A TEN level of 10 dB above the hearing threshold at a given frequency region was
selected to obtain a reliable masking effect. The TEN presentation level never exceeded
more than 95 dB HL [6]. Subjects were asked to detect the introduced pure tone in the TEN.
The masked threshold was increased in 2-dB increments using the modified Hughson-
Westlake procedure [7]. The pure-tone and TEN thresholds were obtained at 0.5, 0.75, 1,
1.5, 2, 3, and 4 kHz. At each specific frequency, when the threshold of the test tone in
the TEN was 10 dB or more above the TEN level, a cochlear dead region was diagnosed
at that frequency [6]. In patients where the TEN (HL) level could not be sufficiently
increased to elevate the absolute threshold by 10 dB or more, the results were considered
inconclusive [8]. These patients were also included in the analysis and assessed for the
purposes of this study as not having cochlear dead regions at that given frequency [7].

2.3. Model Development

To develop the best performing ML model, the study adopted several steps during
the model’s development. The first two steps are identical to the first two in our previous
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study [5]. We then applied oversampling techniques to the original dataset and applied
the newly synthesized oversampled data to develop the ML models that we used in the
present study.

First, using recursive partitioning and regression to build a classification tree (CT),
we obtained the best break point for the continuous variable. We set the minimal split
number at 20. The model suggests the best break point as one that splits the population
into sub-populations, and we applied this break point to the continuous variable to bag the
data for the second step.

Second, the study used logistic regression (LR) to construct binary classification mod-
els. Because the aim of the model development is to achieve greater accuracy in screening
for the presence or absence of cochlear dead regions, we evaluated the performance of
LR models with a probability of 0.1. The theoretical bases of the LR algorithms have
been described in the previous study [9,10] as have the detailed processes of the model’s
development [5].

Third, we employed oversampling techniques to duplicate examples in the minority
class and to synthesize new examples from examples in the minority class. The study
adopted the synthetic minority oversampling technique (SMOTE) [11]. SMOTE works by
selecting examples that are close together in the feature space, drawing a line between
the examples in said space, and then creating a new sample at a point along that line.
Specifically, a random example from the minority class was first chosen.

Fourth, the study developed the new LR and CT models with oversampled data
created via SMOTE to construct classification models. The method for developing the LR
and CT models were the same as with the original data.

The models were constructed and tested using R (version 3.4.4, R Foundation for
Statistical Computing, http:/ /www.r-project.org/ accessed on 15 March 2018) with the
rpart and caret packages [12,13]. SMOTE was performed with the DMwR (Data Mining
with R) package [14].

2.4. Statistical Analysis and Model Evaluation Methods

Descriptive analysis was used to evaluate the prevalence of cochlear dead regions
in both the original data and the oversampled data. The ‘'SNHL with unknown etiology’
group was used as the reference distribution for cochlear dead regions at each frequency.
Pearson’s chi-squared test was performed to analyze the distribution differences in groups.
The accuracy of each model was quantified by calculating the accuracy. A 10-fold cross-
validation approach to train (nine-fold) and test (one-fold) the LR and CT models was
used. The results of both the CT and the LR were described in both the original data and
the oversampled data. All analyses were performed using the R software package. A
two-sided p-value < 0.05 was considered statistically significant.

3. Results

A total of 555 ears from 380 patients (3770 test samples) were included in the study.
The descriptive statistics of the study population are listed on our previous study [5]. After
applying the SMOTE method, the sample size grew to 15,494 samples. Of those 15,494 test
samples, the overall frequency-specific prevalence of cochlear dead regions was 18.14%,
which was originally 6.7% on our study population. The prevalence of VS etiologies,
which had the lowest prevalence among the study population, increased from 7.03% to
8.64% following application of the SMOTE method. In addition, the mean WRS value was
78.9 + 23.8%; in the original data, the value was 82.1 £ 23.9%. Descriptive statistics of the
original data and oversampled data can be found in Table 1.

The distribution of cochlear dead regions according to the hearing thresholds at each
frequency in the original data and in the oversampled data is illustrated in Figure 1. The
overall proportions of the lower sample data in the original data, which indicates the
frequency-specific prevalence of cochlear dead regions, were increased with the SMOTE
method in the oversampled data.


http://www.r-project.org/

Medicina 2021, 57,1192

40f9

Table 1. Comparison of clinical characteristics of the study population between the original data and
the oversampled data.

Original Data Oversampled Data
(555 Ears) (15,494 Samples)
Side
Right 285 (51.35%) 7857 (50.71%)
Left 270 (48.65%) 7637 (49.29%)
PTA (dB) 44.8 +£16.0 33.4+131
WRS (%) 82.1£23.9 789 £23.8
Types of diseases
SNHL with unknown etiology 114 (20.54%) 3513 (22.67%)
SSNHL 99 (17.84%) 2649 (17.10%)
\E 39 (7.03%) 1339 (8.64%)
MD 65 (11.71%) 1832 (11.82%)
NIHL 70 (12.61%) 1882 (12.15%)
ARHL 168 (30.27%) 4279 (27.62%)

Mean pure-tone average (PTA) was calculated for four frequencies (0.5 kHz, 1 kHz, 2 kHz, and 4 kHz). WRS, word
recognition score; SNHL, sensorineural hearing loss; SSNHL, sudden sensorineural hearing loss; VS, vestibular
schwannoma; MD, Méniere’s disease; NIHL, noise-induced hearing loss; ARHL, age-related hearing loss.

500 - 2200-
2000 -

1800~

8
38

1600 -

@

g

8
=

Cochlear dead regions

Q
s

DR{-)

. DR (+)

=]

Number of test samples
8
s

Number of test samples

2
=]

2
e

3
3

: 400
I 200-
0- —_—— 0- =

00 0 25 50 75 100
(b) Hearing thresholds at each test frequency

] 25 50 75
(a) Hearing thresholds at each test frequency

Figure 1. The distribution of cochlear dead regions according to the hearing thresholds at each
frequency in the original data (a) and the oversampled data (b). The overall frequency-specific
prevalence of cochlear dead regions was 6.7% in the original data and 18.14% in the oversampled
data, respectively.

The results of the CT model with the original data were described in our previous
study [5]. In summary, several factors such as word recognition score (WRS) (break point:
42%), disease type (SSNHL or VS diagnosis), and average at four frequencies (0.5 kHz,
1 kHz, 2 kHz, and 4 kHz) (PTA) when higher than 47 dB (poor overall hearing threshold)
were used to split the data and detect cochlear dead regions (Figure 2a). Sex, age, and side
were not significantly used in the CT models.

In the CT model with the oversampled data, WRS (break point: 90%), pure-tone
thresholds at each frequency (break point: 52 dB), and age were used to split the data and
detect cochlear dead regions (Figure 2b). Using a WRS break point of 90%, the ratio of
cochlear dead regions increased from 0.18 to 0.35, which indicates that the use of a WRS
lower than 90% as a predictive factor increases predictability by a factor of two. Compared
to the original data, the diagnosis of hearing loss etiologies does not increase the model’s
predictive power in the oversampled data. Interestingly, for those aged under 65 with a
lower WRS, a lower PTA increased the ratio of cochlear dead regions to 0.62.

The results of the multivariate logistic regression analyses for cochlear dead region
detection in both the original data and the oversampled data are shown in Table 2. In
the original data, VS was significantly associated with the presence of cochlear dead
regions (odds ratio = 2.40, a 95% confidence interval (CI) of 1.36—4.23, p = 0.002), while
MD showed a significantly lower odds ratio than the SNHL group (odds ratio = 0.36,
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95% CI1 0.18-0.73, p = 0.004) [5]. In the oversampled data, VS (odds ratio = 2.67, 95% CI
2.19-3.24, p < 0.001), SSNHL (odds ratio = 1.56, 95% CI 1.31-1.85, p < 0.001), and MD (odds
ratio = 0.51, 95% CI 0.41-0.63, p < 0.001) showed a significant association with the presence
of cochlear dead regions. The pure-tone thresholds of the evaluating frequencies showed a
positive association with cochlear dead region presence, whereas the odds ratio for cochlear
dead region presence with respect to pure-tone average was lower than the odds ratio in
the control groups in both the original data and the oversampled data. Frequencies of
3000 Hz and 4000 Hz showed lower odds ratios than the reference frequency of 1000 Hz
(odds ratio = 0.22, 95% CI 0.11-0.46, p < 0.001 and odds ratio = 0.31, 95% CI 0.15-0.62,
p < 0.001, respectively) in the original data. In the oversampled data, all the frequencies
showed more significant odds ratios than the reference frequency.

The accuracy results of the 10-fold cross-validation of the LR and CT with the original
data were 0.82 (£0.02) and 0.93 (£0.01), respectively. The accuracy results of the 10-fold
cross-validation of the LR and CT with the oversampled data were 0.66 (£0.02) and
0.86 (£0.01), respectively.

DR (-) DR (-)
0.07 0.18
(ves) WRS >= 43 (no) (ves) WRS >=90,(no]
DR (-
DR () =)
024 035
type = MD,SNHL,NIHL,ARHL 4B <52 o ()
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Figure 2. Classification tree model of the original data (a) and the oversampled data (b). DR, cochlear
dead region; WRS, word recognition score; dB, decibel of at each audiometric test frequency; PTA,
pure tone average of four frequencies (0.5 kHz, 1 kHz, 2 kHz, and 4 kHz); MD, Méniere’s disease;
SNHL, sensorineural hearing loss; NIHL, noise-induced hearing loss; ARHL, age-related hearing
loss.

Table 2. Results of multivariate logistic regression analyses for detecting cochlear dead regions.

Original Data Oversampled Data
95% 95%
Odds Ratio Confidence p-Value Odds Ratio Confidence p-Value
Interval Interval
Age 0.99 0.98-1.01 0.36 0.99 0.99-1.00 <0.001 *
Sex
(reference: Female) 0.42 0.29-0.61 <0.001 * 0.52 0.48-0.61 <0.001 *
Male
PTA (dB) 0.94 0.92-0.96 <0.001 * 0.95 0.94-0.96 <0.001 *
WRS
(reference: >40) 3.77 <0.001 * 1.90 1.67-2.17 <0.001 *
<40
Pure tone threshold of 111 1.09-1.13 <0.001 * 111 1.10-1.12 <0.001 *
each frequency (dB)
Types of diseases
(reference: SNHL)
SSNHL 1.45 0.88-2.41 0.15 1.56 1.31-1.85 <0.001 *
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Table 2. Cont.
Original Data Oversampled Data
95% 95%
Odds Ratio Confidence p-Value Odds Ratio Confidence p-Value
Interval Interval
VS 2.40 1.36-4.23 0.002 * 2.67 2.19-3.24 <0.001 *
MD 0.36 0.18-0.73 0.004 * 0.51 0.41-0.63 <0.001 *
NIHL 0.46 0.18-1.15 0.10 1.05 0.82-1.34 0.70
ARHL 0.96 0.53-1.74 0.88 0.88 0.73-1.07 0.21
Frequency
(reference: 1000 Hz)
500 Hz 1.36 0.74-2.53 0.32 0.66 0.55-0.86 <0.001 *
750 Hz 1.12 0.60-2.07 0.73 0.73 0.60-0.90 <0.001 *
1500 Hz 0.66 0.34-1.26 0.21 0.77 0.62-0.93 0.002 *
2000 Hz 0.82 0.44-1.53 0.53 0.73 0.66-0.97 0.009 *
3000 Hz 0.22 0.11-0.46 <0.001 * 0.19 0.17-0.27 <0.001 *
4000 Hz 0.31 0.15-0.62 <0.001 * 0.13 0.12-0.20 <0.001 *
Intercept 0.01 0.00-0.02 <0.001 * 0.02 0.01-0.03 <0.001 *

Mean pure-tone average (PTA) was calculated for four frequencies (0.5 kHz, 1 kHz, 2 kHz, and 4 kHz). WRS, word recognition score;
SNHL, sensorineural hearing loss; SSNHL, sudden sensorineural hearing loss; VS, vestibular schwannoma; MD, Méniere’s disease; NIHL,
noise-induced hearing loss; ARHL, age-related hearing loss. * p < 0.05.

4. Discussion

The ML-based approach provided well-validated and ready-to-use prediction models
for clinical practitioners. However, most ML-based classification methods tend not to per-
form well on minority class examples, which is common with most medical datasets. Our
previous study observed the imbalanced data distribution with only 6.7% of the aimed class
diagnosed as cochlear dead region. Rahman et al. proposed both an oversampling (SMOTE)
and undersampling (cluster-based methods) to balance a clinical dataset [15]. They used
a cardio-vascular disease dataset (823 instances and 26 attributes from the University of
Hull) with two classification algorithms (the Fuzzy Unordered Rule Induction Algorithm
[FURIA] and the Classification And Regression Tree [CART]) to classify the rebalanced
data. The results showed the sensitivity improvement of both two classification algorithms
(from 64.17% to 83.78%, FURIA and from 67.50% to 84.21%, CART). It implies that the class
rebalancing technique can be applied to the clinical dataset and the performance of the
class rebalancing technique depends on the ML technique used thereafter.

We investigated to overcome the imbalanced dataset issue in the present study by
adopting an oversampling technique to create more evenly-distributed data. We applied
oversampling techniques (SMOTE) to duplicate examples in the minority class or to syn-
thesize new examples from examples in the minority class. SMOTE works by selecting
examples that are close together in the feature space, drawing a line between those exam-
ples and extracting a new sample at a point along that line.

We produced results regarding accuracy in the 10-fold cross-validation of the LR
and CT models with both the original and oversampled data: they were 0.82 (£0.02) and
0.93 (£0.01) for the original dataset and 0.66 (£0.02) and 0.86 (£0.01) for the oversampled
dataset. These results indicate that the accuracy of the oversampled data was lower than
that of the original data. Considering that the overall frequency-specific prevalence of
cochlear dead regions was much higher than in the original data after applying the SMOTE
method, this may affect the model’s accuracy with true positive data, which refers to
the presence of cochlear dead regions in the present study. The hypothesis was that the
machine learning models could overcome unevenly distributed data with larger clinical
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samples; however, the results indicate that simply applying oversampling methods did
not improve the model’s performance. More powerful clinical indicators such as the
audiometric configuration or type of defect when hearing a certain phoneme associated
with the cochlear dead region in question may be needed to more accurately detect the
presence of cochlear dead regions.

There are some limitations in our ability to detect cochlear dead regions in the general
population and in increasing the applicability of these findings to clinical practice. First,
TEN testing in clinics is time-consuming. Introducing more advanced technologies, such as
optical coherence tomography, may reduce the time needed for testing through easily used,
non-invasive methods for evaluating inner ear structures; however, the depth of the image
that it produces is limited to a few millimeters due to its low permeability to tissues [16].
Therefore, the TEN (HL) test is still performed as the primary tool for assessing cochlear
dead regions in clinics, although it has some limitations to being more widely used.

In addition, it is still challenging to predict the presence of cochlear dead regions in
patients with hearing loss using clinical and audiologic findings [4], because the prevalence
and possible indicators of cochlear dead regions differ depending on the study popula-
tion [4,17-19]. No definitive indicators have been proven to predict the presence of cochlear
dead regions in the general population. Although previous studies have revealed some re-
liable indicators of cochlear dead regions based on detection by TEN (HL) tests [8,20], there
are only a few reports that certain hearing thresholds at each test frequency may be possible
markers for cochlear dead regions. In addition, there have been no previous studies that
specifically address cochlear dead region prediction as a function of frequency-specific
information. For example, there are no reports on whether frequency, hearing thresholds,
or etiologies of hearing loss have been weighted to address cochlear dead region prediction.
Therefore, it is still unclear which patients beyond those with severe-to-profound hearing
loss should undergo TEN (HL) testing, something which prevents cochlear dead regions
from being more deeply integrated into clinical practice.

We address the prediction model for cochlear dead regions according to frequency
and compare the results between the original data and the SMOTE oversampled data. The
study results can be helpful for predicting or detecting cochlear dead regions according
to frequency in clinical settings. The comparison results imply the existence of hidden
associated factors or non-linearity in predicting cochlear dead regions. Previous studies
have only assessed the prevalence of cochlear dead regions by ear, not by frequency. In
our previous study, we assessed the prevalence of cochlear dead regions by frequency;
however, the distribution of cochlear dead regions was only 6.7% and it might be suggested
that an imbalanced class distribution could affect the accuracy of ML model development.

In contrast with previous studies [4,18], the feature “high frequencies” was negatively
associated with cochlear dead regions in the present LR model used on the original dataset.
This result may depend on the study population. Our study enrolled both ARHL and NIHL
patients. These populations show a low prevalence of cochlear dead regions, despite poorer
hearing thresholds at high frequencies. After adopting the SMOTE method to modify the
imbalanced distribution, the results remained similar to the original data. Therefore, our
results suggest that the feature “high frequencies” might be a negatively associated factor
in predicting the absence of cochlear dead regions and should be considered with the
diagnosed etiologies.

Because this study included patients with diverse etiologies and vastly differing levels
of hearing loss, the indicators identified here may be beneficial for determining which
patients have suspected cochlear dead regions. WRS, etiology type, and hearing thresholds
at specific frequencies are all informative factors. WRS, which has been addressed in a
previous study [21], can be a useful indicator for predicting cochlear dead regions; this was
demonstrated here in this present study with the oversampled data, although the cut-off
value may vary depending on the study population. In the CT model, a 43% value used for
classifying the break point in WRS with the original dataset was suggested and a 90% value
used for classifying the break point in WRS with oversampled data was also suggested.
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The features of a disease’s etiology, such as of VS and MD, did not show any predictive
power in the CT models with the oversampled data. This might be related to the use of the
oversampling method, which affects the distribution according to the disease etiology and
thus attenuating the predictive effects of disease etiology.

This study has some limitations. First, because the possible risk factors for cochlear
dead regions are not fully understood, and the present study was performed in a retrospec-
tive manner, we could not assess all possible features. Adaptation of limited features may
affect the predictive power of the ML models. Second, we applied the SMOTE technique
to duplicate examples in the minority class. However, it may affect the exaggeration of
unnecessary clinical features during the oversampling. This could not be assessed, because
we still cannot determine which clinical features are more clinically associated and highly
valuated to predict cochlear dead region. If we had selectively oversampled some features
that we found in the previous study, the prediction power would have been biased with
some minority classes with high predictive power, which could not be elucidated in the
original dataset. Therefore, we applied the SMOTE method to observe the features of this
clinical dataset.

5. Conclusions

This study possesses enough strength to support several conclusions. This study is
the first to adopt the SMOTE method to assess the role of the oversampling method on
audiological datasets and to analyze its implications for improving the prediction power of
ML-based models. WRS, etiology type, and hearing thresholds at different frequencies can
be suggested as potential factors for predicting cochlear dead regions. However, our results
imply that simply applying the SMOTE method does not improve the model’s prediction
accuracy. Further investigation for data pre-processing to apply diverse non-linear models
as well as a larger sample size will be helpful to develop a more powerful and accurate
model for predicting cochlear dead regions.

Author Contributions: Conceptualization, Y.-5.C. and I.-].M.; methodology, Y.-5.C.; software, Y.-5.C.;
validation, Y.-S.C. and I.-].M.; formal analysis, Y.-5.C.; investigation, H.-S.P; resources, 1.-].M.; data
curation, Y.-5.C., H.-S.P, and L.-]. M.; writing—original draft preparation, Y.-5.C.; writing—review
and editing, Y.-5.C. and I.-].M.; visualization, Y.-S5.C.; supervision, 1.-].M.; project administration,
L-J.M.; funding acquisition, I.-].M. All authors have read and agreed to the published version of the
manuscript.

Funding: This research was supported by a grant of Patient-Centered Clinical Research Coordinating
Center funded by the Ministry of Health & Welfare, Republic of Korea (grant number: HI19C0481,
HC19C0128).

Institutional Review Board Statement: The Institutional Review Board of Samsung Medical Center
approved this study (IRB No. 2010-03-004). The Approve date is 15 April 2010.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the
study.

Data Availability Statement: The datasets generated during and/or analysed during the current
study are available from the corresponding author on reasonable request.

Conflicts of Interest: The authors have declared that no competing interests exist.

1.  Moore, B.C.; Huss, M.; Vickers, D.A.; Glasberg, B.R.; Alcantara, J.I. A test for the diagnosis of dead regions in the cochlea. Br. J.
Audiol. 2000, 34, 205-224. [CrossRef] [PubMed]

2. Preminger, J.E.; Carpenter, R.; Ziegler, C.H. A clinical perspective on cochlear dead regions: Intelligibility of speech and subjective
hearing aid benefit. . Am. Acad. Audiol. 2005, 16, 600-613. [CrossRef] [PubMed]

®

Huss, M.; Moore, B.C. Dead regions and pitch perception. J. Acoust. Soc. Am. 2005, 117, 3841-3852. [CrossRef] [PubMed]

4. Pepler, A.; Munro, K.J.; Lewis, K.; Kluk, K. Prevalence of Cochlear Dead Regions in New Referrals and Existing Adult Hearing
Aid Users. Ear Hear. 2014, 35, €99-e109. [CrossRef] [PubMed]


http://doi.org/10.3109/03005364000000131
http://www.ncbi.nlm.nih.gov/pubmed/10997450
http://doi.org/10.3766/jaaa.16.8.9
http://www.ncbi.nlm.nih.gov/pubmed/16295247
http://doi.org/10.1121/1.1920167
http://www.ncbi.nlm.nih.gov/pubmed/16018486
http://doi.org/10.1097/AUD.0000000000000011
http://www.ncbi.nlm.nih.gov/pubmed/24496291

Medicina 2021, 57,1192 90f9

10.

11.

12.
13.

14.

15.

16.

17.

18.

19.

20.

21.

Chang, Y.-S; Park, H.; Hong, S.H.; Chung, W.-H.; Cho, Y.-S.; Moon, L]. Predicting cochlear dead regions in patients with hearing
loss through a machine learning-based approach: A preliminary study. PLoS ONE 2019, 14, e0217790. [CrossRef] [PubMed]
Moore, B.C.; Glasberg, B.R.; Stone, M.A. New version of the TEN test with calibrations in dB HL. Ear Hear. 2004, 25, 478-487.
[CrossRef] [PubMed]

Carhart, R.; Jerger, ].F. Preferred method for clinical determination of pure-tone thresholds. J. Speech Hear. Disord. 1959, 24,
330-345. [CrossRef]

Ahadi, M.; Milani, M.; Malayeri, S. Prevalence of cochlear dead regions in moderate to severe sensorineural hearing impaired
children. Int. . Pediatr. Otorhinolaryngol. 2015, 79, 1362-1365. [CrossRef] [PubMed]

Strobl, C.; Malley, J.; Tutz, G. An introduction to recursive partitioning: Rationale, application, and characteristics of classification
and regression trees, bagging, and random forests. Psychol. Methods 2009, 14, 323-348. [CrossRef] [PubMed]

Lin, W.Y,; Chen, C.H,; Tseng, Y.J.; Tsai, Y.T.; Chang, C.Y.; Wang, H.Y.; Chen, C.K. Predicting post-stroke activities of daily living
through a machine learning-based approach on initiating rehabilitation. Int. . Med. Inform. 2018, 111, 159-164. [CrossRef]
[PubMed]

Chawla, N.V,; Bowyer, KW.,; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic minority over-sampling technique. J. Artif. Intell.
Res. 2002, 16, 321-357. [CrossRef]

Kuhn, M. The caret package. J. Stat. Softw. 2009, 28.

Hothorn, T.; Hornik, K.; Zeileis, A. Unbiased recursive partitioning: A conditional inference framework. J. Comput. Graph. Stat.
2006, 15, 651-674. [CrossRef]

Torgo, L.; Torgo, M.L. Package ‘Dmwr’. Comprehensive R Archive Network. 2013. Available online: http://www?2.uaem.mx/1-
mirror/web /packages/DMwR/DMwR.pdf (accessed on 25 October 2021).

Rahman, M.M.; Davis, D.N. Addressing the class imbalance problem in medical datasets. Int. ]. Mach. Learn. Comput. 2013, 3, 224.
[CrossRef]

Oh, S.-J.; Lee, I.-W.; Wang, S.-G.; Kong, S.-K.; Kim, H.-K.; Goh, E.-K. Extratympanic Observation of Middle and Inner Ear
Structures in Rodents Using Optical Coherence Tomography. Clin. Exp. Otorhinolaryngol. 2020, 13, 106-112. [CrossRef] [PubMed]
Aazh, H.; Moore, B.C. Dead regions in the cochlea at 4 kHz in elderly adults: Relation to absolute threshold, steepness of
audiogram, and pure-tone average. . Am. Acad. Audiol. 2007, 18, 97-106. [CrossRef] [PubMed]

Lee, H.Y.; Seo, YM.; Kim, K.A.; Kang, Y.S.; Cho, C.S. Clinical Application of the Threshold Equalizing Noise Test in Patients with
Hearing Loss of Various Etiologies: A Preliminary Study. J. Audiol. Otol. 2015, 19, 20-25. [CrossRef] [PubMed]

Cox, RM.; Alexander, G.C.; Johnson, J.; Rivera, I. Cochlear dead regions in typical hearing aid candidates: Prevalence and
implications for use of high-frequency speech cues. Ear Hear. 2011, 32, 339-348. [CrossRef] [PubMed]

Moore, B.C. Prevalence of dead regions in subjects with sensorineural hearing loss. Ear Hear. 2007, 28, 231-241. [CrossRef]
[PubMed]

Halpin, C.; Rauch, S.D. Clinical implications of a damaged cochlea: Pure tone thresholds vs information-carrying capacity.
Otolaryngol. Head Neck Surg. 2009, 140, 473-476. [CrossRef] [PubMed]


http://doi.org/10.1371/journal.pone.0217790
http://www.ncbi.nlm.nih.gov/pubmed/31158267
http://doi.org/10.1097/01.aud.0000145992.31135.89
http://www.ncbi.nlm.nih.gov/pubmed/15599194
http://doi.org/10.1044/jshd.2404.330
http://doi.org/10.1016/j.ijporl.2015.06.013
http://www.ncbi.nlm.nih.gov/pubmed/26112666
http://doi.org/10.1037/a0016973
http://www.ncbi.nlm.nih.gov/pubmed/19968396
http://doi.org/10.1016/j.ijmedinf.2018.01.002
http://www.ncbi.nlm.nih.gov/pubmed/29425627
http://doi.org/10.1613/jair.953
http://doi.org/10.1198/106186006X133933
http://www2.uaem.mx/r-mirror/web/packages/DMwR/DMwR.pdf
http://www2.uaem.mx/r-mirror/web/packages/DMwR/DMwR.pdf
http://doi.org/10.7763/IJMLC.2013.V3.307
http://doi.org/10.21053/ceo.2019.00766
http://www.ncbi.nlm.nih.gov/pubmed/31668054
http://doi.org/10.3766/jaaa.18.2.2
http://www.ncbi.nlm.nih.gov/pubmed/17402296
http://doi.org/10.7874/jao.2015.19.1.20
http://www.ncbi.nlm.nih.gov/pubmed/26185787
http://doi.org/10.1097/AUD.0b013e318202e982
http://www.ncbi.nlm.nih.gov/pubmed/21522068
http://doi.org/10.1097/AUD.0b013e31803126e2
http://www.ncbi.nlm.nih.gov/pubmed/17496673
http://doi.org/10.1016/j.otohns.2008.12.021
http://www.ncbi.nlm.nih.gov/pubmed/19328332

	Introduction 
	Materials and Methods 
	Subjects 
	TEN (HL) Test 
	Model Development 
	Statistical Analysis and Model Evaluation Methods 

	Results 
	Discussion 
	Conclusions 
	References

