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Quantum logic gates are the key elements in quantum computing. Here we investigate the possibility of
achieving a scalable and compact quantum computing based on stationary electron-spin qubits, by using the
giant optical circular birefringence induced by quantum-dot spins in double-sided optical microcavities as a
result of cavity quantum electrodynamics. We design the compact quantum circuits for implementing
universal and deterministic quantum gates for electron-spin systems, including the two-qubit CNOT gate
and the three-qubit Toffoli gate. They are compact and economic, and they do not require additional
electron-spin qubits. Moreover, our devices have good scalability and are attractive as they both are based on
solid-state quantum systems and the qubits are stationary. They are feasible with the current experimental
technology, and both high fidelity and high efficiency can be achieved when the ratio of the side leakage to
the cavity decay is low.

Q
uantum logic gates are the basic elements to realize quantum computation and quantum information
processing. It is well known that the controlled-not (CNOT) gate is one of the most efficient quantum
gates. CNOT gates supplemented with single-qubit rotations are widely adopted as the standard model

of universal quantum computation1–5. It has been shown that the synthesis of a general two-qubit gate requires 3
CNOT gates and 15 elementary one-qubit rotations in the worst case6–8. The ‘‘small-circuit’’ structure for two-
qubit gates in terms of CNOT gates has been well solved9. In experiment, a single-qubit gate is easily implemented
by a local Hamiltonian or an external field, while the two-qubit operations highly depend on the physical systems
and there are more demanding and imperfection to implement them. That is, it is interesting to investigate the
implementation of the two-qubit CNOT gate in specific physical systems.

The implementation of multi-qubit gates is an important milestone for a scalable quantum computing.
However, the realization of a generic multi-qubit gate is quite worse in terms of CNOT gates and single-qubit
rotations, and the implementation of a two-qubit gate in a multi-qubit system is usually more complex than that
in a two-qubit system. In 2004, Shende et al.8 gave the theoretical lower bound for multi-qubit gates, [(4n 2 3n 2

1)/4], in terms of CNOT gates. However, up to now, the ‘‘small-circuit’’ structure and the specific synthesis of the
logic gates for multi-qubit systems are two open questions. Among the three-qubit gates, many efforts have been
made in studying the fundamental Toffoli gate which is not only a universal gate for classical computing but also
for quantum computing10,11. Together with Hadamard gates, Toffoli gates form a universal set of quantum gates
for quantum computation11. Moreover, Toffoli gate is a central building block in some quantum cryptography
protocols, phase estimation, and some quantum algorithms. The optimal CNOT-gate cost of a Toffoli gate12 is 6.
Fewer resources and simpler quantum circuits are desired for an efficient quantum computation. It is thus
desirable to seek simpler schemes to directly implement Toffoli gate.

Although many interesting protocols have been proposed to construct universal quantum gates, it is still a big
challenge to implement quantum gates in experiment. The ones based on solid-state quantum systems are
especially attractive because of their good scalability and stability. Quantum dot13 (QD) is one of the promising
candidates for a solid-state qubit, due to the modern semiconductor technology and the microfabrication
technology. The long electron-spin decoherence time (T2 , ms) of a QD by using spin-echo techniques14–16,
nanoscale confinement of electrons17,18, the preparation of the QD-spin superposition state19,20, the QD-spin
detection techniques21, and the electron-spin manipulation using picosecond/femtosecond optical pulses22–25
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make an electron spin in a QD an excellent candidate for the qubit
in solid-state quantum computation. In 2008, Hu et al.26,27 pro-
posed a device, an excess electron confined in a self-assembled
In(Ga)As QD or a GaAs interface QD placed inside a single-sided
or a double-sided optical resonant cavity. Many interesting tasks
have been carried out on this quantum system28–40. For example,
utilizing this system, Hu et al.28,29 built a controlled-phase gate
with a polarization photon as the control qubit and an electron
spin as the target qubit. Bonato et al.32 constructed a hybrid
CNOT gate with an electron spin as the control qubit and a
polarization photon as the target qubit. Also, a hybrid CNOT gate
with a polarization photon as the control qubit and an electron
spin as the target qubit was proposed recently33. In 2013, Ren
et al.34 proposed a scheme for a photonic spatial-polarization
hyper-controlled-not gate assisted by a QD inside a one-sided
optical microcavity. In 2014, Ren and Deng35 presented a scheme
for the hyper-parallel photonic quantum computation with
coupled QDs. The scheme for the CNOT gate on two photonic
qubits36 was presented in 2013. A scheme37 for entanglement
purification and concentration of electron-spin entangled states
and a quantum repeater scheme38 based on QD spins in optical
microcavities were introduced in 2011 and 2012, respectively.

In this paper, we investigate the possibility to achieve a compact
and scalable quantum computing based on stationary electron-spin
qubits. We construct two important universal quantum gates on
electron-spin systems, including the two-qubit CNOT gate and the
three-qubit Toffoli gate, by using the giant optical circular birefrin-
gence induced by the electron spins in QDs confined in double-sided
optical microcavities as a result of cavity quantum electrodynamics
(QED). We give the compact quantum circuits and the detailed
processes for implementing these universal quantum gates. The
qubits of our gates are encoded on two orthogonal electron-spin
states of the excess electrons confined in QDs inside optical resonant
microcavities, denoted by j "æ and j #æ. A polarized single photon,
denoted by jRæ or jLæ, plays a medium role. After the input-output
process of the single photon, the measurement on the polarization of
the output photon and some proper single-qubit operations are per-
formed on the electron-spin qubits, the evolutions of these universal
quantum gates are accomplished with the probability of 100% in
principle. Our protocols have some features. First, our quantum
circuits for the universal quantum gates are compact and economic,
and they reduce the resources needed and the errors as they do not
require additional electron-spin qubits, just a flying photon. Second,

the double-sided QD-cavity system easily reaches a large phase dif-
ference (p) between the uncoupled cavity and the coupled cavity27,
while it is a hard work in a single-sided QD-cavity system. Third, our
gates allow for a scalable and stable quantum computing as the qubits
for the gates are confined in solid-state quantum systems. Fourth, our
schemes work in a deterministic way if the photon loss caused by the
optical elements (such as half-wave plates, and polarizing beam split-
ters) and the detection inefficiency are negligible. Fifth, our schemes
are feasible with current technology. Both a high fidelity and a high
efficiency for each gate can be achieved when the ratio of the side
leakage to the cavity decay is low.

Results
Giant optical circular birefringence. We exploit the optical
property26–29 of the QD-cavity system to complete our schemes for
implementing the CNOT gate and the Toffoli gate on electron spins.
The chematic diagram for a QD-cavity system, a singly charged
In(Ga)As QD or a GaAs interface QD placed at the antinode of a
resonant double-sided optical microcavity with two symmetric and
low loss partially reflective mirrors in the top and the bottom27,
employed in our protocols, is shown in Fig. 1(a). The negatively
charged exciton (trion, X2), which consists of two electrons and
one heavy hole41, is the fundamental optical excitation, and it is
essential for optical transitions in a QD-cavity system. There are
two kinds of spin-dependent optical transitions, shown in
Fig. 1(b). The photon in the state jR"æ or jL#æ (sz 5 11) couples to
the dipole for the transition from j "æ to j "#Xæ, and the photon in the
state jR#æ or jL"æ (sz 5 21) couples to the dipole for the transition
from j #æ to j #"Yæ. Here the superscript arrows of jRæ (jLæ) indicate
their propagation direction of the photon along the normal direction
of the cavity z axis and the circular polarization of the photons are
dependent of their propagation direction. j Xæ and j Yæ represent the
two heavy-hole spin states with the z-direction spin projections
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The change of the input photon state in the QD-cavity system can
be obtained by solving the Heisenberg equations of motion for a QD-
cavity system42

Figure 1 | (a) Structure of a singly charged QD inside a double-sided optical microcavity with circular cross-section. (b) Energy-level scheme of a singly

charged QD inside a double-sided optical microcavity with the polarization allowed transition rules for the coupling photons27,32. | Ræ ( | Læ)
represents a right-circularly (left-circularly) polarized photon.
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and the input-output relation for the cavity
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The specific expression of the reflection and the transmission coeffi-
cients of a realistic QD-cavity system is27:
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Here, vc, v, and vX{ are the frequencies of the cavity, the input
photon, and the X2 transition, respectively. â and s2 are the cavity
field operator and the X2 dipole operator, respectively. g is the coup-
ling strength between X2 and the cavity mode. k, ks/2, and c/2 are the
cavity decay rate, the side leakage (unwanted absorption) rate, and
the dipole decay rate, respectively. âin and â’in are the two input field
operators, and âr and ât are the two output field operators. Ĥ and Ĝ
are the noise operators related to reservoirs. Æszæ < 21 is taken for a
weak excitation approximation.

The complex reflection (transmission) coefficient given by Eq.(3)
indicates that the reflected (transmitted) light encounters a phase
shift. When the QD is in the state j "æ, the jR"æ or jL#æ light feels
the hot cavity (g ? 0) and gets a phase shift Qh with the flip of the
photon polarization and the photon propagation direction after
reflection, whereas the jL"æ or jR#æ light feels the cold cavity (g 5 0)
and gets a phase shift Q0 with the photon polarization and the photon
propagation direction unchanged after transmission. In the case that
the QD is in the state j #æ, the jR"æ or jL#æ light feels the cold cavity and
gets a phase shift Q0 after transmission, whereas the jL"æ or jR#æ light
feels the hot cavity and gets a phase shift Qh after reflection. The phase
shift Qh or Q0 can be adjusted by the frequency detuning
v{v0 vc~vX{~v0ð Þ. When considering the interaction with
vX{~vc~v, that is, the QD is resonant with the cavity and the
spin of the independent electron is connected by the resonant single
photon, the reflection and the transmission coefficients for the
uncoupled cavity (called a cold cavity, g50) and the coupled cavity
(called a hot cavity, g ? 0) can be simplified as
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r0 R 0 and t0 R 21 for the uncoupled cavity, and t R 0 and r R 1
for the coupled cavity can be achieved in the strong coupling regime g
. (k, c) in experiment by adjusting jv 2 v0j , k when ks=k (the
ideal cavity) and c 5 0.1k. That is, if the photon couples to X2, it will
be reflected by the cavity and both the propagation and the polariza-
tion of the photon are flipped. If the photon does not couple to X2, it
will transmit the cavity and acquire a p mod 2p phase shift relative to
a reflected one27,32. Therefore, the rules of the input photon can be
summarized as follows32:
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The photon spin sz remains unchanged upon the reflection as the
circular polarization of the photons is dependent of their propagation
direction, so jR"æ and jL#æ with the same sz 5 11, jL"æ and jR#æ with sz

5 21.

Compactly implementing CNOT gate on a two-qubit electron-
spin system. Now, let us describe the construction of a
deterministic CNOT gate on the two stationary electron-spin
qubits assisted by double-sided QD-cavity systems. It flips the

target qubit if and only if (iff) the control qubit is in j #æ. That is,

CNOT~

I2 0 0

0 0 1

0 1 0

0
B@

1
CA ð6Þ

in the basis {j ""æ, j "#æ, j #"æ, j ##æ}. Here I2 is a 2 3 2 identity matrix.
Suppose the two remote electrons confined in cavities 1 and 2 are
initially prepared in the state

yinj ict~
1ffiffiffi
2
p :j icz ;j ic
� 	

6 cosa :j itzsina ;j it
� 	

: ð7Þ

The subscript c represents the control qubit confined in cavity 1 and t
stands for the target qubit confined in cavity 2.

Our schematic diagram for a CNOT gate on the two stationary
electron-spin qubits is shown in Fig. 2. The input single photon in the
state jR#æ transmits the polarizing beam splitter in the circular
basis CPBS1 to the spatial mode 1 and injects into cavity 1 which

induces the transformations R;
�� �

1 :j ic ?
cavity

{ R;
�� �

2 :j ic and

R;
�� �

1 ;j ic ?
cavity

L:
�� �

1 ;j ic. The subscript i (i~1,2, � � � ,) of jRæ (jLæ)
represents the spatial mode i from which the photon is emitted.
CPBS can be constructed by a PBS in the horizontal and vertical
basis followed by a half-wave plate (HWP) at 22.5u. Subsequently,
the photon in the state jR#æ2 or jL"æ1 is led to the spatial mode 3 by

CPBS1 which completes the transformations R;
�� �

2
?

CPBS1 R;
�� �

3
and

L:
�� �

1
?

CPBS1 L:
�� �

3
. That is, rounda transforms the state of the whole

system composed of the two excess electrons inside cavities 1 and 2
and the single photon from the initial state jy0æ to jy1æ. Here

y0j i~ R;
�� �

6 yinj ict , ð8Þ

y1j i~
1ffiffiffi
2
p { R;

�� �
3 :j icz L:

�� �
3 ;j ic


 �
cos a :j itzsin a ;j it
� 	
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Figure 2 | Schematic diagram for compactly implementing a CNOT gate
on two electron-spin qubits in optical microcavities. The electron spin in

cavity 1 is the control qubit and that in cavity 2 is the target qubit. CPBSi (i

5 1, 2) is a polarizing beam splitter (PBS) in the circular basis { | Ræ, | Læ},

which transmits the right-circularly polarized photon | Ræ and reflects the

left-circularly polarized photon | Læ, respectively. CPBS can be constructed

by a PBS in the horizontal and vertical basis followed by a quarter-wave

plate or a half-wave plate (HWP) whose optical axis is set at 22.5u. Here

HWP is used to implement a Hadamard (Hp) operation on the

polarization photon passing through it. Pp is a phase shifter which

contributes a p phase shift on the photon passing through it. D1 and D2 are

two single-photon detectors.
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The transformations of rounda can be described by the following
unitary matrix:

Urounda~

{1 0 0 0

0 0 0 1

0 0 {1 0

0 1 0 0

0
BBB@

1
CCCA ð10Þ

in the basis {jR#æj "æ, jR#æj #æ, jL"æj "æ, jL"æj #æ}. Before the photon in
the state jR#æ3 or jL"æ3 arrives at CPBS2 simultaneously, a Hadamard
operation Hp is performed on it (i.e., let it pass through the HWP
whose optical axis is set at 22.5u) and an He operation is performed on
the excess electron inside cavity 2 before and after the photon inter-
acts with the QD in cavity 2. Here an Hp operation completes the
transformations

Rj i?H
p

1ffiffi
2
p Rj iz Lj ið Þ, Lj i?H

p
1ffiffi
2
p Rj i{ Lj ið Þ, ð11Þ

and an He operation completes the transformations
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e
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2
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e
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2
p :j i{ ;j ið Þ: ð12Þ

The operations (Hp, He R roundb R He) induce the state of the whole
system to be
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Here roundb completes the transformation
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From Eq.(13), one can see that if the output photon is in the state jLæ,
the CNOT gate is accomplished. If the output photon is in the state
jRæ, after a feed-forward single-qubit operation 2sz 5 2j "æ Æ" j 1
j #æ Æ# j is performed on the QD in cavity 1, the CNOT gate is
accomplished as well. That is, after the measurement on the output
photon and the feed-forward operation on the QD, the state of the
two-electron system becomes

youtj ict~
:j icffiffiffi

2
p cos a :j itzsin a ;j it
� 	

z
;j icffiffiffi

2
p cos a ;j itzsin a :j it
� 	

: ð15Þ

Therefore, the quantum circuit shown in Fig. 2 converts the input

state jyinæct to the output state jyoutæct, i.e., yinj ict ?
CNOT

youtj ict . It
implements a deterministic electron-spin CNOT gate which flips the
state of the target electron-spin qubit when the control electron-spin
qubit is in the state j #æ; otherwise, nothing is done on the target qubit.

Toffoli gate on a three-qubit electron-spin system. The schematic
diagram of our scheme for compactly implementing a three-qubit
electron-spin Toffoli gate is shown in Fig. 3. It implements a NOT
operation on the target qubit iff both the two control qubits are in j #æ.
That is, the unitary transformation of the Toffoli gate on the three
QDs can be characterized by the following matrix

Tof foli~

I6 0 0

0 0 1

0 1 0

0
B@

1
CA ð16Þ

in the basis {j """æ, j ""#æ, j "#"æ, j "##æ, j #""æ, j #"#æ, j ##"æ, j ###æ}.
Here I6 is a 6 3 6 identity matrix. Suppose the spins of the three
excess electrons in cavities 1, 2, and 3 are encoded as the first control,
the second control, and the target qubits, respectively. The system

composed of those three electrons is initially prepared in the state

Jinj ic1 c2t~
1ffiffiffi
2
p :j ic1

z ;j ic1
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6

1ffiffiffi
2
p :j ic2

z ;j ic2
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6 cos a :j itzsin a ;j it
� 	

:ð17Þ

Our protocol for a Toffoli gate can be achieved with three steps
discussed in detail as follows.

First, a single photon in the state jR#æ is injected into the input port,
shown in Fig. 3. If the photon is transmitted through cavity 1, it is
emitted from the spatial mode ~1 with the state { R;

�� �
~1
. If the photon

is reflected by cavity 1, it is emitted from the spatial mode 1 with the
state jL"æ1. The nonlinear interaction between the input photon and
the QD in cavity 1 transforms the state of the composite system
composed of the three electrons (c1, c2 and t) and the single photon
into

J1j i~
1
2

{ R;
�� �

~1 :j ic1
z L:
�� �

1 ;j ic1


 �
:j ic2

z ;j ic2


 �
cos a :j itzsin a ;j it
� 	

: ð18Þ

When the photon is emitted from the spatial mode 1, it will be
injected into rounda1 described by Eq.(10). When the photon is
emitted from the spatial mode ~1, it will be injected into rounda2

described by Eq.(10). Rounda1 and rounda2 transform the state of
the whole system into

Figure 3 | Schematic diagram for compactly implementing a
deterministic Toffoli gate on three electron-spin qubits, assisted by QD-
cavity systems. The electron spins in cavities 1 and 2 are the two control

qubits c1 and c2, and the spin in cavity 3 is the target qubit t. DL is a time-

delay device which makes the photon emitting from the spatial mode 4

interfere with the photon emitting from the spatial mode ~2 at the 50550

beam splitter (BS). The polarizing beam splitter in the {6} circular basis

(62PBS’) transmits the diagonal-polarization photon

zj i~ Rj iz Lj ið Þ=
ffiffiffi
2
p

and reflects the antidiagonal-polarization photon

{j i~ Rj i{ Lj ið Þ=
ffiffiffi
2
p

, respectively.
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The photon emitting from the spatial mode ~2 does not interact with
the QD in cavity 3, while the photon emitting from the spatial mode 2
is injected into cavity 3. Before and after the photon emitting from
the spatial mode 2 interacts with the QD in cavity 3, an Hp is per-
formed on it with HWP1 and HWP2, and an He is performed on the
electron in cavity 3, respectively. Operations (HWP1, He R rounda3

R HWP2, He) transform the state of the whole system into

J3j i~
1
2

R;
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~2 :j ic1
:j ic2
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;j ic2
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2
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� 	

:

ð20Þ

Second, the photon emitting from the spatial mode 4 interferes with
the photon emitting from the spatial mode ~2 at the 50550 beam
splitter (BS) which completes the transformations

Rj i4 ?
BS 1ffiffi

2
p Rj i5z Rj i~3
� 	

, Lj i4 ?
BS 1ffiffi

2
p Lj i5z Lj i~3
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,

Rj i~2 ?
BS 1ffiffi

2
p Rj i5{ Rj i~3
� 	

, Lj i~2 ?
BS 1ffiffi

2
p Lj i5{ Lj i~3
� 	

:
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Third, the output photon is measured in the basis

+j i~ Rj i+ Lj ið Þ
. ffiffiffi

2
pn o

. After some feed-forward single-qubit

operations are performed on the electron-spin qubits, a Toffoli gate
on the three-qubit electron-spin system is achieved. That is, the state
of the system composed of the three electrons confined in QDs
becomes

Joutj ic1c2t~
1
2

:j ic1
:j ic2

z :j ic1
;j ic2

z ;j ic1
:j ic2
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cos a :j itzsin a ;j it
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z
1
2
;j ic1

;j ic2
cos a ;j itzsin a :j it
� 	

:

ð22Þ

Here, the response of detector D2 indicates that the Toffoli gate is
successful. The response of detector D1 indicates that the feed-for-
ward single-qubit operations 2sz and sz should be performed on the
QDs in cavities 1 and 2, respectively. The response of detector D3

(D4) indicates that sz should be performed on the QD in cavity 2 (1).
From Eq.(22), one can see that the quantum circuit shown in Fig. 3

converts the input state Jinj ic1c2t to the output state Joutj ic1c2t , i.e.,

Jinj ic1c2t ?
Toff oli

Joutj ic1c2t . That is, it can be used to implement a
Toffoli gate on a three-qubit electron-spin system, which flips the
state of the target electron-spin qubit iff both the two control elec-
tron-spin qubits are in the state j #æ, in a deterministic way.

Discussion
We have discussed the construction of universal quantum gates on
electron-spin qubits, assisted by double-sided optical microcavities.
In above discussion, all the QD-cavity systems are ideal. That is, the
side leakage of the cavities is not taken into account. However, there
inevitably exists the side leakage (which includes the material back-
ground absorption and the cavity loss) in a realistic QD-cavity sys-
tem, which induces the polarize-bit-flip errors and different
amplitudes between the coupled and the uncoupled photons. If the
cavity leak is taken into account, the optical selection rules employed
in our work become27,32

R;;
�� �

? rj j L:;
�� �

z tj j R;;
�� �

, L:;
�� �

? rj j R;;
�� �

z tj j L:;
�� �

,

R;:
�� �

?{ t0j j R;:
�� �

{ r0j j L::
�� �

, L::
�� �

?{ t0j j L::
�� �

{ r0j j R;:
�� �

:
ð23Þ

QDs inside microcavities with high quality factors Q are of particular
interest for studying light-matter interaction. The photon loss
strongly reduces Q. In micropillar microcavities, a drop of Q takes
place with the pillar diameter d due to an increasing photon loss43. It
is desired to increase the Q values but maintain a small effective
optical mode volume, which can be achieved by improving the sam-
ple design, growth, and structure43. Some coupling strengths and the
quality factors of the QD-cavity system have been experimentally
achieved in various microcavities and nanocavities43–47 (see Tab. 1).

Quantum logic gates play an important role in quantum comput-
ing. The feasibilities of realizing universal quantum computation
with superconducting qubits in circuit-quantum-electrodynamics
setups have been investigated48,49. Romero et al.48 proposed a scheme
for realizing an ultrafast controlled-phase gate in current circuit-
QED technology at subnanosecond time scales with the fidelity of
the gate F 5 99%. Stojanović et al.49 designed a quantum circuit for
directly and fast realizing a Toffoli gate on superconducting qubits
within 75 ns with F . 90%, and within 140 ns with F . 99%. Based
on specific solid-state platforms, proposals for realizing the CNOT
and

ffiffiffiffiffiffiffiffiffiffiffiffiffi
SWAP
p

(SWAP) gates in two-qubit Heisenberg spin chains
have been proposed50–52.

In our work, the schemes for quantum gates based on the electron
spins in QDs are particularly interesting because of their good scal-
ability and long coherence time which can be extended from T2 , ns
range14–16 to T2 , ms range using the spin echo technique. The weak-
excitation approximation is taken in QD-cavity systems, and it
demands the number of the intracavity photons less than the number
of the critical photons53 n0 5 c2/2g2. That is to say, the time interval
between two intracavity photons should be longer than t/n0 , ns (By
taking g/(k 1 ks) 5 1.0, ks/k 5 0.7 and c 5 0.1k for a micropillar
microcavity with diameter d 5 1.5 m m, Q 5 1.7 3 104, one can get n0

5 2 3 1023, t 5 9 ps, and t/n0 5 4.5 ns). Here t is the cavity photon
lifetime and it is around 10 ps. In our schemes, we need only one
single photon. The speed of the photon interacting with the electron-
spin is determined by the cavity photon lifetime. Moreover, the
photon medium is easy to be controlled and manipulated.

In summary, we have proposed two deterministic schemes for
compactly implementing a set of universal quantum gates on sta-
tionary electron-spin qubits, including the two-qubit CNOT gate

Figure 4 | The fidelities of the present deterministic scalable universal
quantum gates on electron-spin systems vs the coupling strength g/k and
the side leakage rate ks/k. (a) The fidelity of the CNOT gate FCT; (b) the

fidelity of the Toffoli gate FT. vc~vx{~v and c 5 0.1k are taken for (a)

and (b) as c is about several meV in experiment.
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and three-qubit Toffoli gate. Our universal quantum gates are
scalable. Different to the hybrid schemes26–29,32 acting on the
photon-electron qubits, our schemes are based on solid-state systems
(QD-cavity systems). Moreover, our schemes do not require addi-
tional electron-spin qubits. Comparing with the synthesis of gates in
terms of CNOT gate, our scheme for Toffoli gate is powerful. It is
required 6 CNOT gates to synthesize a Toffoli gate in the best case12.
It is worth pointing out that with the present technology, our
schemes are feasible. Both high fidelities and high efficiencies can
be achieved when the ratio of the side leakage to the cavity decay is
low.

With universal quantum gates on electron-spin qubits, scalable
quantum computing can be achieved. Maybe it is interesting to
investigate some important quantum algorithms based on elec-
tron-spin systems in future.

Methods
Manipulation and measurement of the QD spin. The QD-spin superposition state
can be prepared by performing single spin-qubit rotations with picosecond optical
pulses22,23 or nanosecond electron-spin resonance (ESR) microwave pulses in an
external magnetic field14,15 on the spin eigenstate which is prepared by an optical
pumping or optical cooling19,20. Ultrafast optical coherent manipulation of a QD-spin
qubit has been demonstrated in a picosecond or femtosecond time scale22,24, and an
ultrafast p/2 spin rotation can be used to complete a Hadamard operation on a spin
qubit. In our schemes, the spin level levels of X2 are in degeneracy as the anisotropic

electron-hole exchange interaction, which lifts the degeneracy of the neutral
exciton54,55, vanishes for the charged excitons in self-assembled QDs. The ESR-based
(Faraday geometry) and coherent optical (geometric phase or AC stark shift) QD spin
manipulation require an application of a magnetic field which lifts the sublevels of the
QD spin, and the degeneracy transition rules given by Eq.(5) are not valid any more as
the R- and L-polarized transitions have a small energy difference. In our schemes, the
single-qubit operations are performed on the QDs before or after the single photon
interacts with the QDs, so the single photon can interact with the QDs in the absence
of the external magnetic field. This trick might be employed to overcome above
drawback. Experimentally demonstrating this trick is a challenge with current
experimental technology as the required magnetic-relaxation timescales , ms is a
challenge, and the accurate control of the switch on the required timing needs to be
considered. Furthermore, the electron coherence time without a magnetic field is
much shorter than that in the presence of a magnetic field (another possible solution
to achieve the degeneracy transitions in an external magnetic field is to employ the
QDs with the identical g factors of the electron and hole). From the rules given by
Eq.(5), one can see that a single photon can be used to complete a 180u spin rotation of
the QD around the optical axis and detect the polarization of the QD spin. Take the
jR#æ light as an example, the nonlinear interaction between such a single photon and
the QD induces the transformation

R;
�� �

a :j izb ;j ið Þ?{a R;
�� �

:j izb L:
�� �

;j i: ð24Þ

The single photon in the state jRæ (jLæ) indicates that the QD is in the state j "æ (j #æ).

The average fidelities of the gates. In our work, the fidelity of a universal quantum gate
is defined as F 5 jÆYrjYiæj2. Here jYræ presents the finial state in a realistic QD-cavity
system composed of excess electrons encoded for the gates and a single photon medium,
whereas jYiæ represents the final state of this composite system in the ideal condition.
The reflection and transmission coefficients of the QD-cavity system for a realistic
system given by Eqs.(4) and (7) affect the fidelities of our universal quantum gates.
Taking the CNOT gate as an example, the average fidelity of the CNOT gate is given by

�FCT~
1

2p

ð2p

0
da yr yijh ij j2: ð25Þ

From above discussion, one can see that the output state of our scheme for the CNOT
gate in the ideal case jyiæ can be expressed as

yij i~
j�iffiffiffi

2
p cos a ;j ic ;j itzsin a ;j ic :j it
� 	

{
jþiffiffiffi

2
p cos a :j ic :j itzsin a :j ic ;j it
� 	

: ð26Þ

If we consider each input-output process of our scheme in the real case described by
Eq.(23), the output state of our scheme for the CNOT gate can be rewritten as

yrj i~
zj i

2
ffiffiffi
2
p tj j j cos azf sin að Þ ;j ic :j itz tj j
�

f cos azj sin að Þ ;j ic ;j it

{ t0j j j cos azf sin að Þ :j ic :j it{ t0j j f cos azj sin að Þ :j ic ;j it
�

z
j�iffiffiffi

2
p rj j ;j ic cos a ;j itzsin a :j it

� 	
{ r0j j :j ic cos a ;j itzsin a :j it

� 	� �
ð27Þ

with j 5 (jt0j 2 jr0j) 2 (jtj 2 jrj) and f 5 (jt0j 2 jr0j) 1 (jtj 2 jrj).

The efficiencies of the gates. The efficiency of a quantum gate is defined as the yield
of the photons (g 5 noutput/ninput), that is, the ratio of the number of the output
photons noutput to that of the input photons ninput. It is also sensitive to the reflection
and transmission coefficients of the QD-cavity system. The efficiencies of the CNOT
gate and Toffoli gate can be respectively expressed as

gCT~ 1{ t0j j r0j j{ tj j rj jð Þ2, ð28Þ

gT~
1
2

1{ t0j j r0j j{ tj j rj jð Þ2 2{ t0j j r0j j{ tj j rj jð ÞÞ: ð29Þ

Fidelity and efficiency estimation. The average fidelities F and the efficiencies g of
the present universal quantum gates as the function of the coupling strength g/k and
the side leakage rate ks/k are shown in Figs. 4 and 5, respectively. These results
indicate that the fidelity and the efficiency behaviors of the two gates are similar to
each other. When ks/k is very small and g/k is large, the fidelities and the efficiencies

Table 1 | The quality factors and coupled strengths of the QD-cavity systems have been achieved in experiments29,43,44,47

coupled strength quality factor parameters

g= kzksð Þ^0:5 Q , 8800 d , 1.5 mm44

g= kzksð Þ^2:4 Q , 4 3 104 d , 1.5 mm,43

g= kzksð Þ^0:8 Q , 6.5 3 104 d , 7.3 mm47

g= kzksð Þ^1:0 Q^1:7|104 d , 1.5, k=ks^0:729

Figure 5 | The efficiencies of the present universal quantum gates vs
the coupling strength g/k and the side leakage rate ks/k. (a) The efficiency

of the CNOT gate gCT; (b) the efficiency of the Toffoli gate gT.

vc~vx{~v and c 5 0.1k are taken for (a) and (b).

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 4 : 7551 | DOI: 10.1038/srep07551 6



of the gates are close to one. Both the fidelities and the efficiencies are high in both the
strong coupling regime [g . (k, c)] and the weak coupling regime [g , (k, c)] when
the ratio of the side leakage to the cavity decay is low. However, with an increase ks/k
or a decrease g/k, the fidelities and the efficiencies of the gates declines. Here the
fidelities and the efficiencies of the single-qubit operations performed on the photons
or the QDs in our schemes are unity, that is, the imperfect operation and the photon
loss in the single-qubit operations are taken into account. To get high fidelities and
efficiencies of the gates, a small side leakage is required, and it can be achieved by
improving the sample growth and optimizing etch processing43. ks/k 5 0.05 may be
achieved for a Q , 165000 pillar microcavity43 and reduce Q to , 9000 by decreasing
the reflection of the top mirror26. For a QD-cavity system, g= kzksð Þ^0:5, g/k 5 2.4,
and g= kzksð Þ^0:8 have been observed in experiment43,44,47. For our protocols, when
g/k 5 2.4 and ks/k 5 0.2, FCT 5 0.981517 and FT 5 0.983317 with gCT 5 0.82597 and
gT 5 0.788322, respectively. If the cavity side leakage is negligible, the average
fidelities of our quantum gates are close to one with a near-unity success probability
(FCT 5 0.999916, FT 5 0.999857, gCT 5 0.98301, gT 5 0.978816 when ks 5 0). Here
the subscripts CT and T represent our CNOT gate and Toffoli gate, respectively.

The fidelities of aforementioned universal quantum gates are decreased by a
amount of 1 2 exp(2t/T2) due to the exciton dephasing effect caused by the exciton
decoherence27. That is, the fidelity depends on the X2 coherence time T2 and the
cavity photon coherence time t. Since the information of the polarization photon is
transferred to the electron through the excitonic state, the exciton dephasing affects
the state of the electron. The exciton dephasing only reduces the fidelity by a few
percents due to the optical dephasing caused by population relaxation or the loss of
phase coherence among the dipoles and the spin dephasing caused by spin interac-
tions with the surrounding nuclei in self-assemble In(Ga)As-based QDs. The optical
coherence time of excitons T2 can be in several hundreds of picoseconds range at low
temperature while the cavity photon lifetime t is much shorter than the cavity photon
lifetime 10 ps (Q: 104 – 105)56–58. The coherence time of a QD-hole spin Th

2 is longer
than 100 ns59 and it is at least three orders of magnitude longer than the cavity photon
lifetime t , 10 ps, so it can be neglected. Besides the exciton dephasing, a few percent
heavy-light hold mixing in the valence reduces the fidelity by a few percents60. This
effect can be reduced by improving the sample design and choosing different types of
QDs.
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