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Abstract

Accurate prediction of open reading frames (ORFs) is important for studying and using genome sequences. Ribosomes move along
mRNA strands with a step of three nucleotides and datasets carrying this information can be used to predict ORFs. The ribosome-
protected footprints (RPFs) feature a significant 3-nt periodicity on mRNAs and are powerful in predicting translating ORFs, including
small ORFs (sORFs), but the application of RPFs is limited because they are too short to be accurately mapped in complex genomes.
In this study, we found a significant 3-nt periodicity in the datasets of populational genomic variants in coding sequences, in which
the nucleotide diversity increases every three nucleotides. We suggest that this feature can be used to predict ORFs and develop the
Python package ‘OrfPP’, which recovers ∼83% of the annotated ORFs in the tested genomes on average, independent of the population
sizes and the complexity of the genomes. The novel ORFs, including sORFs, identified from single-nucleotide polymorphisms are
supported by protein mass spectrometry evidence comparable to that of the annotated ORFs. The application of OrfPP to tetraploid
cotton and hexaploid wheat genomes successfully identified 76.17% and 87.43% of the annotated ORFs in the genomes, respectively,
as well as 4704 sORFs, including 1182 upstream and 2110 downstream ORFs in cotton and 5025 sORFs, including 232 upstream and
234 downstream ORFs in wheat. Overall, we propose an alternative and supplementary approach for ORF prediction that can extend
the studies of sORFs to more complex genomes.
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Introduction
Annotation of open reading frames (ORFs) in genomes
is one of the most important processes required for
downstream analyses and the use of reference genomes.
Various algorithms have been developed to predict ORFs
[1–5] in genomes, but these sequence-based methods
are powerless in predicting small/short ORFs (sORFs)
because many nonsense sORFs can arise by chance as
random combinations of nucleotides. Recent studies
have shown the crucial roles of sORFs, which encode
peptides shorter than 100 amino acids, in various

biological processes, including responses to abiotic and
biotic stresses in plants [6] and oncogenesis in humans
[7] and some of them are pertinent to cancer therapy
[8]. The prediction of sORFs has long been problematic
due to their short lengths and the use of alternative
start codons, such as near-cognate codons (CUG, GUG,
UUG) [4, 9]. Early attempts at sORF prediction were
based on the sequence similarity across near or distant
species, assuming that the functional sORFs would
be conserved in sequence. For example, 26 conserved
upstream ORFs (uORFs) were identified by comparing
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the full-length complementary DNA (cDNA) sequences
between rice and Arabidopsis [10]. The recent application
of the Ribo-Seq technique, which profiles ribosome-
protected messenger RNA (mRNA) footprints (RPFs),
has enabled accurate prediction of translated ORFs,
including sORFs, in several genomes [4, 6, 8, 11–16].
Protected by a single ribosome sliding along the mRNA
strand with a consistent step size of 3-nt, the RPFs should
be uniform in size and show a 3-nt periodicity along the
mRNAs if they are properly prepared [2], allowing the
identification of the translating frame on mRNAs.

Although the Ribo-seq technique has been used in
studies of many species, including yeast, humans, ani-
mals and plants [16], most of these species are model
organisms with a simple genome. This is because a typi-
cal eukaryotic ribosome footprint is 28 nt in length [2, 17,
18], which is too short for accurate mapping in genome
sequences, and this problem would be even worse in
polyploid genomes. Due to multiple duplication events
during evolutionary history, many plant genomes are
polyploid and complex, featuring high repetitiveness and
high heterozygosity [19, 20], limiting the application of
Ribo-Seq in many plants, including several staple crops,
such as bread wheat (Triticum aestivum) (6X) and cotton
(Gossypium hirsutum) (4X). In addition, the challenges in
preparing high-quality RPFs also limit the application of
this technique to a broader range of non-model organ-
isms. Incomplete digestion of unprotected mRNAs can
reduce or eliminate the 3-nt periodicity of RPFs [21, 22],
becoming useless for ORF identification.

Although the 3-nt periodicity shown by high-quality
RPFs is powerful in ORF prediction, the application of
RPFs for this purpose is hampered by the complexity
of genomes, particularly in plant studies. We noticed
that the populational diversity of nucleotides in coding
sequences (CDSs) also shows a significant 3-nt periodic-
ity, as observed for high-quality RPFs, and thus propose
to use this periodicity to predict ORFs. In this study, to
achieve this, we developed a Python package, ORF pre-
dictor using population genomic dataset (OrfPP), which
identifies ORFs using the nucleotide diversities in pop-
ulational datasets of single-nucleotide polymorphisms
(SNPs). We tested OrfPP and recovered an average of
83.20% of the annotated ORFs with an average accu-
racy of 94.77%. The performance of OrfPP is robust even
when a small subset of the SNPs is used. Finally, we
applied OrfPP to two polyploidy genomes, cotton and
wheat and identified 4704 and 5025 novel ORFs, respec-
tively, with reliability comparable to the annotated ORFs
in the genomes. Our study suggests that predicting ORFs
from SNPs can be an approach supplementary to the
existing methods and can be used to identify sORFs in
complex genomes, for which the existing methods are
not yet workable. We believe that this approach will play
a greater role in future studies of animals and plants,
given the rapidly growing number of SNP datasets for
different species and the application of advanced tech-
niques of DNA sequencing and SNP calling.

Methods and datasets
Comparison of ORFs predicted from RPFs and
SNPs
To simplify the comparisons, the RPF-based ORF pre-
diction in all the tested datasets was performed using
RiboCode (v1.2.11) [23], ORFquant [24] and Ribotricer [25]
with default parameters, and the ORFs predicted by the
one performing the best (measured by F-score) were
chosen to represent the ORFs predicted from RPFs. The
predicted ORFs identical to the annotated ORFs in the
reference genome were counted as true positives and
the others were considered false positives. The accuracy,
recall and F-score were calculated following the formula:

Accuracy = Number of true positives
Total number of predicted ORFs

(1)

Recall = Number of true positives
Total number of annotated ORFs

(2)

F − score = 2 × Recall × Accuracy
Recall + Accuracy

. (3)

F-scores were used to comprehensively assess the per-
formance of OrfPP. It should be noted that although the
unannotated ORFs were counted as false positives, many
of them are bona fide ORFs, such as sORFs that were not
included in the annotation of reference genomes.

Metagene analysis and periodicity assessment
Metagene analyses have been used to illustrate the read
distribution pattern of RPFs on mRNAs, which show a
clear 3-nt periodicity in various organisms [9, 11–13, 26].
To perform metagene analysis of CDSs, the diversity for
each nucleotide in the first 50 nucleotides was deter-
mined for each ORF and used to calculate the aver-
age nucleotide diversity at each position in the first 50
nucleotides for all the ORFs in the genome. Similarly,
the diversity for each nucleotide in the 50 nucleotides
upstream of start codons was selected for the analysis of
the 5′ untranslated region (UTR), and those downstream
of stop codons were selected for analysis of the 3′ UTR.
To analyse intergenic regions, 10 000 50 bp windows
were randomly selected and aligned to calculate the
average diversity for the nucleotides at each position.
The periodicity in the plot of metagene analyses was
evaluated using an F test implemented in the ‘multitaper’
R package (version 1.0–14) [27], which detects the spectra
and frequencies of the changes of nucleotide diversities
within the window and calculates the P-values for all
the frequencies. As a frequency of 0.33 Hz (1/3) indicates
the periodic appearance/increase of the diversity of every
three nucleotides, a significant P-value is expected for a
pattern with 3-nt periodicity.

Quantification of translation levels of ORFs
The RPFs used for ORF prediction in this study were also
used to calculate the translation levels of the predicted
ORFs. Briefly, the RPFs were mapped to the genomes
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using HISAT2 [28] with default parameters and the num-
ber of mapped RPFs in each ORF was counted and used
to calculate translation levels.

Validation of predicted ORFs using mass
spectrometry datasets
To validate the ORFs predicted by OrfPP, we down-
loaded the protein mass spectrometry (MS) datasets of
Schizosaccharomyces pombe, Arabidopsis thaliana and Oryza
sativa from the PRIDE archive under the accessions of
PXD015484 (S. pombe) [29], PXD009484 (A. thaliana) [30],
PXD019885 (O. sativa) [31], PXD018692 (G. hirsutum) [32]
and PXD021446 (T. aestivum) [33]. The MS raw data derived
from the wild types of these species were downloaded
and loaded into MaxQuant [34] with default parameters
to search for the peptides encoded by the ORFs identified
by OrfPP from SNPs. The percentage of ORFs supported
by MS evidence was calculated for each class of ORFs,
followed by normalization by their average expression
levels (because ORFs with higher expression levels have
a greater chance of being included in MS data) and log
transformation. Therefore, the degree of MS support was
calculated following the formula:

Degree of MS support

= log10
(

Number of ORFs represented in MS
Total number of ORFs×Expression level of ORFs

)
. (4)

Datasets
Several datasets from model organisms, including fis-
sion yeast, Arabidopsis and rice, were selected to test
the performance of OrfPP. These organisms usually have
high-quality reference genomes, SNP datasets [35–39]
and high-quality RPFs [11, 26], allowing a comprehensive
comparison between the ORFs predicted from RPFs and
those predicted from SNPs by OrfPP. SNP datasets of
cotton and wheat were also used to identify novel ORFs
in the genome. The datasets used in this study are listed
in detail in Table S1 (see Supplementary Data available
online at http://bib.oxfordjournals.org/).

Results
3-nt periodicity of nucleotide diversity in coding
regions
We performed metagene analyses of sequences from
intergenic regions, 5′ and 3′ UTRs, and coding regions in
different genomes ranging from yeast to higher plants
(Arabidopsis and rice), the population size of which varied
from 148 (yeast) to as large as ∼3000 in rice. Our results
show highly consistent patterns for all these tested popu-
lations; only the nucleotide diversities in CDSs showed a
significant 3-nt periodicity, while the diversities in other
regions appeared to vary randomly (Figure 1). The wobble
nucleotides in codons are more tolerant to mutation
and have experienced less purification selection dur-
ing evolution. Indeed, higher diversities were observed
for the third nucleotides in codons (Figure 1). In line
with this observation, the nucleotide diversities in the

non-coding regions were generally higher than those in
CDSs, with those in intergenic regions being the highest,
indicative of the smallest selective pressure on these
regions. These results suggest that this 3-nt periodicity of
nucleotide diversity in CDSs is common in natural popu-
lations. Such a periodic increase in nucleotide diversity
in CDSs is reminiscent of the 3-nt periodicity of RPFs’
depth on mRNAs (Figure 2A); therefore, we propose that
this periodicity of nucleotide diversity can also be used to
predict ORFs.

Design of OrfPP
To utilize the periodicity of nucleotide diversity to predict
ORFs in genomes, we developed a pipeline named ‘OrfPP’,
which is available as a Python package (https://pypi.
org/project/OrfPP/1.0/). Given that the 3-nt periodicity of
nucleotide diversity only appears in CDSs, as shown in
Figure 1, it can distinguish CDSs from non-CDSs, deter-
mine the reading frame of ORFs and predict ORFs in the
genome. Codon usage is also considered in OrfPP. The use
of different codons varies considerably across different
genomes, which are strongly correlated to the abundance
of their corresponding tRNAs in the genome [40–42] and,
therefore, is an intrinsic feature unique to each genome.
It is reasonable to assume that all the ORFs in a genome
use codons with the same preferences because they all
share the same pool of tRNAs.

Briefly, OrfPP uses the 3-nt periodicity of nucleotide
diversity in populational genomic datasets and codon
usage preferences to predict ORFs in the genome.
It takes three input files: the nucleotide diversity
(derived from the SNP dataset), the reference genome
sequence (in fasta format) and genome annotation (in
gtf format) and includes three major steps, as shown in
Figure 2B.

Codon usage training

To calculate genome-wide codon usages, OrfPP first
predicts ORFs solely based on nucleotide diversity. The
pipeline extracts the transcripts according to the genome
annotation and allocates the values of nucleotide
diversity onto each position on transcripts, from which
candidate ORFs (start with ‘AUG’ and end with stop
codons with a length multiple of three) are extracted
for the prediction of ORFs. Two Student’s t-tests are
performed to test whether the nucleotide diversities in
frame 2 (the third nucleotides of codons) are greater
than those in frame 0 and frame 1 in OrfPP, and are
combined to report a final P-value for the identification
of ORFs. To obtain ORFs with higher reliability for codon
usage training, several stringent criteria are applied in
this process of preliminary prediction. For example, at
this stage, OrfPP only predicts ORFs starting with the
canonical initiation codon ‘AUG’ from the candidates
longer than 300 bp. The codon usages are then calculated
from these predicted ORFs and used to represent the
genome-wide usages.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac210#supplementary-data
https://pypi.org/project/OrfPP/1.0/
https://pypi.org/project/OrfPP/1.0/
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Figure 1. A 3-nt periodicity is shown by nucleotide diversity in coding sequences but not in the other regions in the genomes of (A) fission yeast, (B)
Arabidopsis and (C) rice. The periodicity of the nucleotide diversities in each dataset was measured by a ‘multitaper’ test shown on the right, in which
a peak at 0.33 (blue dashed lines) indicates a significant (P < 0.001, cyan dashed lines) periodicity of 3-nt. The values from the first, second and third
positions in each triplet were colored in cyan, orange and purple, respectively.

Figure 2. The workflow of OrfPP. (A) The 3-nt periodicity shown in the populational nucleotide diversity in CDSs is reminiscent of the periodicity shown
in ribosome-protected footprints and (B) the workflow of OrfPP.

ORF prediction

Transcript sequences are extracted according to the
genome annotation information, and candidate ORFs
were retained (Figure 2B) for further tests. In addition

to the tests of nucleotide diversity between the frames
(frame 0 versus frame 2, frame 1 versus frame 2), the
pipeline also tests the codon usages between the frames
for each candidate ORF by assigning to each nucleotide
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a value corresponding to the usage of the corresponding
triplet as a codon in the genome. As for the diversity tests,
OrfPP tests whether the values of codon usage at frame
0 are higher than those at frames 1 and 2 and combines
the P-values from these four Student’s t-tests to give a
final P-value for the prediction of ORFs. To also report
sORFs, OrfPP reports ORFs shorter than 100 bp and the
initiation codons can be customized.

ORF classification

The predicted ORFs are classified into 11 categories fol-
lowing previous definitions [1, 3, 5]. They are (i) annotated
ORF, (ii) truncated ORF, (iii) extended ORF, (iv) uORF, (v)
overlapped uORF, (vi) downstream ORF (dORF), (vii) over-
lapped dORF, (viii) ORFs located in non-coding RNAs, (ix)
internal ORF, (x) ORFs located in transposable elements
and (xi) ORFs in pseudogenes [3]. Although the ORFs are
classified according to the previous annotation of ORFs
in the reference genome, OrfPP can also be used for de
novo prediction of ORFs when the annotation of ORFs is
not yet known. In this situation, the predicted ORFs will
all be annotated as ‘Novel ORFs’.

Comparison of annotated ORFs recovered from
RPFs and SNPs
Several species (Table S1, see Supplementary Data avail-
able online at http://bib.oxfordjournals.org/), including
yeast, Arabidopsis and rice, all with high-quality reference
genomes and available datasets of both RPFs and SNPs,
were selected to assess the performance of OrfPP. The
accuracy, recall and F-score of prediction were used to
describe the performance of OrfPP in these genomes.
We used the annotated ORFs in the reference genomes
as a benchmark to measure the performance of OrfPP,
with the predicted ORFs identical to the ORFs annotated
in the reference genome considered true positives and
false positives otherwise. A note of caution should be
made that many unannotated ORFs may be bona fide
ORFs, such as sORFs, not included in the annotation of
reference genomes but considered false positives in this
computation.

As RPFs were the most direct evidence recording
the reading frame on the mRNAs, the ORFs predicted
by OrfPP were also compared with those predicted
from RPFs. RPF-based ORF prediction was performed
using three different tools, RiboCode [5], ORFquant
[24] and Ribotricer [25], the results of which varied
substantially, with ORFquant performing the best
in yeast datasets, while RiboCode was the best for
Arabidopsis and rice (Table S2, see Supplementary
Data available online at http://bib.oxfordjournals.org/;
Figure S1, see Supplementary Data available online at
http://bib.oxfordjournals.org/). We then used the yeast
ORFs predicted by ORFquant and Arabidopsis and rice
ORFs predicted by RiboCode to compare with those pre-
dicted from SNPs. Our analysis showed that 89.57, 83.82
and 79% of the known ORFs in the reference genome
of fission yeast, Arabidopsis and rice were successfully

recovered by OrfPP with accuracies of 98.03, 95.6 and
90.19%, respectively, from the SNP datasets. Many of the
annotated ORFs in these genomes were also recovered
from RPFs, but there were fewer than those found using
SNPs by OrfPP (Figure 3A–C; Table S2, see Supplementary
Data available online at http://bib.oxfordjournals.org/;
Figure S1, see Supplementary Data available online at
http://bib.oxfordjournals.org/), probably because the
RPFs included only actively translating ORFs. RPFs from
silenced ORFs under the tested conditions would have
been absent in the RPF dataset. However, the accuracies
of prediction are similar between these two tools for all
the tested genomes, suggesting a comparable accuracy
between the ORFs predicted from SNPs and those from
RPFs. The comparison between the ORFs predicted from
RPFs and those from SNPs indicates that most of the
former were included by the latter (Figure 3D–F).

To further investigate the impacts of translation lev-
els on the prediction of ORFs, we roughly categorized
the known ORFs into three major groups: (i) commonly
predicted from both RPFs and SNPs, (ii) predicted only
from SNPs and (iii) not predicted, and calculated their
translation levels using the corresponding RPFs used for
ORF predictions in this study. Our data revealed the high-
est translation levels for the ORFs commonly predicted
from both SNPs and RPFs (Figure 3G–I), suggesting that
RPFs are efficient in predicting actively translated ORFs.
However, the ORFs in the other two groups showed lower
levels of translation (Figure 3G–I). These results suggest
that in addition to the active ORFs that RPFs can capture,
OrfPP can also predict inactive ORFs by utilizing the
SNPs accumulated during the evolutionary history of the
species.

Comparison of sORFs identified from RPFs and
SNPs
RPFs have been used to predict sORFs in many studies,
but a shortcoming of this method has often been ignored.
Due to the short size of RPFs, only a few of them can be
uniquely mapped to genomes (Figure S2,see Supplemen-
tary Data available online at http://bib.oxfordjournals.
org/). For example, for the RPFs tested in this study,
the unique mapping rates of RPFs varied from 9
to 54%, while the unique mapping rates of whole-
genome sequencing (WGS) reads can be as high as 92%
(Figure S2, see Supplementary Data available online at
http://bib.oxfordjournals.org/). The usual solutions to
this multimapping problem are using only the uniquely
mapped RPFs or randomly assigning the RPFs to one
of the potential mapping sites [6, 11, 43, 44]. These
solutions could potentially result in the misidentification
of ORFs or missing some of the ORFs in the genome.
Given the higher unique mapping rate of WGS reads,
the sORFs predicted from SNPs are likely to be more
complete than those from RPFs. Therefore, we also
tested the performance of OrfPP in the identification
of sORFs and compared those predicted from SNPs
with those predicted from RPFs. In this comparison, to

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac210#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac210#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac210#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac210#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac210#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac210#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac210#supplementary-data
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Figure 3. Recovery of annotated ORFs by OrfPP using SNPs datasets. Comparison between the ORFs predicted from SNPs and those from RPFs in the
genomes of (A) fission yeast, (B) Arabidopsis and (C) rice. Overlaps between the ORFs predicted from SNPs (by OrfPP) and RPFs in (D) fission yeast,
(E) Arabidopsis and (F) rice, according to which the annotated ORFs were categorized into three groups. The comparison of translation levels of genes
between the three groups in (G) fission yeast, (H) Arabidopsis and (I) rice.

better illustrate the performance of OrfPP, we used the
sORFs predicted from RPFs as a benchmark to assess the
accuracy and recall rate of the predictions by OrfPP. The
OrfPP-predicted sORFs identical to those predicted from
RPFs were considered true positives and the others were
tentatively considered false positives.

In total, RPF-based tools predicted 72, 422 and 562
uORFs in the yeast, Arabidopsis and rice genomes, respec-
tively (Figure 4A–D). However, only three uORFs were
predicted by OrfPP from yeast SNPs, and none were iden-
tical to the uORFs predicted from RPFs. We found that
the difference between these two prediction algorithms
could be attributed to the difference in sORF definition
in the tools. The yeast ORFs from RPFs were predicted by
ORFquant, which reports sORFs as short as 9 bp, while
OrfPP only reports ORFs longer than 60 bp. The other
two RPF-based tools also report longer sORFs, but none
of them predicted sORFs from yeast RPFs in this work.
Therefore, the yeast sORFs predicted by ORFquant are

not comparable to those predicted by OrfPP. For this
reason, we compared only Arabidopsis and rice sORFs
predicted from RPFs or SNPs. In total, 377 and 974 uORFs
were predicted from Arabidopsis and rice SNPs and of
these, 98 and 231 were identical to the uORFs predicted
from RPFs, accounting for 23.22 and 41.10% of the total
predictions from RPFs, respectively. Two ORFs commonly
identified from RPFs and SNPs are shown for Arabidopsis
(Figure 4A) and for rice (Figure 4B). These results suggest
that more than a quarter of the uORFs predicted from
RPFs can be recovered by OrfPP from SNPs. However,
fewer dORFs were commonly identified from both SNPs
and RPFs (Figure 4). Among the 840 dORFs identified
using Arabidopsis RPFs, 150 (17.86%) were also identi-
fied from SNPs by OrfPP; 289 of the 840 (34.4%) dORFs
identified from rice RPFs were recovered by OrfPP from
SNPs (Figure 4C and D). As above, we categorized the
sORFs into three groups: (i) ORFs identified from both
SNPs and RPFs, (ii) ORFs identified from only RPFs and
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(iii) ORFs identified only from SNPs. Our data showed
that the ORFs commonly identified from both the SNPs
and RPFs were more actively translated. In contrast, the
ORFs in the other two groups, particularly the ORFs in
group (iii), identified from SNPs but not from RPFs, had
lower translation levels (Figure 4E and F). The difference
between these two predictions suggests a rare translation
of dORFs but implies a potential to encode micropeptides
in the 3′ UTR regions.

ORF prediction from SNPs of polyploidy genomes
We further applied OrfPP to two polyploid genomes,
tetraploid cotton (G. hirsutum) and hexaploid wheat (T.
aestivum), to test its performance in complex genomes.
SNP datasets derived from either 1913 cotton accessions
[45] or 507 wheat accessions [46, 47] were used in
this test. Both datasets showed a significant 3-nt
periodicity in CDSs (Figure S3, see Supplementary Data
available online at http://bib.oxfordjournals.org/), which
allows the identification of ORFs. As a result, 91 594
ORFs were identified from cotton SNPs, among which
86 890 (94.86%) and 4704 (5.14%) were annotated and
novel ORFs, respectively, and 114 929 ORFs, including
109 904 (95.63%) annotated and 5025 (4.37%) novel ORFs,
were identified from wheat SNPs. The annotated ORFs
recovered from SNPs accounted for 87.43 and 76.17%
of all the annotated ORFs in the genome of cotton and
wheat, respectively (Figure 5A–D), values comparable
to the results using the model genomes (Figure 3). In
addition to these annotated ORFs, several novel ORFs,
including a variety of sORFs, were also identified from
these datasets (Figure 5E and F), including 1182 and 2110
uORFs and dORFs, respectively, in the cotton genome and
232 and 234 uORFs and dORFs, respectively, in the wheat
genome. These results suggest that ORF prediction from
SNPs is also workable for complex genomes.

Validation of novel ORFs identified from SNPs
Novel ORFs, including a variety of sORFs, were identified
from both the RPF and SNP datasets in our tests. To verify
the reliability of these predictions, we obtained protein
MS data for each organism and searched for evidence
supporting the existence of the peptides encoded by
the novel ORFs. We computed the percentage of ORFs
supported by MS data in each ORF class and, given
the higher representation in MS datasets for ORFs with
higher expression levels, measured the degree of MS
support by normalizing this percentage to the average
expression levels of ORFs in each class. Although more
annotated ORFs were found in MS data compared to the
novel ORFs, the degree of MS support for the annotated
and novel ORFs predicted was generally comparable in
our tests (Figure 6A). For the ORFs predicted from SNPs,
the MS support for the novel ORFs is proportional to that
of the annotated ORFs in the genome. Support values
are near the diagonal of the plot (Figure 6A), suggesting
equivalent reliability between these two categories of
ORFs. Therefore, the novel ORFs predicted from SNPs

could be as reliable as the annotated ORFs, validated by
many different lines of evidence.

The overall support for ORFs derived from MS data
appears to be variable across these genomes; therefore,
we normalized the MS support degree of novel ORFs by
calculating the ratio of MS support for novel ORFs to
the support for annotated ORFs (MS support of novel
ORF/MS support of annotated ORF) to enable intraspecies
comparison. We found a higher normalized MS support
for the novel ORFs identified from the yeast and Arabidop-
sis SNPs (Figure 6A and Figure S4A, see Supplementary
Data available online at http://bib.oxfordjournals.org/).
We compared the MS support to the ORFs predicted
from SNPs and RPFs (Figure 6A and Figure S4A,see
Supplementary Data available online at http://bib.
oxfordjournals.org/). For the ORFs predicted from RPFs,
the MS support for the novel ORFs was weaker than
that for the annotated ORFs (Figure 6A and Figure S4A,
see Supplementary Data available online at http://bib.
oxfordjournals.org/). This suggests the novel ORFs
predicted from SNPs are more reliable than those from
RPFs, given that the former was supported to a degree
nearly equivalent to that of annotated ORFs (Figure 6A).
The normalized MS support also allowed a comparison of
MS support between different categories of novel ORFs.
Although substantial variation was observed across ORFs
in different categories, the support for both uORFs and
dORFs was generally comparable, both of which being
somewhat higher than those for the annotated ORFs
(Figure 6B and C and Figure S4B and C, see Supplemen-
tary Data available online at http://bib.oxfordjournals.
org/).

We also performed this analysis to verify the ORFs
identified from the SNPs of cotton (4 X) and wheat (6 X).
Our data indicated that the novel ORFs identified from
both the cotton and wheat SNPs were supported by MS
data to a degree comparable to that of the annotated
ORFs in the genome (Figure 6A). We could not compare
the reliability of wheat novel ORFs identified from SNPs
and RPFs because the latter is not yet available for wheat
and cotton due to the short sequence lengths. How-
ever, our data show that the normalized MS support for
cotton and wheat novel ORFs is stronger than that of
yeast, Arabidopsis and rice novel ORFs identified from
RPFs (Figure 6A and Figure S4A, see Supplementary Data
available online at http://bib.oxfordjournals.org/).

Taken together, our data suggest that the novel ORFs
identified from SNPs are as reliable as the annotated
ORFs in either the simple or the complex genomes. Addi-
tionally, the reliability of novel ORFs identified from SNPs
is higher than those identified from RPFs.

ORF prediction independent of population size
Given that most studied populations [48–52] are smaller
than the ones tested in this work, we further explored
whether SNP datasets from small populations can also
be used to predict ORFs with acceptable accuracy. The
datasets of Arabidopsis (1135 accessions) and rice (3024

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac210#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac210#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac210#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac210#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac210#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac210#supplementary-data
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Figure 4. The prediction of sORFs in the genomes of Arabidopsis and rice. Examples of sORFs predicted from SNPs datasets of (A) Arabidopsis and (B)
rice. The values from each triplet’s first, second and third positions were colored in cyan, orange and purple, respectively. Overlaps between the sORFs
predicted from SNPs and RPFs in (C) Arabidopsis and (D) rice. Translation levels of the sORFs in different groups of (E) Arabidopsis and (F) rice.

accessions) were used in this test, from which 100 to
1000 accessions were randomly sampled and used for
ORF prediction. Our results suggest that the performance
(measured by F-score) of OrfPP was robust even when a
small subset of Arabidopsis datasets was used (Figure 7A).
The number of predicted ORFs generally increased as
a function of population size but became saturated
when the population size reached ∼400 (Figure 7B) for
rice. Although the recall rate was somewhat affected
in small rice populations, the accuracy was indepen-
dent of population size. Generally, the recall rates
and accuracy of the ORFs predicted from SNPs are

acceptable even for the smallest tested population (100
accessions). These results suggest that although the
performance of OrfPP is somewhat compromised in
small populations, it can be applied in most studied
populations.

Discussion
Synonymous codon mutations do not change the amino
acid and are therefore subject to a more relaxed
purification selection [53]. The third nucleotides in
codons are wobble nucleotides that can change to other
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Figure 5. Application of OrfPP in complex genomes. Examples of identified ORFs from (A) cotton and (B) wheat. Performance of OrfPP in ORF identification
from (C) cotton and (D) wheat SNPs. Novel ORFs identified from SNPs of (E) cotton and (F) wheat.

Figure 6. MS support to novel ORFs. Comparison of MS support between (A) all the novel ORFs, (B) uORFs and (C) dORFs and annotated ORFs identified
from RPFs (circles) or SNPs (triangles) in different genomes.

synonymous counterparts without changing the protein
sequence, structure and function. Therefore, the third
position of codons should have a higher diversity in the
population, which would lead to a periodic increase in
the nucleotide diversity every 3 nt along the CDSs. This
characteristic formed the basis for identifying ORFs in
the genome using SNPs.

Application of OrfPP
In this work, we tested OrfPP in a total of 5 species
representing fungi and plants, from haploid (S. pombe) to
hexaploid (T. aestivum) species, with genome sizes ranging
from ∼12 Mb (S. pombe) to ∼16000 Mb (T. aestivum). OrfPP
successfully recovered most (∼83%) of the known ORFs
annotated in the reference genomes with considerable
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Figure 7. ORF predictions from SNPs are independent to the population size. Accessions were randomly sampled from the total SNP datasets of (A)
Arabidopsis or (B) rice to generate subsets of SNPs with a population size ranging from 100 to 1000. The sampling and ORF predictions were repeated five
times.

accuracy in all these tests, suggesting that the informa-
tion recorded in SNP datasets can be a powerful ORF pre-
dictor. However, the predicted sORFs from SNPs appeared
different from RPFs (Figure 4). In particular, dORFs were
rarely predicted from RPFs, but many were predicted
from SNPs, and only rare overlaps were found between
the two methods. This difference could be explained
by the fact that RPFs only capture the ORFs translated
under the tested conditions, and the conflict between
these two predictions implies potential biological roles
of dORFs, although they are not usually translated. In
fact, it is difficult to translate dORFs because ribosomes
are usually stalled at stop codons and then released, so
the translation of dORFs can probably only be initiated
when stop-codon read-through occurs under some spe-
cial conditions or by the new recruitment of ribosomes
[54, 55]. Despite the divergence between the novel ORFs
identified from SNPs and RPFs, evidence from MS data
suggests comparable reliability for the annotated ORFs
and the novel ORFs identified from either the RPFs or the
SNPs (Figure 6).

Given the important biological roles of sORFs, we
applied OrfPP to identify the sORFs in the polyploid
plants, cotton and wheat, for which the RPF approach
is not workable thus far due to the short lengths of
RPFs. As a result, ∼80% of the annotated ORFs in these
genomes were successfully recovered and a total of
4704 and 5025 novel ORFs, including uORF and dORFs,
were identified from cotton and wheat SNPs (Tables S3
and S4), respectively. As assessed by support from MS
data, these novel ORFs are as reliable as the annotated
ORFs in the genomes (Figure 6). Since identifying
sORFs from RPFs is not yet feasible for polyploidy
genomes, our work provides a good example showing
that sORFs can be identified from SNPs. Additionally,

the cotton and wheat sORFs provided here (Tables S3
and S4, see Supplementary Data available online at
http://bib.oxfordjournals.org/) can be used in future
works interested in the roles of sORFs in these crops.

Comparison of RPF- and SNP-based approaches
Although RPFs have been proven powerful in predicting
ORFs, several drawbacks have limited their application to
a broader range of species. For example, RPFs can only
be used to predict the translating ORFs, thus resulting
in incomplete identification of ORFs. In addition, RPFs
are too short to be correctly mapped to the loci where
they originate, particularly in polyploid genomes. Lastly,
the preparation of high-quality RPFs can be difficult,
particularly in many non-model organisms. Although
some quality-insensitive predictors have been developed
to use low-quality RPFs [3, 23], RPFs with poor or no peri-
odicity introduce unpredictable errors into the results
and even lead to ORF prediction failure. Indeed, when
we attempted to test OrfPP in many other species, such
as Solanum lycopersicum, S. pennelli and Medicago truncatula
[56], we found that the RPFs published in this study
were not periodic and thus could not be utilized to pre-
dict ORFs. In contrast, nucleotide diversity accumulates
during long-term genome evolution since the origin of
this species so that this information can be used for
genome-wide prediction. Compared to the problems of
RPFs caused by their short size, populational SNPs are
usually called by using 100 or 150 paired-ended reads,
which are much longer than RPFs. Even for reads longer
than 100 bp, incorrect or multiple mapping is also an
inevitable problem in polyploidy or repetitive genomes,
so special attention should be given to the interpretation
of the results [47, 57]. It can be imagined that mapping
RPFs with a size of 28 nt in these genomes would certainly

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac210#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac210#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac210#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac210#supplementary-data
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be problematic. Furthermore, future application of long-
read techniques in population studies would be helpful
in finally solving the problems in SNP calling. Therefore,
we propose that predicting ORFs from SNPs can be an
alternative or supplementary approach to the existing
methods and an efficient approach that can extend the
study of sORFs to complex genomes, which cannot be
currently achieved.

Caution for the use of OrfPP
As OrfPP directly utilizes the periodicity of nucleotide
diversities calculated from SNP datasets, any factors that
can potentially affect the accuracy of SNPs would intro-
duce mistakes into the final outputs.

(1) Low-quality reference genome
More than 700 plant genomes have been released in
recent decades, but many are of poor quality [19, 20].
The SNPs identified based on such low-quality ref-
erence genomes could contain many unpredictable
mistakes.

(2) Mixture of SNPs from different species
In many studies, accessions from several, instead
of only one, close species were included, but the
SNPs were called based on only one reference [51,
58]. Mistakes could have been introduced when SNPs
were called from the non-reference species.

(3) Autoploidy and repetitive genomes
Studies of polyploid genomes are usually challenged
by incorrect and multiple mapping problems caused
by the short length of whole-genome sequencing
reads. To address this problem, in some works, the
authors remove the reads with multiple hits and
use only the reads mapping to gene regions for fur-
ther analyses [57]. However, polyploidy, particularly
autoploid genomes, also has multiple and incorrect
mapping problems in gene regions, affecting the
predictions. With the decreasing cost of long reads,
we believe these problems can eventually be solved
when long reads are widely applied in population
studies of these complex genomes.

(4) Young genomes
ORF prediction from SNPs relies heavily on nucleotide
diversity in the population. Although our tests
show considerable independence from population
size, the prediction could be incomplete for young
genomes because only a few nucleotide substitu-
tions have accumulated since the divergence of
these genomes.

Usage OF OrfPP
OrfPP has been distributed to the Python Package Index
(https://pypi.org/project/OrfPP/1.0/) and can be easily
installed using pip tools. Three compulsory inputs
are needed: genome sequence (—genome), genome
annotation (—gtf) and populational nucleotide diversity
(—pi). The diversity of nucleotides at each position can

be calculated using vcftools [58] with the command
‘vcftools –gzvcf SNPs.vcf.gz –site-pi –out output.pi’. The
other five options can be customized. For example, OrfPP
allows ORFs starting with noncanonical initiation codons
to facilitate the prediction of ORFs initiated by alternative
start codons. An option of ‘—nCores’ is implemented to
use multiple processors to speed up the processing of
data, which might be required to deal with genomes of
enormous size.

Key Points

• Population nucleotide diversity shows that a 3-nt period-
icity can be used to predict open reading frames (ORFs).

• A python package ‘OrfPP’ is developed to predict ORFs
from single-nucleotide polymorphisms datasets.

• Application ‘OrfPP’ in polyploidy genomes recovered
∼83% of the annotated ORFs.

• OrfPP could help extend the studies of small ORFs to
organisms with complex genomes.

Supplementary data
Supplementary data are available online at http://bib.
oxfordjournals.org/.
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