@’PLOS | PATHOGENS

CrossMark

click for updates

E OPEN ACCESS

Citation: Allert S, Brunke S, Hube B (2016) In Vivo
Transcriptional Profiling of Human Pathogenic Fungi
during Infection: Reflecting the Real Life? PLoS
Pathog 12(4): €1005471. doi:10.1371/journal.
ppat.1005471

Editor: Donald C Sheppard, McGill University,
CANADA

Published: April 14,2016

Copyright: © 2016 Allert et al. This is an open
access article distributed under the terms of the
Creative Commons Aftribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Funding: Our own work was funded by the Deutsche
Forschungsgemeinschaft (TR/CRC FungiNet to SA
and BH and SPP1580 - DFG 528/16 and DFG 528/
17 to BH) and the Infect ERA-NET Program
(FunComPath; BMBF 031L0001A). BH is further
supported by the Integrated Research and Treatment
Center for Sepsis Control and Care (CSCC), the Jena
School for Microbial Communication (JSMC), and the
International Leibniz Research School (ILRS). The
funders had no role in study design, data collection
and analysis, decision to publish, or preparation of
the manuscript.

Competing Interests: The authors have declared
that no competing interests exist.

In Vivo Transcriptional Profiling of Human
Pathogenic Fungi during Infection: Reflecting
the Real Life?

Stefanie Allert', Sascha Brunke', Bernhard Hube'23#

1 Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and
Infection Biology, Hans-Knoell-Institute, Jena, Germany, 2 Center for Sepsis Control and Care, University
Hospital Jena, Germany, 3 Friedrich-Schiller-University Jena, Germany

* bernhard.hube @leibniz-hki.de

Multiple types of microbial infections in humans are caused by viruses, bacteria, fungi, or para-
sites. The outcome of these infections is largely determined by the genomes of the pathogen
and host and the appropriate expression of their genes. As both host and microbe have to
dynamically respond to changing conditions during the course of an infection, analyzing RNA
profiles of the pathogen and the infected host can yield indispensable insight into the disease
process. Such data can provide us with crucial information about (1) the mechanisms of host-
microbe interactions; (2) factors that are specific to certain infection processes or stages and
are, hence, potentially suitable for the development of advanced diagnostics (biomarkers); (3)
factors or attributes essential for microbial growth, survival, or virulence in the host, and which
are potentially exploitable as drug targets; and (4) nonprotective and protective immune
responses applicable for immune therapies. In this review, we discuss the methodologies, tech-
nical challenges, potential pitfalls, and key biological messages obtained from studies dealing
with transcriptional profiling of human pathogenic fungi during interactions with the host (in
vivo) or ex vivo within organs (e.g., perfused organs) or host-derived fluids (e.g., cerebrospinal
fluid [CSF]). We will focus on major fungal pathogens, such as Candida, Aspergillus, Blasto-
myces, Arthroderma, and Cryptococcus species, which account for millions of infections every
year [1].

Infection Models, Patient Samples, and Technical Challenges

Different aspects of pathogenesis can be studied at the transcription level using different infec-
tion models. These can range from simple in vitro and ex vivo models via complex in vivo
models to patient samples (Fig 1). Each model has specific advantages and disadvantages. For
example, in vitro or ex vivo models can mimic distinct stages of infection, but lack the com-
plexity of a living host. In general, the methodological difficulties increase with the complexity
of the model, but so too does the potential outcome and relevance to the clinical setting.

The technical challenges for obtaining meaningful transcriptional profiling data from infec-
tion models are, however, manifold: foremost is the need for rapid RNA isolation, to avoid
transcriptional changes and RNA degradation during the purification procedure, in addition to
the low numbers of microbial cells within infected tissues (and, thus, high host-to-microbe
RNA ratios) and the diverse cell populations during infection, to name only a few. Separating
host and pathogen RNA after isolation can be similarly difficult, especially for eukaryotic path-
ogens that share the polyadenylation of mRNA with their hosts. However, RNA enrichment
protocols have been successfully used [2,3].
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Despite these technical challenges, an increasing number of excellent in vivo and ex vivo
transcriptomics studies have allowed us to define both conserved and specific fungal infection
strategies and have provided an invaluable first glimpse into conditions inside the host as expe-
rienced by the pathogen during infections [4].

From Single-Gene Expression to Genome-Wide Dual RNA
Sequencing

The simplest and probably most direct expression analyses from infection models or patients
focus on few selected genes and are generally based on GFP reporters (“single cell profiling”)
[5], In Vivo Expression Technology (IVET) [8], or quantitative reverse transcriptase PCR
(qRT-PCR) (Fig 1) [9]. Important early findings were made using these techniques, including
the heterogeneity of pathogen expression patterns within the same organ [5], the induction of
the glyoxylate cycle and gluconeogenesis after phagocytosis of Candida albicans [5], or the
infection-stage-specific and highly variable expression of individual members of a gene family
in mice [8] and in patients [9]. All these studies allowed important first insights into the regula-
tion of individual genes in actual infection situations.

Parallel expression analyses are technically more challenging, but can yield information on
large numbers of genes (up to genome-wide). Such approaches include: Serial Analysis of Gene
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Fig 1. Infection models and gene expression data. This figure provides an overview of the models and technologies used in the studies reported in this
review. Note that studies [5—7] used ex vivo and in vivo models, while study [2] compared an alternative with a mammalian model.

doi:10.1371/journal.ppat.1005471.9001
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Expression (SAGE) [10], microarrays [6,7,11-17], NanoString [3,18-21], SureSelect [2], and
RNAseq (Fig 1) [22-25]. All of these techniques require sufficient amounts of high-quality
RNA and, generally, annotated genome sequences. The advantage of NanoString [3,18-21] is
the very high sensitivity: no enrichment of pathogen cells is required. Similarly, SureSelect
allowed transcript detection of >85% of all genes of C. albicans [2]. With the costs of sequenc-
ing becoming rapidly cheaper and bioinformatic pipelines constantly improving, RNASeq and
related methods will likely be the technology of choice in the future, especially as it allows, in
combination with sophisticated systems biology tools, dual- or even multi-species analyses:
simultaneous, comprehensive transcriptional profiling of pathogen(s), host, and their interac-
tions [22,23].

Dissecting the Transcriptional Profiles of Complex In Vivo Models

Complex models can simulate the actual clinical infection, but generally produce highly com-
plex transcriptional profiling data. These models, therefore, present a challenge not only for
data analysis but also for their interpretation. Tools exist to reduce such complexities, e.g., gene
ontology (GO) term or gene set enrichment analyses; however, one must be wary not to reduce
the data to a descriptive inventory of known processes, with little new information for the
infection process. If, however, the analysis and interpretation of transcriptional profiling data
includes both hypothesis-driven and hypothesis-creating elements, in combination with
sophisticated bioinformatics tools, important insights into biological processes and networks
during an infection can be gained, as shown below.

One possible pitfall in interpreting in vivo transcriptional profiling is the fact that data are
often average mRNA levels of mixed populations of cells co-isolated from very different envi-
ronments (microniches) within the host (a problem that can be circumvented by the use of sin-
gle-cell profiling; see above). This is presumably more important in vivo, as in laboratory
cultures, and in simpler in vitro infection models, in which infecting fungi can at least be semi-
synchronized. The dynamic processes of true in vivo infections, on the other hand, likely result
in an almost individual transcriptional adaptation of each fungal cell or small cluster, which is
more likely to be lost by this averaging. Therefore, the study design for in vivo transcriptional
profiling should consider the spatiotemporal patterns of infections and should ideally include
several different time points and carefully selected infection sites for analysis. So far, in vivo
time series experiments are the exception rather than the rule [6,17], but with decreasing
sequencing costs this will likely change in the near future.

The dissection of complex infection processes on the transcriptional level may also benefit
from the inclusion of reductionism: transcriptional markers and patterns defined from in vitro
experiments, indicative of particular physiological conditions, can be detected in complex in
vivo datasets. For example, the Aspergillus fumigatus transcriptome during murine infections
exhibited signatures also observed during in vitro iron and nitrogen starvation and adaptation
to alkaline pH [11]. Similarly, SAGE analysis of Cryptococcus neoformans cells recovered from
mammalian lungs were compared with data from cells grown in defined culture conditions,
indicating that genes involved in alternative carbon metabolism are expressed in vivo [10].
Comparison of in vitro and in vivo transcriptomes may therefore allow conclusions about the
microniches to which at least subpopulations of fungi are exposed during infection, allowing us
to see the host through the eyes of the pathogen. However, while often very helpful, direct
application of in vitro to in vivo data can, in some cases, also be misleading. For example, Pong-
pom et al. showed that the genes regulated by two A. fumigatus transcription factors differ
strongly between in vitro growth and infections, with some virulence-associated genes being
responsive only in vivo [20]. This is an important finding, as it shows again that established
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regulons of microbial transcription factors can be modulated by the conditions in the host. The
same is true for C. albicans, in which, for example, Berl-responsive genes differ significantly in
in vitro and in vivo biofilms, with very little overlap [19,26]. Dissecting complex in vivo data
with simpler in vitro models, while useful, is therefore not always straightforward. However,
the most interesting data may lie within the deviations from the expected results.

Another potential pitfall of data interpretation lies in the choice of the control dataset. For
example, subtracting in vitro transcriptional data from in vivo data to identify infection-associ-
ated genes may remove crucial information. Although the identification of genes predomi-
nantly expressed in the in vivo setting is the foremost aim of most in vivo studies, genes
expressed under laboratory conditions may also be critical for the infection process. For exam-
ple, the yeast-phase-specific, important virulence gene BADI of Blastomyces was not found as a
specifically in vivo expressed gene [24]. Similarly, it was observed that the C. neoformans in
vivo gene expression profiles in the CSF of infected patients were similar to those in complex
culture growth medium rather than ex vivo CSF [25].

In summary, the road to a successful in vivo transcriptional profile leads via (1) an appropri-
ate infection model (or patient sample), (2) a defined scientific question and hypothesis, (3)
early consultation of bioinformaticians and (4) solid experimental design that considers the
stage- and tissue-specific dynamics of infections, and (5) avoidance of potential pitfalls (e.g., in
fungal cell enrichment procedures), which should lead to (6) high-quality pathogen and/or
host RNA in sufficient amounts, allowing the use of (7) sophisticated systems biology tools for
(8) hypothesis-driven and hypothesis-creating interpretation of transcriptional profiling data.

Gene Expression during Infection: What Can We Learn from In Vivo
Transcriptional Profiling?

Several studies have tackled these technical challenges and gained transcriptome data directly
from sites of infection. So, what have we learned from these studies?

In vivo single-cell profiling, IVET, qRT-PCR, or NanoString of selected genes have provided
important and sometimes surprising insights (Fig 2): (1) the expression of metabolic pathways
of fungi during systemic infection is niche-specific, (2) the expression of known virulence fac-
tors can depend on the type of infection, and (3) some of these factors are expressed in both
infected mice and human patients [5,8,9,18].

Specifically, in an early use of microarrays and ex vivo blood infections, Fradin et al. con-
firmed the dominant role of neutrophils in clearing C. albicans blood infections [12]. Thewes
et al. identified the central role of pH adaptation for liver invasion in mice and ex vivo perfused
organs from pigs [6], Zakikhany et al. identified a regulator of interepithelial dissemination by
using oral patient samples [7], and Rosenbach et al. described the simultaneous expression of
genes associated with rapid growth and stress response during gut colonization—overlapping
signatures rarely observed in vitro [14]. During infection of zebrafish, the expression pattern of
C. albicans reflected distinct phases, with filamentation dominating in the invasive phase and
iron acquisition dominating in the damage phase [15]. Using SAGE, Hu et al. observed increased
expression of genes encoding transporters and stress-response proteins by C. neoformans cells
infecting lungs of mice, indicating a nutrient-limited and hostile host environment [10]. Simi-
larly, McDonagh et al. used microarrays to define A. fumigatus genes essential for adaptation to
lung tissue [11]. The same laboratory elucidated the role of alkaline adaptation in Aspergillus
lung infections by an in vivo time series from a pH-adaptation defective mutant (ApacC) and its
wild type and identified the transcription factor Rim101/PacC as a regulator of cell wall biosyn-
thetic genes [17]. Similar observations were made by O’Meara et al. for Rim101/PacC from C.
neoformans during cryptococcal lung infections [21]. Xu et al. observed transcriptional responses
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Fig 2. Fungal gene expression during infection. Key observations from studies discussed in this review.

doi:10.1371/journal.ppat.1005471.9002

to metal limitation in the early stages and response to phagocytosis by macrophages in later
stages of systemic candidiasis by NanoString [3]. Using RNASeq, Bruno et al. proposed a role for
the inflammasome in the immunopathogenesis of vulvovaginal candidiasis [23]. Chen et al.
investigated the transcriptome of C. neoformans at sites of human meningitis by RNAseq [25].
The RNA pattern reflected surprising metabolic activity within CSF from patients, which was
comparable to growth in complex medium. Munoz et al. investigated the gene expression of
Blastomyces during pulmonary infections of mice by using RNAseq and observed a strong
response against reactive oxygen species (ROS) and zinc limitation, among others [24]. As
expected, it was demonstrated that the dermatophyte Arthrodema benhamiae expressed a great
variety of different protease genes on the skin of rodents [16]. However, against expectation, the
pattern of protease genes was very different from growth on keratin in vitro. Finally, when com-
paring the C. albicans transcriptome during infections of mice and an alternative invertebrate
model, Amorim-Vaz et al. found a surprisingly conserved “core” virulence program in these
diverse hosts, which included stress response, iron acquisition, and biofilm formation [2]. As can
be seen from this list, which is far from exhaustive, many transcriptional patterns appear seem-
ingly independent of model and infecting fungus.
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Conclusion

In the majority of in vivo studies, infection-associated expression profiles have been linked to
more-or-less specific, defined processes and have identified recurrent patterns of fungal activi-
ties associated with infection. These include (1) niche-specific metabolism [3,5,10,12-14,16,19];
(2) acquisition of nutrients, in particular metals [3,6,11,15,20,24,25]; (3) oxidative stress
responses [12,19,25]; (4) pH adaptation [6,11,17,21]; and (4) morphological transitions
[6,7,12,15,24]. These findings suggest that the host is a hostile environment from the pathogen's
point of view—in line with our expectations.

So, do in vivo transcriptomes simply tell us that what we measure in vivo is similar to what
we observe in cultures and reaction tubes? The answer is yes and no. As discussed above, in
vitro data can be very similar to in vivo data, but also very different in central aspects.

For example, while the RNA pattern of C. neoformans during human meningitis was com-
parable to growth in complex medium [25], more than 1,000 A. fumigatus genes were found as
differentially expressed only in vivo and not in any infection-simulating in vitro condition
[11].

The discovery that many of the adaptive responses that we measure on the bench indeed
occur during infection is an important one in itself—evidently, our models do reflect actual
aspects of infection. However, in vivo transcriptional profiles also show us that some of our
predictions and in vitro models are misleading. Equally, or even more significantly, the com-
plexity of infection processes can go well beyond observations made with simple in vitro mod-
els. Combinations of stresses, temporal and spatial separation of transcriptional responses in
subpopulations, and the (often reciprocal) dynamics of a two-species system influence the
overall transcriptome in in vivo samples.

This may explain why we find not only predicted but also surprising new transcriptional
patterns, which are not observed under laboratory conditions. These host-specific patterns
deserve our future attention, as they may provide us with data on infection-specific processes,
which do not occur in cultures and reaction tubes.

Exploiting these emerging in vivo datasets, although challenging, will have great potential
for the development of future diagnostic and therapeutic options. Currently, we have not yet
found clear molecular biomarkers to detect and discriminate between different fungal infec-
tions. So far, we have found only few factors essential for virulence (but not for standard in
vitro growth) as potential new drug targets. However, recent years have seen not only promis-
ing new technical advances in the extending field of in vivo transcriptional profiling, but also
the advent of many sophisticated bioinformatical tools. The latter, especially, will allow us to
gather new and meaningful information from increasingly larger and more complex datasets.
The era of in vivo transcriptional profiling has only just begun.
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