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Abstract

In estuaries, salinity is believed to limit the colonization of brackish water habitats by fresh-

water species. Blue catfish Ictalurus furcatus, recognized as a freshwater species, is an

invasive species in tidal rivers of the Chesapeake Bay. Salinity tolerance of this species,

though likely to determine its potential range expansion and dispersal in estuarine habitats,

is not well-known. To address this issue, we subjected blue catfish to a short-term salinity

tolerance experiment and found that this species tolerates salinities higher than most fresh-

water fishes and that larger blue catfish tolerate elevated salinities for longer periods com-

pared with smaller individuals. Our results are supported by spatially extensive, long-term

fisheries surveys in the Chesapeake Bay region, which revealed a gradual (1975–2017)

down-estuary range expansion of blue catfish from tidal freshwater areas to habitats

exceeding 10 psu [practical salinity units] and that large blue catfish (> 200 mm fork length)

occur in salinities greater than 10 psu in Chesapeake Bay tributaries. Habitat suitability pre-

dictions based on our laboratory results indicate that blue catfish can use brackish habitats

to colonize new river systems, particularly during wet months when salinity decreases

throughout the tidal rivers of the Chesapeake Bay.

Introduction

Salinity tolerance is an important determinant of the survival, growth, reproduction and,

ultimately, spatial distribution of animals in estuaries [1,2]. Tolerance of salt concentrations

greater than those of its tissues depends on an organism’s ability to maintain its internal ionic

concentration and to compensate for the loss of water from tissues [3,4]. However, freshwater

fishes vary in their salinity tolerances; some are stenohaline and do not survive in salinities > 5

psu [practical salinity units]), whereas other species are euryhaline and can survive in salinities

in excess of full strength seawater (34 psu; [5]). Understanding the salinity tolerance of fresh-

water fishes introduced in estuarine or coastal systems is crucial to determine their potential

expansion and dispersal into novel estuarine habitats. For example, Prussian carp (Carassius
gibelio), believed to be stenohaline, were introduced into small lakes in Estonia but subse-

quently spread along the entire Estonian Baltic coastline [6].
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Blue catfish (Ictalurus furcatus), a freshwater species native to the Mississippi, Missouri and

Ohio River basins, have been introduced throughout North America due to their appeal to rec-

reational fishers [7]. This includes the introduction to tidal freshwater regions of the Rappa-

hannock, York and James rivers (subestuaries of the Chesapeake Bay) during the 1970s and

1980s, with a goal of enhancing recreational fisheries [8]. Blue catfish abundance subsequently

increased and there are now an estimated 544 fish/ha, with an estimated population size of 1.6

million fish in a 12-km stretch of the James River [9]. Blue catfish have also expanded into

tidal oligohaline (salinity < 5 psu) and mesohaline (5–18 psu) habitats throughout Chesapeake

Bay (Fig 1; [8,10]) where they feed on vegetation, molluscs, and fishes [11]. They also compete

Fig 1. Stocking locations (green triangles,▲) and current distribution of non-native blue catfish in Chesapeake

Bay. Blue dots (●) correspond to additional locations where blue catfish were collected from the mainstem of the

Chesapeake Bay during 2018 and 2019 (total fish collected = 63). The Chesapeake and Delaware Canal (C&D Canal)

connecting the Chesapeake Bay with the Delaware Bay is also shown. Note that blue catfish have not been recorded

from the Delaware Bay yet. Inset shows the location of the Chesapeake Bay in relation to Virginia (VA) and Maryland

(MD). Figure available in color online.

https://doi.org/10.1371/journal.pone.0224770.g001
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with native species, such as white catfish (Ameiurus catus), whose population densities have

declined concurrent with the increase in abundance of blue catfish [8].

The expansion and ultimate geographic range of blue catfish in the Chesapeake Bay region

may be limited by their salinity tolerance. Salinities below 9 psu are not likely to affect the

homeostasis of freshwater fishes like blue catfish because osmolality of the extracellular body

fluids in freshwater teleost fishes is ~300 mOsm kg−1, which is isosmotic to this salinity [12].

If blue catfish are, however, able to tolerate salinities > 9 psu, then they have the potential to

occupy and exploit a large fraction of habitats in Chesapeake Bay subestuaries, and thus, to

negatively affect the ecological integrity of this estuary. A broad salinity tolerance presents an

evolutionary advantage favoring spatial expansion in a climate of rapidly fluctuating salinity

[12], as predicted for the Chesapeake Bay region in the coming century [13]. Current projec-

tions of the potential distribution of blue catfish in this region use a 14 psu tolerance threshold

[10], which is the threshold reported for hatchery-reared blue catfish in their native range [14].

Yet, wild blue catfish have been observed in nearshore coastal waters of the southeastern U.S.

(P. Fuller, USGS, pers. comm.) and in salinities up to 21.8 psu in the Chesapeake Bay [9]. Salin-

ity in the mainstem of Chesapeake Bay varies seasonally and spatially from 0 to 28 psu due

to> 5-fold differences in river discharge between dry and wet months (Fig 2; [15,16]). This

might allow continued range expansion of blue catfish throughout the Maryland and Virginia

portions of the Chesapeake Bay. In particular, the Chesapeake and Delaware Canal (“the

Canal” hereafter) connects the upper Chesapeake Bay with Delaware Bay. If blue catfish are

able to exploit the salinities in the Canal, they may also colonize Delaware Bay, potentially lead-

ing to negative impacts on estuarine resources and function in Delaware Bay.

Fisheries surveys and field measurements can indicate the salinity tolerance of blue catfish

in the wild [17], though they cannot provide a causal link [18]. Observation of a species at a

particular salinity implies that the species can survive at that salinity, at least for a short time,

and information on the size, sex and other individual characteristics of the fish may be helpful

in understanding differential tolerances of the species. However, the estimated salinity toler-

ance based on survey data may be biased because of a spatial and/or temporal mismatch of sur-

vey effort and fish distribution [17]. Particularly, for a range-expanding non-native species, the

maximum field salinity where a fish is captured may be lower than the potential maximum,

which may not have been realized. We contend, therefore, that laboratory experiments are

needed to obtain a comprehensive and accurate characterization of salinity tolerance of blue

catfish.

A robust measure of salinity tolerance using standardized laboratory methods has yet to be

reported for blue catfish. Salinity tolerance may be assessed by exposing fish to increased salin-

ities and recording the median lethal concentration (LC50, the concentration at which 50% of

the individuals die within the specified period of time). It is, however, useful to understand

how long a fish can survive at a given salinity, as quantified by time-to-death or survival mod-

els. These models, in turn, allow testing of the hypothesis that blue catfish can survive in meso-

haline habitats long enough to allow movement between lower salinity environments. On the

other hand, understanding how long a blue catfish can survive at a given salinity allows infer-

ences as to whether this fish can use estuarine corridors as “saline bridges” to colonize rivers

other than the ones into which they were originally stocked [19].

We assessed the salinity tolerance of blue catfish in a 72-hour laboratory experiment and

compared the results with monthly survey data (collected over a 40-year period) from the Rap-

pahannock, York and James rivers. We hypothesized that blue catfish will exhibit a relatively

high salinity tolerance, allowing the species to expand in range throughout the Chesapeake

Bay region. Our aim was to predict the suitability of different Chesapeake Bay habitats to illus-

trate potential colonization routes of blue catfish.

Salinity effects on range expansion of blue catfish
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Methods

All animal capture, handling, and experimental procedures were approved by the College of

William & Mary Institutional Animal Care and Use Committee (protocols: IACUC-2017-05-

Fig 2. Vertically-averaged salinity (in psu) in the Chesapeake Bay typically encountered in spring (April) and fall (October) during average (2012), dry

(2009) and wet (2011) years. Maps are based on the model developed by Du and Shen (2015).

https://doi.org/10.1371/journal.pone.0224770.g002
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22-12111-tdtuck and IACUC-2016-08-19-11376-mcfabr) and followed all applicable U.S. laws

and regulations.

Distribution of blue catfish in Chesapeake Bay subestuaries

To monitor the distribution of invasive blue catfish throughout its invasion history in the Rap-

pahannock, York and James rivers, we used catch records covering 1975–2017 from the Vir-

ginia Institute of Marine Science (VIMS) juvenile fish trawl survey (conducted using a 9.14-m

otter trawl towed along the bottom for five minutes). Temperature and salinity data (measured

1 m from the sea floor) were also collected. The juvenile fish trawl survey uses a stratified ran-

dom sampling design between river kilometer (rkm) 64.4 and the mouth (rkm 0) of the Rappa-

hannock, York and James rivers [16]. Survey stratification is based on depth and longitudinal

region to ensure broad spatial coverage. As such, each subestuary is partitioned along its axis

into four regions of ~10 longitudinal minutes and into four depth strata in each region (1.2–

3.7 m, 3.7–9.1 m, 9.1–12.8 m, and>12.8 m). These areas are characterized by a gradient in

salinity, which varies at both tidal and seasonal time scales [15,16]. In addition, salinity in the

Rappahannock River is generally lower than that in the James and York rivers [16]. At each

sampling location, all blue catfish were counted and a representative sample was measured (to

the nearest mm). The gear used for the trawl survey is effective at capturing blue catfish rang-

ing from 70 mm to 300 mm fork length (FL), although fish as large as 1000 mm have been cap-

tured [16].

To characterize changes in size structure of blue catfish along the salinity gradient, we used

quantile regression [20], which better reflects salinity limitations on blue catfish than does

mean regression [21]. The quantile regression approach also allowed for unequal variance in

size of fish; such variance may arise from complex interactions of physiological limits and the

invasion history of blue catfish. To characterize the effects of salinity on the minimum size of

blue catfish captured in these subestuaries, we used piecewise quantile regression splines with

conditional quantiles, τ, at 0.1 and 0.01. The quantile regression splines at conditional quantile

τ = 0.1 and τ = 0.01 mean that about 10% and 1%, respectively, of the captured blue catfish

were less than a given size at a given salinity. In addition, we fit regression splines with the 0.50

conditional quantile (τ = 0.5) to assess consistency in observed patterns for fish of median size

as well. The salinities at which major changes in size structure of blue catfish occur can be

identified using break-points (knots), which are values of the predictor variable (in this case,

salinity) at which the adjacent polynomial splines are joined [20]. Two break-points were cho-

sen for each subestuary based on the analysis of residuals. Quantile regression splines were fit

in the statistical software R 3.5.1 using the package ‘quantreg’ version 5.38.

Salinity tolerance experiments

Blue catfish were captured from the tidal portion of the James River (coordinates 37˚14’N 76˚

52’W; salinity < 2 psu), and individuals between 165 mm and 265 mm FL were transported to

the VIMS Seawater Research Laboratory. We selected fish between 165 mm and 265 mm FL

for this study because these individuals are abundant in Chesapeake Bay subestuaries, and are

readily captured by the trawl survey. At this size range, there is little sexual dimorphism in

size-at-age of blue catfish such that both male and female blue catfish are between 1 and 3

years old (V. Nepal, unpublished data). Further, young of the year blue catfish (< 165 mm FL)

are not likely to contribute to dispersal and range expansion of this population [9]. Fish were

held for two weeks at 22˚C at 2 psu salinity prior to use in an experiment. We used 2 psu for

acclimation because preliminary experiments showed that blue catfish held in freshwater (0

psu) exhibited low survival rates and disease.

Salinity effects on range expansion of blue catfish
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Based on a pre-trial study (see below), we chose 0 (control), 10, 13, 16 and 19 psu as the

salinity treatment levels for the salinity trials, with 3 experimental aquaria (replicates) for each

salinity level and 10 fish per replicate (total 150 fish). We used a gradual acclimation scheme

(as opposed to a direct transfer of blue catfish to the target salinity) because the gradual accli-

mation resembles what blue catfish experience in the wild and has been reported to yield better

estimates of field salinity distribution [17]. Ten random blue catfish were placed in each of the

eighteen 340-liter circular experimental aquaria containing water at 0.1 psu and fitted with an

air bubbler. All experimental aquaria were partially covered to reduce distress on the fish; the

experiment was conducted using a natural dark/light cycle. Salinity was gradually increased by

adding brine solution (55 psu) created by mixing Instant Ocean1 (Spectrum Brands, Blacks-

burg, Virginia) with filtered York River water (~18 psu) at rates such that the target salinity

was reached in seven hours. The rate of increase in salinity we employed reflects that occurring

due to tidal cycles in the section of the James River where the experimental fish were collected.

All experimental aquaria were supplied water from the same brine solution mixed with de-

chlorinated municipal water. Once the target salinity was reached, we monitored fish mortality

by assessing reflex impairment every hour for the first four hours, then every four hours there-

after. Specifically, if a fish was unable to maintain equilibrium when handled, and exhibited

reduced swimming ability or mouth gaping, the fish was considered moribund [22]. Moribund

fish were immediately removed from the trial and euthanized by immersion in an ice slurry as

recommended by Blessing et al. [23]. Five blue catfish died before meeting the above criteria

for euthanasia (i.e. they had died during the periods between the four-hour monitoring

checks). An additional fish that had jumped out of the tank at an unknown time was discov-

ered dead later on. This individual was not used in the statistical analysis. The trials ran for 72

hours after the target salinities were reached. All fish that were alive at the end of the trials

(n = 111) were euthanized.

To identify informative salinity levels for the salinity tolerance experiment, we performed

a 72-hr pre-trial study, in which 10 fish were exposed to 7, 17 and 27 psu (total of 3 aquaria

and 30 fish) at 22˚C using the protocol described above. Fish were randomly assigned to

treatment aquaria, though care was taken to ensure that the length ranges of fish were similar

in all experimental aquaria. All individuals at 7 psu survived until the end of the experiment

(72 hours), and all individuals at 27 psu died within 4 hours of reaching the target salinity

(Fig 3). Mortality in the 17 psu treatment was first observed 40 hours after the target salinity

was reached, and the last individual died was found dead 72 hours after the target salinity

was reached (Fig 3). Hence, we chose 0, 10, 13, 16 and 19 psu as the salinity treatments for

the main experiment.

To reduce the production of nitrogenous wastes, fish were not fed during the salinity trials.

Water temperature, dissolved oxygen (DO), pH and ammonia concentration were measured

daily, and 40% of the water was changed in each aquarium daily to maintain water quality.

Water temperature ranged between 21.3 to 23.1˚C (grand mean for initial and main tri-

als = 21.9, S.E. = 0.1); DO ranged between 7.0 and 11.2 mgL-1 (grand mean = 9.1, S.E. = 0.2).

Similarly, pH ranged between 7.6 and 8.2 mgL-1 (grand mean = 8.0, S.E. < 0.1), and ammonia

ranged between 0.15 and 0.5 mgL-1 (grand mean = 0.35, S.E. < 0.1). Salinity was monitored to

the nearest 0.1 psu using a handheld meter every hour during the 7-hour salinity increase

period and twice a day thereafter. At the end of the experiment or upon death, fish were mea-

sured (mm FL) and dissected to obtain eviscerated weight (g). We subsequently calculated Ful-

ton’s K as an index of body condition:

K ¼ W � L� 3 � 105 ð1Þ

Salinity effects on range expansion of blue catfish
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where W is eviscerated weight and L is the length of the fish. Sex of each blue catfish was

assessed by macroscopic examination of the gonads.

To compare whether mean size and body condition of blue catfish were significantly differ-

ent among the different salinity treatments, we combined observations from the pre-trial and

the salinity experiment and fit linear mixed-effects models that modeled FL and body condi-

tion as a function of salinity and aquarium. The model took the form

yij ¼ mþ bSalinityþ Aquariumj þ εij ð2Þ

where yij is the response variable (FL or body condition) for fish i in aquarium j, μ is the overall

mean FL or body condition, β is the rate of change in y with respect to salinity, Aquariumj

refers to the random effect of aquarium, accounting for potential similarities in observations

among multiple blue catfish from a given aquarium (i.e., accounting for pseudoreplication),

and εij is the unexplained random variance in y. For each response variable, we fit a null model

without salinity, and compared the likelihoods of the full and null models using Bayesian

Information Criterion (BIC, [24]) calculated for each model as BIC = −2 � ln(likelihood) + p �

ln(n), where p is the number of parameters in the fitted model and n is the sample size. In this

approach, models with lower BIC values or with higher BIC weights represent the more parsi-

monious fit to the data [24].

Next, we modeled the effects of salinity, FL, sex, and condition on two responses: time-to-

death and fate of the fish (i.e., whether it survived to the end of the experiment or not). We

used a Cox proportional hazards model [25] to analyze the time-to-death and identify factors

associated with changes in the risk of death. Potential predictors in the model included salinity,

FL, body condition and sex.

hðt; XÞ ¼ h0ðtÞe
b1Salinityþ b2FLþ b3K ð3Þ

where h(t, X) is the hazard rate at time t with covariates X (salinity, FL, condition [K] and sex

of the fish), h0(t) is the baseline hazard function describing the change in risk of death per unit

time at the baseline level of covariates (i.e., set at zero), and the βs correspond to the log-hazard

Fig 3. Survival of blue catfish over time after gradual transfer from freshwater to one of three salinity treatments

during the pilot experiment. Figure available in color online.

https://doi.org/10.1371/journal.pone.0224770.g003
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ratio for the effect of each covariate on survival, adjusting for the other covariates in the model.

Preliminary analysis indicated that stratification by sex was necessary to address the difference

in baseline hazard rates between the male and female blue catfish (i.e., to address the violation

of the proportional hazards assumption of the Cox model by the variable sex). Therefore,

we obtained two baseline hazard functions—one for each sex [h0female (t) and h0male (t)].
For the Cox model, we estimated robust standard errors for each parameter following Lin

and Wei [26]; this approach accounts for potential similarities among individuals within each

aquarium.

The fate of each fish (dead/alive) was modeled using a logistic regression model, with salin-

ity, FL, body condition and sex as potential predictors.

ln
pi

1 � pi

� �

¼ mþ b1Salinityþ b2FL þ b3K þ b4Sex ð4Þ

where pi is the probability of death for fish i, ln pi
1� pi

� �
is the log-odds of death, μ is the overall

mean log-odds of death, and βs are partial regression coefficients. Collinearity among predic-

tors was checked graphically, and found to be absent (i.e., we found no evidence for linear rela-

tionships among pairs of predictors). Salinity was highly predictive such that all individuals

exposed to salinities� 17 psu died and all individuals exposed to salinities� 13 psu survived.

To avoid biases in parameter estimates and their standard errors caused by such quasi-com-

plete separation, we used Firth’s penalized-likelihood logistic regression [27]. Currently, Firth’s

logistic regression approach is limited to fixed effects, and thus, we included aquarium as a

fixed effect in the model. As before, we calculated BIC and BIC weights for competing models

and compared these metrics to inform model selection. Models within 2 BIC units of the best

model were averaged using model weights [24], and the averaged model was used to estimate

the 72-hour LC50 (salinity at which 50% of the individuals die within 72 hours). To permit

comparison with previous studies, we also calculated LC50 using the modified Spearman-Kar-

ber method [28]. These calculations used the log of the doses, and as recommended by Hamil-

ton et al. [28], 10% of the extreme observations were trimmed from each end of the response.

We used R packages ‘lme4’ version 1.1–21 to fit linear mixed effects models, ‘survival’ version

2.43–3 to fit time-to-death models, ‘brglm’ version 0.6.2 to fit Firth’s logistic regression, and

‘drc’ version 3.0–1 for trimmed Spearman-Karber LC50.

Spatially-explicit habitat suitability in the Chesapeake Bay

Model-averaged parameters from the logistic regression analysis were used to estimate the

72-hour survival probability of a blue catfish of size 224 mm FL for salinities between 0 and 32

psu. We selected 224 mm FL because this was the median length of blue catfish used in the

salinity trials. Salinity conditions were based on the model by Du and Shen [15], which pro-

vides monthly mean salinity profiles (from surface to bottom) throughout tidal waters of the

Chesapeake Bay and its tributaries. Visual inspection of the maps produced by the Du and

Shen model implied that salinity in some subestuaries was not well characterized by the model

(e.g., the model predicted unexpectedly high salinity in the central portion of a subestuary).

These cases were replaced with values obtained by linear interpolation between adjacent val-

ues. For simplicity, we first used depth-averaged mean salinity at each location. However, ver-

tical salinity profiles in Chesapeake Bay are tidally and seasonally stratified with heavier, saltier

waters near the bottom, and lighter, fresher water near the surface. Therefore, we also used sur-

face salinity to predict habitat suitability at each location throughout the Chesapeake Bay. Sur-

face salinity was defined as the mean of the predicted salinities in the top 1 m of the water

Salinity effects on range expansion of blue catfish
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column in each location; when salinity predictions were not available for the top 1 m, we used

the predicted salinity of the topmost layer as the surface layer (0.002% of the cases; in these

cases, the maximum depth of the topmost layer was 1.8 m). The predicted survival probability

was mapped to mean or surface salinity conditions of Chesapeake Bay to obtain spatially-

explicit, but static, representations of habitat suitability for blue catfish throughout the Chesa-

peake Bay and its subestuaries during spring (April) and fall (October) in years with average

(2012), above average (2011) and below average (2009) freshwater discharge rates (“average”,

“wet” and “dry” years, respectively). For comparison, the annual mean freshwater discharge

rates into the Chesapeake Bay during 2009, 2011 and 2012 are estimated to be 1795, 3200 and

2265 m3s-1 respectively; the mean freshwater discharge rates during dry fall (October 2009)

and wet spring (April 2011) were respectively 1418 and 7419 m-3s-1; a 5.2-fold difference in

discharge rates (data from https://md.water.usgs.gov/waterdata/chesinflow/wy/).

Results

Distribution of blue catfish in Chesapeake Bay subestuaries

A total of 178,611 blue catfish was collected from the Rappahannock (n = 76,322), York

(n = 10,536) and James (n = 91,753) river subestuaries between 1975 and 2017 (S1 Dataset).

Overall, 31.7% of blue catfish were collected from waters with salinity < 1 psu, and 98.6%

were collected from waters with salinity < 10 psu, although subestuary-specific differences

occurred (Fig 4). The highest salinity where blue catfish were collected was 21.8 psu in the

James River. Quantile regression splines for each subestuary indicated an increase in size of

fish with increasing salinity, such that individuals < 200 mm FL were primarily limited to

salinities < 10 psu (Fig 4).

Salinity tolerance

Mean body condition of blue catfish decreased systematically with increasing salinity (BIC for

full model = -407.2; BIC for null model = -405.8); more specifically, the predicted mean Ful-

ton’s K decreased from 1.06 to 0.98 (fraction change = 7.3%) when salinity increased from 0

psu (freshwater) to 10 psu. In contrast, the mean size of blue catfish did not differ among the

salinity levels used in the experiment (BIC for full model = 1645; BIC for null model = 1638.9),

suggesting that comparisons among salinity treatments were not biased by size differences.

Salinity had a negative effect on the time-to-death of blue catfish; a 1 psu increase in salinity

increased the hazard (risk of death) by a factor of 9 (Table 1; Fig 5). However, the negative

effects of salinity were lower for fish that were larger or had better body condition; larger fish

with better body condition had a lower risk of dying (Table 1; Fig 5). Males and females had

different baseline hazard rates such that the risk of death varied differently over time for male

and female blue catfish.

None of the experimental blue catfish died at salinities� 13 psu, and all blue catfish died at

salinities� 17 psu (S1 Dataset). At 16 psu, 11 of 30 experimental blue catfish (36.7%) died

before the end of the experiment. The effects of salinity, fish length, condition and sex on

whether the fish was alive at the end of 72-hours were analyzed with Firth’s logistic regression.

The two most parsimonious models, accounting for total BIC weight of 0.89, were averaged to

provide model-averaged parameter estimates for the effect of salinity and fish length on fate of

the fish (Table 2). The odds of survival decreased by 88% with a 1 psu increase in salinity (odds

ratio: 0.12; 95% confidence interval [CI]: 0.03–0.53) but increased by 5% with a 1 mm increase

in fork length (odds ratio: 1.05; CI: 1.00–1.09; Table 3). The 72-hour LC50 from the averaged

model was 15.7 psu (CI: 14.7–16.1; Fig 6). In comparison, the corresponding LC50 based on

the Spearman-Karber method was 15.2 psu (CI: 14.8–15.7).
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Habitat suitability mapping

Static representations of Chesapeake Bay during typical average, dry and wet months show

considerable spatial variation in average predicted salinity (Fig 2). In addition to the north-

south gradient in the mainstem of Chesapeake Bay and the headwater-mouth gradient in the

tributaries, there are also seasonal and inter-annual differences in salinity gradients (Fig 2).

Vertically-averaged salinity in spring was lower than that in fall during dry and average precip-

itation years; in wet years, there was a considerable reduction in salinity during both spring

and fall (Fig 2). Vertical, seasonal and annual variability in salinity resulted in marked variation

in habitat suitability throughout the Chesapeake Bay. As expected, the proportion of suitable

habitat was highest towards the headwater of the tributaries and at the head of the Chesapeake

Bay (Figs 7 and 8). In addition, larger areas of Chesapeake Bay became habitable during wet

Fig 4. Bottom salinity and fork length of invasive blue catfish captured from the Rappahannock, York and James river subestuaries of the Chesapeake Bay

during 1975–2017 by the VIMS juvenile fish trawl survey. The quantile regression splines for salinity� 15 psu are shown for three quantiles (ε = {0.01, 0.1,

0.5}). Note that the y axis of the histogram is truncated for the York and James rivers; the percent of blue catfish captured at salinities< 1 psu in the York (47.8%)

and James (46.1%) rivers are indicated in the figure.

https://doi.org/10.1371/journal.pone.0224770.g004

Table 1. Parameter estimates for the stratified Cox proportional hazards model fit to the time-to death data from the toxicity test on blue catfish. CL = 95% confi-

dence limit.

Variables Estimate Hazard Rate Lower CL Upper CL

Salinity 2.20 9.03 6.07 13.43

Fork length -0.04 0.96 0.95 0.97

Condition -5.93 0.002 <0.001 0.11

https://doi.org/10.1371/journal.pone.0224770.t001
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months compared with dry months (Figs 7 and 8). For example, under the vertically-averaged

salinity scenario in fall, the predicted probability of survival for a 224 mm FL blue catfish dur-

ing average conditions exceeded 0.8 in only about 26.7% of Chesapeake Bay habitats, but the

proportion of habitable area increased to 65% during wet conditions (Fig 7). Corresponding

predicted proportions of habitable areas increased further to 30.2% and 75.5% respectively if

only the surface layers are considered (Fig 8). Of note here is that the probability of survival

was near 1.0 in the Elk River regardless of the discharge scenario, suggesting that salinity

Fig 5. Median time-to-death (h) for male and female blue catfish at various salinities predicted by the stratified

Cox proportional hazards model. Numbers at the end of the lines represent salinities in practical salinity units (psu).

Figure available in color online.

https://doi.org/10.1371/journal.pone.0224770.g005

Table 2. Bayesian Information Criterion (BIC), ΔBIC, number of parameters and BIC weight for Firth logistic

regression models fitted to describe the 72-hour mortality of blue catfish exposed to various salinities. The two

most parsimonious models, highlighted in bold, were averaged to determine the final model. FL = Fork length.

Variables included BIC No. pars. ΔBIC Weight

Salinity, FL 50.8 3 0 0.54

Salinity 51.7 2 0.9 0.35

Salinity, FL, Sex 54.8 4 4 0.07

Salinity, FL, Condition 56.2 4 5.4 0.04

Salinity, FL, Condition, Sex 60 5 9.2 0.01

Salinity, FL, Condition, Sex, Aquarium 147.1 21 96.3 0

Salinity, FL, Sex, Aquarium 144.2 20 93.4 0

Salinity, FL, Condition, Aquarium 144.1 20 93.3 0

https://doi.org/10.1371/journal.pone.0224770.t002

Table 3. Parameter estimates for the most parsimonious Firth logistic regression model to describe the 72-hour mortality of blue catfish exposed to various salini-

ties. CL = 95% confidence limit.

Parameters Estimate Odds Ratio Lower CL Upper CL

Intercept 25.02 7.36×1010 1.53 3.5×1021

Salinity -2.14 0.12 0.03 0.53

Fork length 0.04 1.05 1.00 1.09

https://doi.org/10.1371/journal.pone.0224770.t003
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conditions in the Elk River could facilitate blue catfish dispersal into Delaware Bay via the

Chesapeake and Delaware Canal (Figs 2, 7 and 8).

Discussion

Blue catfish survived short-term (72-hr) exposure to mesohaline waters (< 15 psu), indicating

that this species has the potential to survive in most downstream areas of major rivers entering

Chesapeake Bay, and to use the mainstem of the upper Bay for movement into other subestu-

aries in Maryland and into Delaware Bay. Large (> 200 mm FL) individuals in particular are

more tolerant of salinities > 10 psu than smaller, immature fish, and thus have a greater ability

to use mesohaline and polyhaline habitats and invade additional areas throughout the Chesa-

peake Bay. Large individuals during wet months may exhibit jump dispersal, which is charac-

terized by occasional long-distance movements; such movements are likely to increase the rate

of spatial expansion [29] and the probability of regional persistence [30] of non-native blue

catfish in the Chesapeake Bay region.

The salinity tolerance of blue catfish (LC50 = 15.7 psu) was higher than that of many fresh-

water fishes such as the percichthyid Nannatherina balstoni (LC50 = 8.2 psu; 72 hrs; [31]), and

eastern mosquitofish Gambusia holbrooki (11.5 psu; 96 hrs; [32]), including some species of

catfishes such as South American sailfin catfish Pterygoplichthys spp. (10.6 psu; 96 hrs; [33])

and African sharptooth catfish Clarias lazera (10.5 psu; 72 hrs; calculated based on [34]). The

observed LC50 is, however, comparable to that of other members of the family Ictaluridae: flat-

head catfish Pylodictis olivaris (14.5–15.8 psu [35]); black bullhead Ameiurus melas (13.8 psu

[36]); white catfish (14.0 psu [37]); channel catfish Ictalurus punctatus (12.0–15.5 psu [14,36]).

Kendall and Schwartz [37] hypothesized that the relatively less permeable integument of cat-

fishes might allow them to tolerate greater osmotic stress resulting in the somewhat high salin-

ity tolerance of ictalurid catfishes. There is, however, little empirical support for this

hypothesis because a majority of the water or ion exchange in fishes occurs across the gills but

not the integument [4].

Fig 6. Predicted survival of blue catfish based on Firth Logistic regression fit to data from the 72-hour salinity

tolerance experiment. The point and the bar correspond to the predicted salinity at 50% mortality (LC50) and the

corresponding 95% confidence interval based on the logistic regression. Numbers along the line represent the

minimum, median and maximum length (mm) of blue catfish used in this study.

https://doi.org/10.1371/journal.pone.0224770.g006

Salinity effects on range expansion of blue catfish

PLOS ONE | https://doi.org/10.1371/journal.pone.0224770 November 5, 2019 12 / 20

https://doi.org/10.1371/journal.pone.0224770.g006
https://doi.org/10.1371/journal.pone.0224770


Fig 7. Spatially explicit probabilities of survival (72-hour) for a 224 mm blue catfish (median length in the salinity tolerance experiment) throughout the

Chesapeake Bay based on vertically-averaged salinities in spring (April) and fall (October) during average (2012), dry (2009) and wet (2011) years. Number at

the top left corner of each panel denotes the percent area of the Chesapeake Bay where predicted probability of survival for blue catfish was greater than 0.8. Note that

the probability of survival was nearly 1 in the Chesapeake and Delaware Canal (C&D Canal).

https://doi.org/10.1371/journal.pone.0224770.g007

Salinity effects on range expansion of blue catfish

PLOS ONE | https://doi.org/10.1371/journal.pone.0224770 November 5, 2019 13 / 20

https://doi.org/10.1371/journal.pone.0224770.g007
https://doi.org/10.1371/journal.pone.0224770


Although our results are consistent with previous studies with other ictalurid fishes, they

may have been affected by our experimental procedures. First, the gradual increase in salinity

we employed is unlike protocols that include abrupt changes from freshwater to the target

salinity, or those that gradually increase salinity over several days [35]. In general, gradual

Fig 8. Spatially explicit probabilities of survival for a 224 mm blue catfish throughout the Chesapeake Bay based on surface salinities. See Fig 7 for additional

details.

https://doi.org/10.1371/journal.pone.0224770.g008
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increases in salinity result in estimates of salinity tolerances that are higher than those observed

under abrupt changes (e.g., [34,35,38]). Second, the source or type of salt used in salinity toler-

ance experiments also varies among studies. These have included synthetic sea salt (Instant

Ocean1; [35]), sodium chloride solutions (NaCl which comprises about 85% of the salts in

seawater; e.g., [35]), diluted seawater (e.g., [37]) and diluted water from brine ponds (e.g.,

[36]). These differences have been shown to affect the measured salinity tolerances. For exam-

ple, Bringolf et al. [35] observed that the 72-hr LC50 for juvenile flathead catfish was signifi-

cantly lower when fish were exposed to NaCl solutions (10.0 psu) than when fish were exposed

to synthetic seawater (14.5 psu). We used Instant Ocean1 because of the compositional resem-

blance of the resulting solution to natural seawater. Instant Ocean1 was supplemented by

water from the York River to ensure that any trace elements or compounds not available in

Instant Ocean1 would be provided by York River water. Third, different life stages and sizes

of fish affect the determination of salinity tolerance. As we demonstrate, larger blue catfish

have better osmoregulatory abilities compared with smaller individuals. This finding is consis-

tent with studies on a wide range of freshwater fishes [32,39–41]. Such observations might

result from size- and age-dependent changes in allometric scaling of body size, and develop-

ment of endocrine and ionoregulatory pathways [41]. Compared with larger individuals,

smaller fish have higher weight-specific aerobic metabolic rates and higher gill surface area to

body mass ratios [42]. The result is that smaller individuals have higher rates of passive ion

and water exchange per unit body mass which must be compensated by higher rates of active

ion exchange in the gill and gut. Finally, the time of removal of moribund fish may also have

affected our estimate of time-to-death, which was accurate to ± 4 hours.

The relatively high salinity tolerance we observed in blue catfish may have resulted, at least

in part, from the acclimation of fish at 2 psu for 2 weeks. Hyperosmotic abilities may be upre-

gulated after acclimation to low or moderate salinity conditions, as reported for anadromous

fishes such as the Gulf sturgeon Acipenser oxyrhynchus desotoi [43], white sturgeon Acipenser
transmontanus [44] and various salmonid species [45]. Such mechanisms may be active in

non-anadromous fishes as well, because salinity tolerance is likely a conserved trait [12]. The

acclimation protocol we followed with blue catfish may have led to the upregulation of hyper-

osmotic abilities in these fish, and thus to increased salinity tolerance. In addition, blue catfish

in the James River subestuary are regularly exposed to low to moderate salinities. Therefore,

osmotic abilities of blue catfish undergoing dispersal events, particularly those at the leading

edge of the invasion, would likely be upregulated, and thus, the fish from the James River sub-

estuary may have had an increased physiological ability to use brackish waters. Likewise, the

salinity tolerance of blue catfish that were hatched in brackish conditions may be higher than

that of fish hatched in freshwater, as demonstrated for Nile tilapia Oreochromis niloticus [46].

Such upregulation of salinity tolerance at the egg stage suggests that salinity tolerance of blue

catfish may increase as the population expands into estuarine waters; upregulation may allow

blue catfish to exploit a large portion of the Chesapeake Bay, possibly even exceeding the

exploitable areas predicted here. Further, salinity tolerance of fishes can vary based on their

genetic makeup and geographic distribution [40]; therefore, future research should compare

salinity tolerance of different blue catfish populations within the Chesapeake Bay region.

Blue catfish exposed to high salinities had the lowest mean body condition indices, suggest-

ing that fish may lose body mass under these conditions. We did not measure weight of fish

before the salinity trials commenced but presume that the mean body mass of the blue catfish

assigned to different salinity levels were similar because individuals were assigned randomly to

salinity treatments. Reduction in body mass has been observed in other fishes such as Califor-

nia halibut Paralichthys californicus [47] and shortnose sturgeon Acipenser brevirostrum [48]

when exposed to elevated salinities. Such decreases in body mass and condition are likely
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caused by a reduction in muscle water content [48,49]. Loss of muscle water content is often

accompanied by increased plasma osmolality and indicates a breakdown of osmoregulatory

abilities [49]; a critical level of water loss at high salinities could lead to mortality [48].

Our predictions of suitable habitats for blue catfish in the Chesapeake Bay are likely conser-

vative and may be only relevant for the size range we studied. We gradually increased salinity

over seven hours and exposure to the target salinity was 72 hours. In the wild, the rate of

increase in salinity could be slower. The effects of temperature on salinity tolerance of blue cat-

fish, though not investigated in this study, could also influence the predictions in this study.

For example, when exposed to high salinity conditions, individuals of the tropical freshwater

fish oscar Astronotus ocellatus survived longer at 28˚C than at 18˚C [50]. If such patterns hold

for blue catfish, then warming water temperatures due to climate change would favor survival

and dispersal of this species. This also highlights the potentially counteracting effects of high

precipitation and freshwater influx on dispersal of this fish. Whereas high freshwater influx

from headwaters into the subestuaries decreases salinity and positively influences the likeli-

hood of dispersal, such events are typically accompanied by cooler temperatures, which some-

what offset the positive effect of lower salinities. However, the positive effect of decreased

salinity likely outweighs the negative effects of decreased temperature. Future research should

explicitly study the relative influences of temperature and salinity on survival and dispersal of

blue catfish. In addition to mortality, high salinities may have sublethal effects on growth [1],

reproduction [39] and metabolic rates [1] of fishes. Therefore, salinities > 9 psu may further

limit the long-term occupation of estuarine habitats by blue catfish. Sublethal effects may

explain why relatively few blue catfish have been consistently captured at salinities > 9 psu in

the Rappahannock, York and James rivers. Sublethal effects of increased salinity should be

investigated to obtain better predictions of blue catfish range expansion in the Chesapeake

Bay.

The ability of blue catfish to use estuarine waters to expand in range and colonize novel

habitats throughout the Chesapeake Bay region is aided by the most energetically efficient

mode of transportation available to animals, swimming [4]. With a sustained swimming

speed of 30 cm s-1 [51], in 72 hours a 250 mm blue catfish would be able to move 77.8 km,

which is greater than the maximum width of Chesapeake Bay (48 km). A mark-recapture

study on blue catfish in the Potomac River in the Chesapeake Bay has shown that blue catfish

are capable of such long-distance movements [52]. Telemetry tracking of this species using

acoustic tags equipped with depth sensors is needed to elucidate the effects of seasonal distri-

bution and vertical stratification in salinity on size-specific habitat use and dispersal of blue

catfish. To this end, we showed that low salinity surface waters can provide suitable habitats

for blue catfish dispersal. Such behavior has been observed in the freshwater pikeperch

Sander lucioperca, which exhibits increased swimming and vertical movement within the

water column at salinities greater than 12.5 psu [19]. Overall, we conclude that blue catfish

have the potential to expand to most subestuaries on both sides of the Chesapeake Bay, and

also to the Delaware Bay via the Chesapeake and Delaware Canal. The role of the Canal as a

two-way bridge for exchange of fishes between the Chesapeake and Delaware bays was

highlighted by Brown et al. [19], who proposed that flathead catfish—another introduced

ictalurid catfish—may have dispersed from the Delaware Bay (where they were introduced)

into the Susquehanna River (a river entering the northern end of Chesapeake Bay, see Fig 1)

drainage via this route. We postulate that some subestuaries in the Chesapeake Bay region

are less likely to supply fish for cross-estuary movements. In particular, blue catfish in the

James and York river subestuaries are less likely than those from other tributaries to disperse

and colonize adjacent systems because of the considerably high salinities at the mouths of

these subestuaries.
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Despite their presence in the Chesapeake Bay region since the 1970s, blue catfish have not

yet invaded some of the Chesapeake Bay subestuaries or the Delaware Bay. We postulate that

this is because dispersal of blue catfish from one subestuary to another is largely restricted by

salinity conditions in the Chesapeake Bay, and most of the inter-subestuary dispersal occurs

only during high precipitation events when salinity declines. In the future, the frequency of

extreme wet events is expected to increase, resulting in fluctuating salinity distributions

throughout the Chesapeake Bay [13]. Such events will likely facilitate dispersal of blue catfish

in the Chesapeake Bay. Tropical storms may also affect the dispersal of blue catfish. The short-

term pulse in salinity (maximum of 10–15 psu for 12–36 hours) at oligohaline reaches of Ches-

apeake Bay during tropical storm events [53] is likely insufficient to cause mass mortality of

blue catfish. However, the inundation of coastal lands during such storms and the subsequent

declines in salinity throughout the lower portions of the Bay could provide opportunities for

further range expansion. Such conditions were observed during tropical cyclone Isabel in 2003

[53].

Our findings highlight that resource managers and conservationists should be concerned

about the potential for blue catfish to continue their range expansion in the rivers draining

into the Chesapeake Bay and to impact negatively the native invertebrate and fish species of

commercial, recreational and cultural value such as the blue crab Callinectes sapidus and

Atlantic menhaden Brevoortia tyrannus, as well as species of conservation concern such as the

catadromous American eel Anguilla rostrata and anadromous Atlantic sturgeon Acipenser
oxyrhynchus oxyrhynchus (J. Watterson, pers. Comm., Naval Facilities Engineering Command

Atlantic; [8,11]). Although diet studies of blue catfish in oligohaline habitats of Chesapeake

Bay suggest relatively low predation rates on such species [11], similar studies have not been

conducted in the mesohaline habitats. Because of the high population densities [9,54] and rela-

tively large sizes of blue catfish in mesohaline areas, their overall impact on native species is

likely to be substantial. More importantly, their expansion into the Delaware Bay would have a

similar impact.

The development of spatio-temporally explicit management plans may assist in the man-

agement of blue catfish by limiting the range expansion of this species in the region. Because

range expansion potential is maximized during wet months and years, increased monitoring

of likely dispersal corridors during these periods may allow selective removal of blue catfish,

and disruption of dispersal processes. Proactive prevention and early eradication of blue cat-

fish in novel habitats is likely to be the best approach to minimizing the negative impacts of

this invasive species.

Supporting information

S1 Dataset. Data on blue catfish captured from three Chesapeake Bay subestuaries (sheets

SurveyData and SurveyMetadata) or used in salinity tolerance experiments (sheets Experi-

mentResults and ExperimentMetadata).

(XLSX)
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