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Abstract: The purpose of this study is to examine the microstructure and micromechanical properties
of pulsed-laser irradiated stainless steel. The laser marking was conducted for AISI 304 and AISI
316 stainless steel samples through a Nd:YAG (1064 nm) laser. The influence of process parameters
such as the pulse repetition rate and scanning speed have been considered. The microstructures of
obtained samples were analyzed using confocal optical microscopy (COM). The continuous stiffness
measurements (CSM) technique was applied for nanoindentional hardness and elastic modulus
determination. The phase compositions of obtained specimens were characterized by X-ray diffraction
(XRD) and confirmed by Raman spectroscopy. The results revealed that surface roughness is directly
related to overlapping distance and the energy provided by a single pulse. The hardness of irradiated
samples changes significantly with the indentation depth. The instrumental hardness HIT and elastic
modulus EIT drop sharply with the rise of the indentation depth. Thus, the hardness enhancement
can be observed as the indentation depth varies between 100–1000 nm for all exanimated samples.
The maximum values of HIT and EIT were evaluated for the region of small depths (100–200 nm).
The XRD results reveal the presence of iron and chromium oxides due to irradiation, which indicates
a surface hardening effect.

Keywords: laser marking; stainless steel; micro-mechanical properties; nanoindentation testing

1. Introduction

Recently, laser surface treatment has become one of the most popular techniques to enhance
metallic materials’ surface functional properties, such as optical properties (color marking) and
corrosion resistance, as well as micromechanical properties like wear and microhardness. Among
several laser-induced microstructure modification techniques, more recent attention has focused on
the laser surface melting (LSM) technique, inducing deep changes in the microstructure of a treated
substrate [1–6]. Although the LSM processing and other continuous laser irradiation techniques find a
lot of applications [7–9], the pulsed laser modification technique becomes very promising. Thus, an
increasing number of authors [10–13] have reported improvement of the surface properties by means of
short pulsed laser beams’ interaction with the material surface. The modulation of laser pulse duration
from conventional micro and nanosecond to ultrafast femtosecond and the accompanying changes in
the thermal effects can lead to surface oxidation and the formation of non-equilibrium compounds [14].
Preliminary works [15] on nanocrystaline metallic coatings revealed the improvement in mechanical
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properties of surface-formed nanomorphologies compared to untreated coarse-grained equivalents.
Once the direct correlation between penetration depth and laser irradiation energy can be observed, the
femtosecond laser pretends to be more efficient in terms of hardness improvements than conventional
ones [16]. The femtosecond lasers generate a shock wave pressure of up to 1000 GPa, and operate
with pulse energy in the mJ range, whereas the nanosecond delivers wave pressure from just 1 to
10 GPa, and the pulse energy in the J range [17]. In general, it has commonly been assumed that surface
treatment such as laser engraving or laser marking increase the lifetime and durability of proceeded
components by changing their surface morphology, chemical composition and microstructure [12].
It is achieved by means of short pulsed laser beams’ interaction with the material surface, and results
in rapid phase and microstructure modification, mainly due to fast heating, melting, evaporating and
solidification [12]. Depending on laser marking process parameters, various oxide layer formation and
characteristic cracks resulting from high temperature stress relief can be observed [18].

Among others, various grade stainless steel such as AISI 304 and AISI 316 are frequently influenced
by the laser treatment aimed at improving robust level of protection against corrosion, as well as
improving its hardness and wear. It derives directly from the ubiquity of stainless steel application and
outstanding mechanical properties. Stainless steel has found many applications in the field of modern
architecture, as well as the automotive, transportation, medicine and even food industries [19–21].

Valette et al. [22] reported that 316 stainless steel irradiated through Ti:Sa femto-second laser
demonstrates an improvement of the pitting corrosion resistance. Moreover, many studies were
devoted to investigate the effect of laser beams on corrosion resistance enhancement [1,3,4,23–25].
Laser coloring metal techniques directly affect the optical properties of an irradiated surface. There
have been a number of longitude studies describing the influence of laser marking strategies on optical
properties, such as obtaining color and sensitivity [10,26–28]. One recent study by Antonczak et al. [10]
examined the correlation between the stainless steel laser marking strategy, and obtained color in terms
of its repeatability.

Considering the surface laser-microhardening effect, one must take into account the interaction
of laser beams with metals resulting in laser-induced periodic surface structure formations, called
LIPPS, or ripples [29,30]. These typical microstructures are nothing but surface irregularities induced
by different grain-like morphology formations. Moreover, the mechanism of laser surface hardening is
closely related to a rapid increase of the surface temperature, exceeding the steel austinizing threshold,
and the quick cooling down caused by direct contact with a cold substrate. Several studies on the
femtosecond laser-microhardening effect revealed that in most cases, hardness improvement does not
exceed an increase of 20% [16]. Although extensive research has been carried out on laser marking
surface modification, only few of them focus on microhardness evaluation. Cui et al. [31] discuss the
influence of hexagonal oxide formation on AISI 304 treated by means of a Nd:YAG pulsed laser surface
melting on surface microhardness.

The aim of this study is to investigate the microstructure and micromechanical properties of
commonly used stainless steel, i.e., AISI 304 and 316, after Nd:YAG (1064 nm) pulsed laser surface
modification. The paper covers in detail how the process parameters affects the phase composition
and different morphology formation, resulting in hardness and elastic modulus enhancement.

2. Materials and Methods

Experimental

For the purpose of this study, the AISI 304 and 316 stainless steel plates (1 mm-thick) have been
cut into square samples of dimensions 16 mm × 16 mm. The chemical compositions of AISI 304 and
316 are given in Table 1.
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Table 1. Chemical composition of AISI 304 and 316 stainless steel [32].

Elements
(wt. %) C Mn Si P S Cr Ni N Mo

AISI 304 0.08 2.0 0.75 0.045 0.03 20.0 10.5 0.1 –
AISI 316 0.08 2.0 1.0 0.045 0.03 18.0 14.0 0.1 3.0

Tested stainless steel plates were laser proceeded in air through a Nd:YAG pulsed laser (wavelength
1064 nm). For the laser marking purpose, the TruMark 3020 marking station (TRUMPF, Grüsch,
Switzerland), with a laser source pulse duration of 20 ns, was involved. The M2 laser beam quality
factor does not exceed 1.5. The dimension of the irradiated area was defined by a square of
12 mm × 12 mm. The pulse repetition rate, as well as the scanning speed, were varied from 10 to
1000 kHz and from 20 mm/s to 80 mm/s, respectively. Each sample was mounted on an adjustable
X-Y axis table, which allows the recording of the sample displacement with an accuracy of 0.01 mm.
The process parameters of obtained samples are summarized in Table 2 (the selection of samples was
driven by the most noticeable changes that occur in proceeded material under various laser process
parameter conditions).

Table 2. Laser marking process parameters (v—scanning speed, f—pulse repetition rate).

Sample v (mm/s) f (kHz)

304_20_10 20 10
304_20_100 20 100

304_20_1000 20 1000
304_80_10 80 10

304_80_100 80 100
304_80_1000 80 1000

316_20_10 20 10
316_20_100 20 100

316_20_1000 20 1000
316_80_10 80 10

316_80_100 80 100
316_80_1000 80 1000

The m_k_l sample naming convention was adopted for the purpose of this study, and refers to: m—steel grade;
k—scanning speed; and l—pulse repetition rate.

The X-ray diffraction (XRD) patterns of stainless steel samples were recorded using X-Pert
PRO X-Ray Diffractometer (PANalytical) (Malvern Panalytical Ltd, Malvern, United Kingdom)
with Ni-filtered Cu Kα radiation (λ = 1.5418 Å) in the 2θ range from 20◦ to 90◦. Throughout
XRD diffractograms, the identification of iron and chromium oxides specific peaks will refer to
the International Centre for Diffraction Data (ICDD) cards as follows: Fe2O3/Fe3O4 (00-001-1053,
00-002-0919, 00-013-0458 and 00-005-0637) and Cr2O3 (00-01-1294 and 00-002-1362).

The topographical measurements of the sample surface have been carried out using the
confocal laser microscope (LEXT OLS4000 from Olympus, Olympus Corporation, Tokyo, Japan).
The measurements were performed for two objective lenses of x20 and x100. The 3D surface roughness
parameters Sa (average surface roughness) and Sq (root mean square roughness) were calculated based
on measurements recorded for the objective lens x20, according to the equations

Sa =
1
A

x

A

∣∣∣z(x, y)
∣∣∣dxdy, (1)

Sq =

√
1
A

x

A

z2(x, y)dxdy, (2)
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where z(x, y) is the function representing the height of the surface relative to the best fitting mean
plane described by area A.

Raman spectroscopy has been carried out in the range of 50–1500 cm−1 with a laser wavelength of
532 nm, and a laser source power of 10 W (Senterra, Bruker Optik GmbH, Ettlingen, Germany).

The continuous stiffness measurement (CSM) technique was applied for microhardness and
nanohardness identification. The nanoindenter (CSEM Platform with nanoindentation modle,
CSEM-Instruments, Peseux, Switzerland) with a Berkovic intender was firstly calibrated using
the fused silica according to the standard indentation procedure in the range of 0.1 mN to 1000 mN [33].
The load was applied continuously, reaching the maximum load threshold of 500 mN. The indentation
test was performed seven times for each sample, providing a constant 0.3 mm offset between adjacent
residuals. The distance was established to avoid measurement artefacts resulting from strain effects
occurring around the tip of a particular indentation. Moreover, all of the specimens were indented,
maintaining a constant acquisition rate of 10.0 Hz, and reaching the indentation depth of about 3000 nm
for the AISI 304 and 4000 nm for the AISI 316. The Poisson’s ratio of tested material was assumed to be
0.3 [34].

The Oliver-Pharr method was applied to determine the local hardness HIT and instrumental
Young modulus EIT [35,36]. Within this approach, the loading-unloading curve can be expressed by
plotting P/S2, where P is the indenter load and S is the contact stiffness. Thus, considering both plastic
and elastics deformations, the nanoindentation hardness can be defined as follows [37]

H =
Pmax

A
, (3)

where Pmax is the maximum load and A is defined as the contact area between the indenter and the
specimen evaluated for the maximum indenter depth. The first estimate of projection area A for an
ideally sharp indenter with indentation depth hc can be expressed as [37]

A = C0h2
c , (4)

where C0 for the Berkovic indenter is 24.5 [37].
For the sake of instrumental elastic modulus determination, the reduced modulus Er is used to

incorporate the elastic deformation effect between the tested specimen and the indenter. Hence, EIT
can be calculated from Er by the given equation [38]

1
Er

=
1− ν2

i
Ei

+
1− ν2

EIT
, (5)

where ν represents the Poisson’s ratio of the sample and νi and Ei are the Poisson’s ratio and elastic
modulus of the indenter, respectively. The quantities for the diamond tip material are Ei = 1140 GPa
and νi = 0.07 [38].

Consequently, the contact stiffness S can be linked with a reduced elastic modulus, as follows [39]

Er =

√
π

2β
S
√

A
, (6)

where β is the indenter geometry-related constant, and for the Berkovic tip β = 1.034 [39].

3. Results and Discussion

3.1. Topography

Figure 1 presents representative COM images for untreated AISI 304 and 316 stainless steel.
The pulsed laser proceeded stainless steel surfaces are shown in COM micrographs on Figure 2 for AISI
304 and Figure 3 for AISI 316. The clear single overlapping traces can be reported for most of presented
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images. However, for the edge laser treatment parameters—i.e., the scanning velocity v = 20 mm/s and
the pulse frequency f = 10 kHz—traces become fuzzy and the sharp intermediate area between the
two adjacent grooves vanishes. Moreover, at low frequencies and a high level of scanning speed, each
single pulse can be easily distinguished as a particular dot in a marking line. Given the fact that some of
the modified samples exhibit a high level of anisotropy, authors decided to evaluate surface roughness
using the 3D surface roughness parameters Sa and Sq. Table 3 presents the results of 3D roughness
parameters obtained for laser-treated samples and the raw steel. The 3D roughness parameters
of untreated (raw) steel are Sa = 0.209 µm; Sq = 0.372 µm for AISI 304 and Sa = 0.166 µm; and
Sq = 0.325 µm for AISI 316. As can be seen from Table 3, surface roughness measurements revealed that
the overlapping distance between two pulses—obviously related with treatment parameters—directly
affects surface smoothness. The overall roughness of laser-treated layers decreases with the rises in
the pulsed repetition rate and scanning speed. The collected parameters range from 0.162 µm to
6.977 µm and 0.255 µm to 9.018 µm for the 304 steel and from 0.166 µm to 7.587 µm and 0.325 µm to
9.776 µm for 316 steel considering Sa and Sq, respectively. Figure 4 compares the calculated roughness
parameters for the 304 and 316 sample series. It is apparent from Figure 4 that the highest degree
of surface roughness were observed for samples treated with a scanning speed v = 20 mm/s and a
repetition rate f = 10 kHz, while the lowest were reported for a scanning speed v = 80 mm/s and a
repetition rate f = 1000 kHz for both the 304 and 316 sample series. The significant drop in Sa and
Sq parameters are most probably related to the accumulation of energy effect, which was observed
earlier and was described in the literature [40,41]. The relatively high level of surface smoothness is
achieved by overlapping multiple treatment cycles. The cross-section examination, perpendicular to
the marking lines direction, indicates that the regions proceeded with low scanning speed values and
low pulses repetition rates, resulting in deeper penetration and higher debris accumulation formed
between particular grooves.
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Table 3. The 3D surface roughness parameters Sa and Sq. The 304_RAW and 316_RAW samples
represent the unmodified plates.

Sample Sa (µm) Sq(µm)

304_20_10 6.977 9.018
304_20_100 0.825 1.014
304_20_1000 0.241 0.368

304_80_10 0.792 0.900
304_80_100 0.357 0.471
304_80_1000 0.162 0.255

304_RAW 0.209 0.372
316_20_10 7.587 9.776

316_20_100 0.858 1.056
316_20_1000 0.284 0.424

316_80_10 0.727 0.884
316_80_100 0.353 0.463
316_80_1000 0.160 0.278

316_RAW 0.166 0.325
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3.2. Phase Composition

The X-ray diffraction (XRD) results of both stainless steel AISI 304 and 316 are shown in Figure 5a,b
respectively. In general, the chemical state of AISI 304 and 316 laser-treated samples remains very
similar, as reflected in the particular compounds’ peak position. The XRD spectra for both untreated
stainless steel samples revealed the presence of authentic phases (FCC) for three major peaks (2θ = 43.6◦;
51◦; 74.8◦). Moreover, it can be seen that main γ-Fe peaks persist for each irradiated sample within
slight changes in its intensity. This appears to be in accordance with results reported by different
authors [42–45]. Alongside austenitic specimens, the α’-Fe peaks (2θ = 44.7◦; 82.3◦) can be reported for
two samples, structured with pulsed frequencies of f = 100 kHz and f = 10 kHz and a scanning speed
of v = 80 mm/s. A recent study by Singh et al. reveals that austenite phases can even transform to α’ -
martensite under cryogenic deformation [43].
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Figure 5. The XRD patterns of laser modified samples and untreated steel: (a) AISI 304; and (b) AISI
316 stainless steel.

XRD patterns also show a presence of Fe2O3/Fe3O4, which corresponds to peaks measured for
2θ = 30.2◦; 35.6◦ and 2θ = 62.7◦, analyzing both 304 and 316 stainless steel. These Fe2O3/Fe3O4-attributed
peaks can be observed for each laser proceeded sample except these, which were modified with a
pulsed frequency f = 1000 kHz. As demonstrated by Kucera et al. [42], the intensity of corresponding iron
oxide peaks increase with the rise of heat input, and for values above 1.0 J mm−2, Fe3O4 compounds can be
detected. The results of XRD analysis also show specimens with a presence of Cr2O3 (2θ = 57.2◦; 65.2◦).

Figure 6 presents the Raman characterization spectra of the laser-treated specimens. The Raman
spectra of treated samples gives the evidence of the most prominent bands at around 470 cm−1,
560 cm−1 and 670 cm−1, which are attributed to Fe3O4 and γ − Fe2O3. These iron oxide specimens
were also reported by other authors in [23,24,46]. The peak cantered at around 1350 cm−1 can also
be associated with Fe3O4 formation [46]. Peaks at around 220 cm−1, 280 cm−1 and 400 cm−1 could be
attributed to α− Fe2O3 phase, and are consistent with those established in the work of Wang et al. [25].
Surprisingly, there is no significant contribution of chromium oxide that was reported in previous
studies [47] for the Raman band at 820 cm-1. The evidence from the Raman spectra study suggest that
laser modified samples mainly consist of chromium and iron oxides in the subsurface zone.
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3.3. Microhardness Analysis

The indentation curves of AISI 304 and 316 laser-treated stainless steel are presented in Figure 7.
Considering the maximum force threshold applied for examination purposes, it was found that
adjusting the maximum load to 500 mN delivers the most reproducible results, and enables the tracking
of hardness changes in regions of small depths, as well as substrate-affected ones. Under the continuous
material examination, the resulting load versus indentation depth F(h) characteristics were used to
determine the instrumental hardness HIT and instrumental elastics modulus EIT. It can be noticed
that the penetration depth increases slightly with pulsed duration, and does not exceed 3000 nm
for every irradiated sample of the AISI 304 series, and 4000 nm for the AISI 316 series of samples.
Unlike the other, the indentation profiles of steels proceeded with lowest pulse repetition rate, and the
scanning speed exhibits the indentation depth, reaching 16,000 nm and 18,000 nm for AISI 304 and
316 steel, respectively. This yields to be even 6–8 times higher than for the other of the samples. In
particular, the analysis of these samples was problematic. The rippling nature of the 304_20_10 and
316_20_10 load curves demonstrates a high degree of inhomogeneity, manifesting indenter-oscillatory
feature discontinuity [48]. These discontinuities point out the soft and fragile nature of tested material.
This huge difference in penetration depth is attributed to a relatively high level of energy delivered
through each pulse, and the high pulse concentration resulting from a low scanning speed.
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Figure 8 presents the indentation hardness (HIT) profile as a function of indentation depth for both
AISI 304 (Figure 8a) and AISI 316 (Figure 8b) stainless steel. The experimental results of indentation
depths of less than 80 nm were neglected for the sake of surface contamination artefacts and uncertainty
resulting from the indenter tip geometry [49]. The trend for both samples series is similar—with
an increase in irradiation depth, a rapid decrease of hardness can be observed. The effect of laser
modification hardness enhancement can clearly be observed, especially as the indentation depth
varies between 100–1000 nm for all exanimated samples. Table 4 provides the maximum values of
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HIT and average ones, which were established in the region of a substrate-effect with a penetration
depth ranging from 1000–2500 nm. These results yield maximum hardness HIT = 16.32 GPa for the
304_80_10 sample at 146 nm depth. Consequently, the maximum value of hardness HIT = 13.36 GPa
for the indentation depth of 100 nm was attained to the 316_80_10 sample. Exceeding the average
1 µm of indentation, depth curves become flat and persist at the same level, reaching 2.5 µm, with a
corresponding maximum average hardness of 3.01 GPa for both the AISI 304 and AISI 316 series of
samples, respectively. This value is slightly higher than the bulk hardness of untreated stainless steel
(around 2.2 GPa), and can be treated as the maximum average hardness influenced highly by untreated
substrate. The measured base hardness for AISI 304 and AISI 316 stainless seems to be in accordance
with the study performed by Chang Ye et al. [50], and with those conducted by Lang et al. [51]. Based
on indentation hardness profiles, the evaluated thickness of laser proceeded layers reached a maximum
of 1000 nm, depending on the modification process parameters. Overall, analyzing obtained scatters,
one can see that the hardening phenomenon provides direct evidence of hardness enhancement for the
highest considered scanning speed v = 80 mm/s and the lowest value of pulse repetition frequency
f = 10 kHz. Interestingly, increasing the pulse frequency does not lead to improvements in hardness.
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Table 4. The maximum nanoindentaion hardness HIT, maximum elastic modulus EIT and average HIT

and EIT obtained for the indentation depth range of 1000–2500 nm.

Sample HITMAX (GPa) EITMAX (GPa) HITAVG (GPa) EITAVG (GPa)

304_20_100 2.95 ± 0.6 296 ± 32 2.11 ± 0.2 159 ± 23
304_20_1000 10.15 ± 1.2 384 ± 41 2.48 ± 0.2 183 ± 31

304_80_10 16.32 ± 2.4 931 ± 111 3.01 ± 0.3 209 ± 40
304_80_100 14.13 ± 2.1 610 ± 74 2.54 ± 0.2 187 ± 33

304_80_1000 7.05 ± 1.0 340 ± 48 1.96 ± 0.2 165 ± 27
304_RAW – – 2.63 ± 0.2 167 ± 9

316_20_100 1.84 ± 0.2 287 ± 32 1.35 ± 0.1 106 ± 15
316_20_1000 6.02 ± 0.9 359 ± 43 1.51 ± 0.1 144 ± 28

316_80_10 13.36 ± 1.9 794 ± 84 3.01 ± 0.2 235 ± 47
316_80_100 10.72 ± 2.1 823 ± 101 2.59 ± 0.3 165 ± 27

316_80_1000 6.47 ± 1.3 454 ± 69 1.98 ± 0.1 158 ± 27
316_RAW – – 2.21 ± 0.2 258 ± 28

Figure 9 demonstrates changes in reduced elastic modulus versus the indentation depth for (a)
AISI 304 and (b) 316 stainless steel. Compared to hardness curves, a similar drop in reduced modulus
for the indentation depth in a range of 100–1000 nm can be observed. As all curves follow the same
trend, some of these drop sharply, exceeding the region of subtract effect enhancement at around
500 nm when others fall in a smooth manner. In the region at around 800 nm below the surface, the
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reduced modulus values saturated at around some constant level, and finally, curves indicated by
the subtract effect become flat. Generally, the highest hardness and reduced modulus of irradiated
samples occurs in the region of small depths. The maximum and average values of reduced modulus
(EIT) were summarized in Table 4. The maximum value of reduced modulus EIT was observed for
the 304_20_10 sample, with an indentation depth of 118 nm and around 931 GPa. Furthermore, the
maximum reduced modulus of 823 GPa was obtained for the 316_20_100 sample, with an indentation
depth of 172 nm. The average values of reduced modulus determined for the irradiation depth ranging
from 1000–2500 nm are summarized in Table 2. These results are significantly influenced with respect
to the substrate effect, and are in accordance with those reported in [51–53]. These results revealed the
heterogeneity of elastics properties, which are strongly influenced by hard oxide formation caused by
laser irradiation.
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4. Conclusions

The present study was designed to determine micromechanical and microstructural properties
of specimens formed by Nd:YAG (1064 nm) pulsed laser irradiation on stainless steel substrates.
Overall, the relationship between laser irradiation induced changes in morphology, microstructure and
micromechanical properties as matters of process parameters estimation were discussed. The produced
samples were treated, varying the pulse repetition rate and scanning speed of the pulsed laser
source. The investigation of nanoindentional hardness and elastic modulus demonstrates an evident
relationship between laser penetration depth and determined HIT and EIT values. The rapid decrease
in hardness and elastic modulus, with a rise in irradiation depth, can also be observed. The hardness
improvement in a small depth region (100–200 nm) can be attributed to iron and chromium oxide
formation, which is apparent from X-ray diffraction (XRD) and Raman spectroscopy analysis. The most
obvious finding to emerge from this study is that the scanning speed and pulse repetition rate directly
affect the surface roughness and micromechanical properties of considered samples. The increase in
pulse repetition frequency leads to a lower level of debris accumulation, resulting in a smoother surface.
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