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The collection of caterpillar fungus accounts for 50–70% of the household
income of thousands of Himalayan communities and has an estimated
market value of $5–11 billion across Asia. However, Himalayan collectors
are at multiple economic disadvantages compared with collectors on the
Tibetan Plateau because their product is not legally recognized. Using a cus-
tomized hybrid-enrichment probe set and market-grade caterpillar fungus
(with samples up to 30 years old) from 94 production zones across Asia,
we uncovered clear geography-based signatures of historical dispersal
and significant isolation-by-distance among caterpillar fungus hosts. This
high-throughput approach can readily distinguish samples from major
production zones with definitive geographical resolution, especially for
samples from the Himalayan region that form monophyletic clades in our
analysis. Based on these results, we propose a two-step procedure to help
local communities authenticate their produce and improve this multi-
national trade-route without creating opportunities for illegal exports and
other forms of economic exploitation. We argue that policymakers and
conservation practitioners must encourage the fair trade of caterpillar
fungus in addition to sustainable harvesting to support a trans-boundary
conservation effort that is much needed for this natural commodity in the
Himalayan region.
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1. Introduction
The entomopathogenic fungus Ophiocordyceps sinensis (Berk.)
Sung, 2007 (Hypocreales: Ophiocordycipitaceae) parasitizes
the larvae of moths in the genus Thitarodes Viette, 1968
(Lepidoptera: Hepialidae). Ophiocordyceps sinensis parasitizes
soil-boring Thitarodes larvae: the fungal mycelium proliferates
throughout the larval tissues and extrudes a stroma through
the head capsule of its host, out of the soil surface to release
ascospores. The whole complex hardens into a mummified,
caterpillar-shaped bundle of fungal mycelium and stroma
commonly referred to as ‘caterpillar fungus’.

This moth–fungus symbiont was first described in the
15th century by Tibetan scholars and has since been avidly
collected in its endemic range by Chinese and Tibetans as
an ethnomedicine [1]. Accounts from the eighteenth century
suggest already well-established trade routes from historical
Tibet to coastal China [2,3]. Present-day demand for caterpil-
lar fungus from mainland China has been known to drive
its price up to more than three times that of gold [4]. The col-
lection of caterpillar fungus from the wild generates the
primary source of income for hundreds of thousands of col-
lectors [5]. Conservative estimates place annual production
of dried caterpillar fungus at 100 tons [6], amounting to 300
million individual caterpillar fungi collected per year at a
market value of $5–11 billion [7]. Intense territorial conflicts
over land ownership and collection rights have arisen
across the Himalaya and the Tibetan Plateau, the range of
caterpillar fungus [8]. Such conflicts will persist as suitable
habitats continue to shift and decrease due to climate
change [9–11].

Although caterpillar fungus was traditionally collected
only within the Chinese border of the Tibet Autonomous
Region (TAR) and the provinces of Qinghai, Gansu, Sichuan
and Yunnan, the past decade has seen nations on the
southern slope of the Himalaya (India, Bhutan, Nepal)
lured into this lucrative supply chain [12–17]. For these
Himalayan communities, 50–70% of the local seasonal house-
hold income is derived from these collections, transforming
local economies and reducing poverty for tens of thousands
of people [18–20]. However, Himalayan collectors are at mul-
tiple economic disadvantages compared with collectors on
the Tibetan Plateau that have long-established trade relations
with mainland Chinese consumers. For example, strict state
regulations for caterpillar fungus trade in India resulted in
the annual transportation of $5–7.5 million worth of local pro-
ducts across the Nepalese border to be ‘legalized’ for export
[13,21,22]. Moreover, a $10 million per annum export–import
difference exists between the Chinese and Nepalese custom
borders, suggesting the majority of ‘Nepalese’ caterpillar
fungus does not clear local customs [23].

The current pattern of Himalayan caterpillar fungus
trade operates in a ‘licit but illegal’ grey zone and can be sum-
marized as (1) a cross-border legalization process from India
to Nepal, followed by (2) a post-export de-origination process
upon entering the Chinese border from Nepal. This provides
ample opportunity for both state-actor corruption and non-
state-actor exploitation that ultimately is detrimental to the
economies of local communities and thwarts conservation
action for the long-term persistence of caterpillar fungus
populations.

Top-down policies continue to adapt and find the best
practice of sustainable caterpillar fungus harvest in each
region [21,22,24–27]. However, local stakeholder and govern-
ing regimes would benefit from asserting their ownership of
locally available natural resources, often found on community
lands [28]. Such a process could be institutionalized by recog-
nizing rights to own, manage and use wild resources by
individuals as well as local governing bodies such as tribal
societies and panchayats (e.g. through the Indian Forest
Rights Act, https://www.fra.org.in).

Through these institutions, communities could then prepare
biodiversity registers that would make a catalogue of natural
resources such as the caterpillar fungus found on community
lands. This framework for local product origin authentication,
as has been applied in authenticating agricultural foodproducts
(reviewed in [29]), might resolve the Himalayan caterpillar
fungus trade grid-lock. From the bottom up, origin authentica-
tion puts a direct link between communities and the market,
and thus begetsmore economic incentives to local communities
to provide high-quality products [30–32]. From the top down,
the ability to determine the origin of a product allows state reg-
ulators to resolve trade conflict more effectively and detect
product adulteration [33–36].

DNA-based origin authentication relies on molecular tech-
niques to obtain genetic material from samples so that they
can be assigned to geographical genetic clusters with which
they are most similar. In the context of the wildlife trade, these
techniques have been successfully applied to trace geographical
origins of ivory [37], shark fins [38], pet birds [39] and primates
[40]. Since the host moths of caterpillar fungi occupy a large
range of topologically complex terrain [41,42], considerable iso-
lation-by-distance has arisen both intraspecifically [43] and
interspecifically [44]. This makes an authentication system
based on molecular markers to reveal the identity and origin
of host moths feasible, while the O. sinensis fungal strains that
parasitize them show comparatively less genetic differentiation
(only 1% average genetic differences in fungal sequences versus
5% mean genetic difference in host moth samples, see [44]).
Nevertheless, attempts to recover genetic fragments for host
moths (Thitarodes) from caterpillar fungus using traditional
Sanger sequencing has succeeded in obtaining a maximum of
three genetic loci per sample [44–46], most likely due to genetic
fragmentation and degradation of the host sample during the
parasitization process. Sanger sequencing also requires freshly
collected, well-preserved samples.

Here, we customized a commercially available hybrid-
enrichment probe set originally designed for butterfly phylo-
genomics [47] to build a 14-gene phylogeny of caterpillar
fungus hosts. Our method belongs to a class of high-through-
put sequencing techniques for isolating multiple loci (referred
to as sequence capture, targeted enrichment or anchored
hybrid enrichment) from traditionally low DNA-yielding
samples of Lepidoptera [48–50]. Our genetic placement simu-
lations and biogeographic analyses provide strong evidence
of identifiable geographical signals from individual host
samples (but not their co-evolved fungal parasites). We
suggest that since Thitarodes hosts are highly distinctive
across regions, a robust host phylogeny can serve, and be
iteratively improved, as a shared molecular reference ‘library’
for caterpillar fungus host origin authentication, especially
for samples collected in the Himalayan regions. Based on
these results, we propose a two-step procedure to help local
communities authenticate their product using this hybrid
enrichment probe kit, and provide suggestions for policy-
makers and conservation practitioners for improving this

https://www.fra.org.in
https://www.fra.org.in
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Figure 1. Location of caterpillar fungi used for anchored hybrid enrichment in this study. Samples are designated as being from four geographical regions across the
distributional range of caterpillar fungi (dotted lines, different coloured dots are where samples were collected from different regions). Circled inserts show: (a) adult
caterpillar fungus host (here showing Thitarodes pui); (b) larva of caterpillar fungus host (here showing Thitarodes baimaensis); (c) Fungal stroma of O. sinensis in
the wild; (d ) dried caterpillar fungus as sold in the market. Photo credit: Zhiwen Zou (a) and Darong Yang (b–d). (Online version in colour.)
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multi-nation trade route without creating opportunities for
illegal export and other forms of economic exploitation.
We suggest that maintaining sustainable harvest as well as
the fair trade of caterpillar fungus will support the trans-
boundary conservation efforts needed in the Himalayan
region [10,11,51,52].
2. Methods
See electronic supplementary material, Methods, for detailed
descriptions.
(a) Hybrid enrichment
We used a 13-locus target capture probe set [47] that included
gene regions most commonly used for butterfly phylogenetics
(see electronic supplementary material, table S1 for probe
regions). We also designed a Cytb target capture probe from
Thitarodes mitogenomes deposited in GenBank to maximize our
loci overlap with existing phylogenies. We collected 94 caterpil-
lar fungus samples from across its recorded distribution range,
with 34 of these samples originating from the Himalayan regions
of TAR, Nepal, Bhutan and India (figure 1 dots in blue, electronic
supplementary material, table S1). All Himalayan samples were
purchased from Nepalese and Bhutanese vendors with permit to
export to China (samples from India were sold by Nepalese ven-
dors and identified post-export). Samples within China are from
the authors’ private collection. The oldest sample is a dried cater-
pillar fungus that was collected in 1993. Sample DNA (a mix of
O. sinensis and host DNA) was extracted using Qiagen DNeasy
Blood and Tissue Kits. To sequence hosts, quantified DNA
extracts were submitted to RAPiD Genomics (Gainesville, FL)
for hybrid enrichment and sequencing following the procedure
described in Espeland et al. [49]. The same DNA extracts were
used to sequence the parasitic fungus (O. sinensis) using the
nrDNA internal transcribed spacer (ITS) region and the Sanger
sequencing protocols of Zhang et al. [44].
(b) Phylogenetic reconstruction
Weused an ultra-fast all-in-one FASTQpreprocessor [53] tomerge
subsequent raw pair-end reads, automatically detect adapters and
filter low-quality reads. We used the HybPiper script v. 1.3.1 [54]
to recover our targeted loci. Only samples with complete host loci
recovery (all 14 loci) were used in phylogenetic reconstruction.
Loci recovered from HybPiper were aligned and concatenated
with MAFFT v. 7.0.1 [55]. Best model and partition schemes
were estimated using ModelFinder [56]. We searched for the
most likely tree topology in IQ-TREE 2.0 [57], with 1000 iterations
for ultrafast bootstraps [58]. We repeated this 500 times and calcu-
lated the Robinson–Foulds distance among the most likely trees
from each run to check whether the tree topology had reached a
global optimum on the likelihood surface. We also inferred a
species tree using a multispecies coalescent model in ASTRAL-
III v. 5.7.7 [59] to account for possible incomplete lineage sorting.
Each gene tree used as input for the species treewas inferred in IQ-
TREE 2.0 [57] as described above, with quartet support [60] as
branch support. Since it is likely that many samples represent
the same host species, we conducted species delimitation analysis
on our phylogeny using both a Poisson tree processes (PTP)model
[61] and a general mixed Yule coalescent (GMYC) model [62].
(c) Sensitivity tests
We visualized the increase in phylogenetic resolution using mar-
kers from additional loci by bootstrapping possible sequence
alignments generated using less than 14 loci. We then assessed
the likelihood of correctly identifying a caterpillar fungus from
the Himalayan region using both a phylogenetic placement
approach and a maximum-likelihood approach: first, we applied
a parallel evolutionary placement algorithm (EPA-ng, [63]) to
query sequences of Himalayan samples from this study (using
from 1 to 14 loci), and calculated the confidence level of the cor-
rect placement. This simulates the process of authenticating a
product from a local community when samples from that
region have been incorporated into a molecular phylogeny (see
first step proposed Discussion 4.1). Second, we compiled single
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locus host sequences deposited on GenBank by previous
researchers (‘unidentified’ samples, electronic supplementary
material, table S4), and incorporated them in the maximum-like-
lihood phylogeny while using the most likely tree obtained in 2.2
as a topological constraint. An ‘unidentified’ sample was con-
sidered to be of Himalayan origin if it was nested within or
was sister to a known ‘Himalayan clade’ on the phylogeny.
Back-referencing the geographical origin of these samples (as
labelled in GenBank) allowed us to estimate the accuracy of
using Himalayan-based monophyly to assign an unidentified
sample to a region. This approach simulates the process of iden-
tifying Himalayan caterpillar fungi that have not already been
catalogued in a molecular phylogeny, similar to a market
survey where regulators need to ascertain the origin of unknown
samples (see second step proposed in Discussion 4.2).

(d) Biogeographic and cophylogenetic signals
Weused BioGeoBEARS [64] to infer dispersal history and ancestral
range of caterpillar fungus hosts from our phylogeny. We desig-
nated samples to four geographical regions: (1) Qinghai–Tibet
Plateau, (2) HengduanMountains, (3) the Himalaya and (4) a tran-
sition zone between the western Hengduan Mountains and
the eastern Himalaya (figure 1, see electronic supplementary
material, Methods, for rationale of region designation). We com-
pared the likelihood of models of species dispersal with different
emphasis on anagenetic and cladogenetic events [65].We then per-
formed biogeographical stochastic mapping [66] as implemented
in BioGeoBEARS [64] andphytools [67] to study the historical tran-
sitions between geographical regions.

We used the ParaFit test [68] and the Procrustean Approach
to Cophylogeny test (PACo; [69]) to detect signatures of co-
cladogenesis between Thitarodes hosts and their Ophiocordyceps
parasites. A fungal phylogeny was constructed in IQ-TREE
using ITS sequences from each sample, with the multi-locus
fungal phylogeny of [44] as a topological constraint. We tested
the signature of co-cladogenesis among hosts and fungi at both
the species-level (as delimitated in 2.2) and the individual
sample level. To avoid uncertainty in phylogenetic reconstruc-
tion (especially from the fungal phylogeny), we also directly
compared the matrices of sequence distances between hosts
and their parasites using Mantel tests [70]. Similarly, to under-
stand the effects of geographical isolation on the genetic
differences of hosts (isolation-by-distance, IBD, [71]), we con-
structed matrices comparing sample locations based on (1)
Euclidean geographical distances, (2) climatic differences (from
WORLDCLIM 2.0, mean temperature of the coldest quarter,
[72]) and (3) landscape resistance distances [73] and computed
their correlation with sample genetic distances.

We further investigated the geographical ‘width’ and phylo-
genetic ‘depth’ of any detected IBD and cophylogenetic signals
to gauge whether relationships are stronger at regional or
global levels, and at historical or contemporary timescales. To
do this, we first conducted a hierarchical clustering [74] of our
samples based on their geographical distances (from 100 to
2000 km, at 100 km intervals), and calculated both the cophylo-
genetic and IBD signal of each cluster using the Mantel test.
Secondly, we took synchronic ‘time slices’ of the host phylogeny
and calculated both the cophylogenetic and IBD signal of each
time-sliced phylogeny.
3. Results
Our 94 samples obtained on average 496 k reads per sample
(s.d. = 451 k), 29.9% of which hit the targeted regions (s.d. =
0.16). An average sample yielded 13.2 out of the 14 genes
(94% success rate), with dried samples collected as long ago
as 1993 successfully yielding all 14 genes (electronic supple-
mentary material, table S1). The only significant predictor
of enrichment success rate was the year in which a sample
was collected (electronic supplementary material, table S2).
However, PCR and Sanger sequencing of the fungal ITS
region only recovered 58 fragments out of 94 samples due
to DNA degradation.

A total of 90 out of the 94 samples achieved complete
14-loci target recovery and were used in ML tree reconstruc-
tion. IQ-TREE yielded a well-supported tree that is consistent
with the coalescent-based species tree obtained using
ASTRAL (electronic supplementary material, figures S1 and
S2). Results from the PTP and GMYC species delimitation
models were consistent (electronic supplementary material,
table S3) and recovered a wide-ranging species complex from
the Himalaya to the Qinghai–Tibet Plateau (figure 2a). The
delimitations reveal at least 20 valid species of Thitarodes as
caterpillar fungus hosts, some of which are still being taxono-
mically identified and described (e.g. [75]). Himalayan
samples form three monophyletic clusters. Even within the
unresolved single species group (figure 2a ‘widespread species
complex’), most endemic monophyletic clusters are still highly
supported.

Our simulated alignment datasets show that increasing the
number of loci used for phylogenetic reconstruction signifi-
cantly increased the resolution of the molecular phylogeny
(electronic supplementary material, figures S3 and S4). The
phylogenetic placement test that simulates the origin-authenti-
cation of already-catalogued caterpillar fungus samples
indicated that they can be identified with close to 100%
certainty when the reference molecular phylogeny is con-
structed from more than seven loci (electronic supplementary
material, figure S5). With 14 loci per sample in the phylogeny,
once a region’s sample has been genetically catalogued, we can
correctly place samples with those from the same region.

In simulating the identification of Himalayan caterpillar
fungi that have not already been catalogued in a molecular
phylogeny, all six cytochrome oxidase I (COI) haplotypes
from GenBank were correctly placed within the Himalayan
monophylies (figure 2a). However, one out of 10 known
non-Himalayan samples was misplaced within Himalayan
clusters (electronic supplementary material, figure S3,
false positive).

Our best model identified the ancestral caterpillar fungus
host in the Hengduan Mountains (electronic supplementary
material, figures S7 and S8); all models incorporating
parameters of founder event speciation (+J parameters)
obtained higher likelihood compared with their counterparts
without this parameter (electronic supplementary material,
table S5). Species-level biogeographical stochastic mapping
(BioGeoBears) shows high levels of dispersal between
adjacent geographical regions (electronic supplementary
material, table S6). The same pattern was recapitulated in
sample-level stochastic mapping (phytools, figure 2b and
electronic supplementary material, figure S7).

We detected significant signals of co-cladogenesis
between hosts and fungal parasites (electronic supplemen-
tary material, table S8), although the strongest signals come
from Hengduan Mountain samples that occupy less derived
branches (figure 3a dotted lines, electronic supplementary
material, table S8B). Monophyletic Himalayan hosts do not
correspond to monophyletic groups of fungal parasites
(figure 3a, blue lines) but DNA distances among hosts are
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highly correlated with those among parasites (Mantel R = 0.67,
p = 0.001). Among hosts, IBD was best explained by landscape
resistance distance (Mantel R = 0.10, p = 0.24) rather than cli-
matic differences or Euclidean geographical distances among
hosts (electronic supplementary material, table S9). Across
hierarchical distance clusters, the greatest signal of IBD was
observed in samples within 500 km of each other (figure 3b,
right panel), and not traceable to more ancient lineages
(figure 3c, right panel). Signals of cophylogeny were best con-
served within samples approximately 1000 km of each other
(figure 3b, left panel) and were more prominent in ancient
lineages (figure 3c, left panel).
4. Discussion
We show that an anchored hybrid enrichment probe set can
recover multi-locus information for Thitarodes hosts, even
those derived from dried market caterpillar fungi collected
three decades ago. Our 14-loci phylogeny is consistent with
previous three-loci phylogenies [44,45] but showed signifi-
cantly better geographical resolution that was sufficient for
sample origin authentication. The taxonomic and macro-evol-
utionary implications of our results are discussed in the
electronic supplementary material, Discussion. Here we focus
on the conservation of caterpillar fungus and propose a
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compensation. Photo credit: Zhengyang Wang (left 1), Darong Yang (left 2, 4), Guren Zhang (left 3). Panel design: Yameng Huang. (Online version in colour.)

royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

289:20212650

6

two-step procedure using a hybrid enrichment multi-locus
phylogeny to empower local communities (figure 4).
(a) Using the molecular phylogeny as a library
First, we suggest building a molecular reference library of
Thitarodes hosts using phylogenetic data from samples repre-
senting all major caterpillar fungus collection regions. In this
study, only 94 out of the 400 caterpillar fungus collection
regions tallied in Hopping et al. [4] were sequenced. The cur-
rent cost for generating multi-locus information using the
hybrid enrichment protocol described here is less than $100
per sample, and a few samples per region are necessary to
build a library; this cost could be integrated into a govern-
ment’s preparation of biodiversity registers (such as the
People’s Biodiversity Register in India, or the Chinese
National Specimen Information Infrastructure). Clear geogra-
phy-based historical dispersal (across adjacent regions,
figure 2b), as well as significant isolation-by-distance across
all landscape scales (figure 3b) of caterpillar fungus hosts
means samples from major production zones can be readily
distinguished from one another. This is especially true for
samples from the Himalayan region, which have likely
undergone multiple, independent dispersal events from the
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Hengduan Mountains (figure 2b; electronic supplementary
material, tables S6 and S7).

At the same time, we advocate creating a molecular
library of adult Thitarodes host species from each region by
engaging with local scientists. There is a major disconnect
between caterpillar fungus-derived Thitarodes phylogeny
and descriptions of adult forms deposited in museums
(reviewed in [76]). Our approach can provide a valuable
link between existing museum types and caterpillar fungus
forms. Within the Himalayan nations, only eight Thitarodes
species have been recorded in Nepal [77], two in Bhutan
[78] and one in India [75]. Even in the most productive collec-
tion site of caterpillar fungus in Nepal (Darchula district), the
host Thitarodes species remains unknown. This reflects a lack
of taxonomic effort (and training) rather than a lack of species
diversity [79].

(b) Origin authentication based on molecular
phylogeny

Secondly, as the molecular reference library of origin-auth-
enticated Thitarodes expands, conservation practitioners (or
regulatory agencies) can use it to trace sample origin and
authenticity in the market with as little as a single COI frag-
ment. This ensures communities with authentic products are
recognized in the market and given proper economic com-
pensation through market consumer choice (i.e. a ‘fair
trade’ model, [80]). Phylogenetic tools have already been
used to detect fake ‘caterpillar fungus’ in markets, such as
those using plant roots to fake fungal ascomata [81]. Now
with genetic markers that facilitate finer scale identification,
such detection achieves relevancy at a regional scale (see
electronic supplementary material, Discussion, for market
classification of regional caterpillar fungus varieties). We
show that even with single COI fragments not included in
our library (simulating a market survey of potentially uncata-
logued samples), all six COI fragments and haploid types of
known Himalayan origin could be successfully placed either
within or as a sister group to known Himalayan samples
(figure 2a, boxed labels). Once a shared library is in place
(see 4.1), the cost of authenticating a sample’s origin using
Sanger-based genetic fragments is relatively small.

(c) Platform for Himalayan trans-boundary conservation
The two proposed steps form a positive feedback loop
between the market and communities. Origin-authenticated
products allow the community to assert their fair economic
contribution and enable regulators to detect smuggling.
These increased economic incentives would encourage more
communities to sequence their products, thereby increasing
the coverage and robustness of the shared library. Catalo-
guing regional caterpillar fungus hosts (step 4.1) and
identifying market samples (step 4.2) require operational
molecular laboratories that have the capacity to conduct
NGS sequencing (in the former case) or Sanger sequencing
and PCR (in the latter case). Such facilities are readily avail-
able in major cities in India and China, and to a certain
extent, in Nepal. Although these facilities are not located
within the communities that would benefit from them, cater-
pillar fungi are easily transportable from the field to the lab.
Multiple national agencies will need to work together to
ensure caterpillar fungus authenticity for the benefit of their
stakeholders, which involves sharing research facilities,
standardizing sequencing pipeline and making results trans-
parent. Our concern is that if the caterpillar fungus trade,
especially in the Himalayan region, continues to operate
in a legal grey zone, hundreds of local communities risk
vulnerability to economic exploitation.

Caterpillar fungus trade is an economic tie that connects
tens of thousands of stakeholders across international bound-
aries. The methods outlined here offer policymakers and
conservationists a means to promote trans-boundary conser-
vation [10,11,82]. Wang et al. [83] have shown that O. sinensis
are also plant endophytic fungi that are highly reliant on
alpine vegetation. Thus, sustainable harvest of caterpillar
fungus also ensures preservation of alpine habitats that are
extraordinarily rich in biodiversity and are situated near the
source of Asia’s largest rivers. Running through these habi-
tats are international borders and sites of armed conflicts
rooted in cultural misunderstanding. These habitats must
be sustained for the benefit of their wild species and the
many people in some of Asia’s largest countries whose
livelihoods depend upon them [51,52].
Data accessibility. See electronic supplementary material for additional
methods and discussion, as well as sample information [84]. Raw
sequences, processed sequences for phylogenetic analysis and tree
files are available from the Dryad Digital Repository: https://doi.
org/10.5061/dryad.msbcc2g10 [85].
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