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Abstract

Sugarcane ratoon stunting disease (RSD) caused by Leifsonia xyli subsp. xyli (Lxx) is a

common destructive disease that occurs around the world. Lxx is an obligate pathogen of

sugarcane, and previous studies have reported some physiological responses of RSD-

affected sugarcane. However, the molecular understanding of sugarcane response to Lxx

infection remains unclear. In the present study, transcriptomes of healthy and Lxx-infected

sugarcane stalks and leaves were studied to gain more insights into the gene activity in sug-

arcane in response to Lxx infection. RNA-Seq analysis of healthy and diseased plants tran-

scriptomes identified 107,750 unigenes. Analysis of these unigenes showed a large number

of differentially expressed genes (DEGs) occurring mostly in leaves of infected plants. Sug-

arcane responds to Lxx infection mainly via alteration of metabolic pathways such as photo-

synthesis, phytohormone biosynthesis, phytohormone action-mediated regulation, and

plant-pathogen interactions. It was also found that cell wall defense pathways and protein

phosphorylation/dephosphorylation pathways may play important roles in Lxx pathogeneis.

In Lxx-infected plants, significant inhibition in photosynthetic processes through large num-

ber of differentially expressed genes involved in energy capture, energy metabolism and

chloroplast structure. Also, Lxx infection caused down-regulation of gibberellin response

through an increased activity of DELLA and down-regulation of GID1 proteins. This alter-

ation in gibberellic acid response combined with the inhibition of photosynthetic processes

may account for the majority of growth retardation occurring in RSD-affected plants. A num-

ber of genes associated with plant-pathogen interactions were also differentially expressed

in Lxx-infected plants. These include those involved in secondary metabolite biosynthesis,

protein phosphorylation/dephosphorylation, cell wall biosynthesis, and phagosomes, impli-

cating an active defense response to Lxx infection. Considering the fact that RSD occurs

worldwide and a significant cause of sugarcane productivity, a better understanding of Lxx

resistance-related processes may help develop tools and technologies for producing RSD-

resistant sugarcane varieties through conventional and/or molecular breeding.
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Introduction

Ratoon stunting disease (RSD) was first discovered in Queensland, Australia in 1945, and

occurs in sugarcane growing regions worldwide [1, 2]. RSD infection generally causes 5–30%

yield loss, but it can go up to 60% in severely affected ratoon crops [3, 4].

Sugarcane is the most important sugar crop in the world, accounting for about 80% of

sugar production globally, and over 90% in China [5, 6]. China is the fourth largest sugar pro-

ducer in the world. RSD was first reported in China in 1986 [7]. The incidence of RSD in com-

mercial sugarcane crops in China ranges from about 65 to close to 90%, depending on the

region [6]. However, it could be significantly higher with recurring and increasingly severe

drought.

RSD is a bacterial disease caused by the gram-positive bacteria Leifsonia xyli subsp. xyli
(Lxx) [8]. There are no easily distinguishable visual lesions or similar symptoms for RSD. A

general growth reduction, decreased stalk diameter and shorter internode length is a common

feature of RSD. Because water stress accelerates RSD pathogenesis, the RSD-induced growth

reduction is often discounted as drought and/or nutritional deficiency responses, leaving the

disease undetected and unchecked. Leifsonia xyli subsp. xyli is a slow growing and nutritionally

fastidious bacterium making it difficult to culture. It takes nearly a month to grow it into a visi-

ble colony on solid medium [9, 10]. The predicted Lxx pathogenicity genes include those for

cellulase, pectinase, wilt-inducing protein, lysozyme, and desaturase, of which the latter is

involved in the synthesis of abscisic acid, a hormone that arrests growth [11]. Lxx infects its

host mainly through wounds on the stalk and is highly infectious. For instance, a previous

study showed that diluting the bacteria-containing sap by several hundred-fold still retains

strong infectivity [12]. Because Lxxmainly inhabits the xylem vessels of sugarcane, RSD has

been long recognized as a disease limited to the xylem [13]. Therefore, most of the studies on

RSD focused on stem [14–16]. Recent studies using a GFP-labeled Lxx strain to track Lxx colo-

nization in the whole sugarcane plant found its presence in leaf mesophyll cells as well as those

surrounding the vascular bundle sheath [17].

Currently, RSD is mainly controlled by pathogen-free planting material, maintaining good

farm hygiene through appropriate field management and strict implementation of quarantine

practices [18]. However, some control methods, such as meristem tissue culture are time-con-

suming and resource-intense, but becoming increasingly popular. Previous studies have

shown genotypic variation for resistance to RSD [19]. Nonetheless, breeding for RSD is not a

priority in most breeding programs. Hot water treatment, where seedcanes are soaked in hot

water maintained at 50˚C for two hours is a common method to reduce Lxx titre. This method,

while economical and practiced widely for commercial cropping, does not completely elimi-

nate Lxx [20].

Previous studies have reported reduced water potential and increased membrane perme-

ability and free amino acid levels in sugarcane following Lxx infection [21]. Lxx infection also

affects enzymes involved in plant defenses such as superoxide dismutase (SOD), peroxidase

(POD) and catalase (CAT) [16, 22], and alters the level of endogenous plant hormones indole-

3-acetic acid (IAA), gibberellic acid (GA) and abscisic acid (ABA) [14, 23]. Further, photosyn-

thesis was found decreased in Lxx-infected plants [22, 24]. We observed changes in leaf and

stalk anatomy as well as morphological and structural variation in chloroplasts of Lxx-infected

sugarcane [15, 23]. The genetic elements and mechanisms causing structural and physiological

responses of sugarcane to Lxx infection are not well understood. Considering the extent of

growth and developmental inhibition occurring in Lxx-infected sugarcane, it is highly likely

that a number of growth- and pathogenicity-related gene networks may be involved in eliciting

disease symptoms. Studying global gene expression is an effective and useful approach in
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understanding the molecular basis of pathogenesis, and deep transcriptome sequencing tech-

nology, RNA-Seq, has been used to investigate disease resistance mechanisms in various plant

species [25, 26]. RNA-Seq analysis of rice transcriptome 24 h post-inoculation with blast fun-

gus found up-regulation of 240 genes encoding secreted proteins, including glycosyl, hydro-

lases and cutinases [27]. RNA-Seq has also been widely used investigate sugarcane abiotic

stresses [28, 29], developmental processes such as sugar accumulation [5, 30], self-defoliation

[31] and diseases [32–35].

To date studies on RSD have mostly concentrated on developing disease prevention meth-

ods [36], diagnostics [37], pathogenesis-related host physiology [14–16, 21–24] and pathogen

genome analysis [38]. There is rarely report on global gene expression analysis of healthy and

Lxx-infected sugarcane. Also, despite sequencing Lxx genome, and considerable Lxxmutagen-

esis studies, little is known about the genetic architecture of Lxx-sugarcane pathological inter-

actions [11]. RSD pathogenesis-related mechanistic studies are further disadvantaged by the

lack of clear and consistent visual disease symptoms other than a generalized growth inhibition

of infected plants. With the recent advancements in molecular tools and technology it is now

possible to gain insights into molecular aspects of host-pathogen interactions at gene level [33,

39]. The main objective of this study is to identify RSD-associated gene networks and possible

reasons for Lxx-induced growth inhibition. Also, it is expected that, as with other diseases,

comprehensive gene expression analyses will start decoding the RSD host-pathogen interac-

tion black-box and pave the way for future research on molecular targets, including molecular

markers, for genetic improvement of sugarcane for RSD resistance. For this study, we used a

Lxx-susceptible sugarcane variety Badila and conducted RNA-Seq analyses to identify genetic

elements and networks associated with RSD pathogenesis in sugarcane.

Materials and methods

Materials and inoculation

Healthy, disease-free seedcanes of sugarcane cultivar Badila (Saccharum officinarum L.), which

is highly susceptible to RSD, were used for this study. Seedcanes were grown in the greenhouse

at the Agricultural College, Guangxi University, Nanning, China. RSD-free status of experi-

mental materials was confirmed by Lxx diagnostic PCR assay. The stalk of seedcane plants

were cut into single-bud nodal cuttings, called seedcane setts, with sterile knife and immersed

in hot water maintained at 50˚C for 2 h to further ensure that they are Lxx-free. The Lxx strain

used for inoculation was Leifsonia xyli subsp. xyliGXBZ01 (Accession number

LFYU00000000). Cultures of this bacterium were prepared as described previously [23]. PCR

assay to detect Lxx was performed as described elsewhere [21]. The two cut surfaces of seed-

cane setts were inoculated with 300 μL Lxx solution (108 cfu/mL). The control group was inoc-

ulated with MSC liquid medium. The seedcane setts were kept at 28˚C for two days and then

planted in sandy soil. Lxx-inoculated and control seedlings at the third-leaf-stage were tested

for RSD-infection by PCR assay. The control (Lxx-free) and infected plants were then trans-

ferred to pots (height × diameter, 350 mm × 300 mm) containing 18 kg of composite soil (soil:

sand: organic fertilizer, 6:2:2). Six pots, each carrying three plants, were maintained for each

treatment group. At 90 days post-inoculation, top visible dewlap leaf (designated as leaf +1)

and basal part of stalk were sampled from three plants selected randomly from the infected

and control groups. Collectively there were four groups of samples, each with three biological

replicates, totaling 12 biological samples. The four groups of samples were named healthy

leaves (HL), healthy stalks (HS), Lxx-infected leaves (IL) and Lxx-infected stalks (IS), respec-

tively. All the samples were frozen in liquid nitrogen immediately after collection and then

stored at -80˚C until used for analyses.
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RNA-seq library construction

Healthy and Lxx-infected stalks and leaves collected on day 90 post-inoculation were used for

high-throughput transcriptome sequencing. Total RNA was extracted using the TRIzol1

method [40]. The integrity of the extracted RNA was confirmed using 1% agarose gel electro-

phoresis. A was used to test the Purity of the extracted RNA was determined by spectropho-

tometry, using NanoDrop 2000 (Thermo Scientific, Waltham, USA). Fifteen μg of good

quality RNA from each sample was used for cDNA library construction. The quality of the

cDNA library was determined using an Agilent 2100 Bioanalyzer and ABI StepOnePlus Real-

Time PCR system. The cDNA libraries that passed quality assessment were used for sequenc-

ing. The cDNA library construction and high-throughput sequencing were conducted at

BGI-Shenzhen. An Illumina HiSeq 2000 platform was used for sequencing, employing three

biological replicates for every type of tissue used in the experiment.

De novo transcriptome assembly

As the first step, the raw reads were filtered to remove low-quality reads, adaptors, and the

reads with high Ns to generate clean reads. From clean reads de novo transcripts were assem-

bled (PCR redundancy was removed to improve the assembly efficiency) using Trinity soft-

ware [41]. The assembled transcripts were further processed using Tgicl for clustering and

redundancy removal and unigenes were generated.

Gene annotation

Unigenes obtained from the assembly were functionally annotated using seven databases; they

are KEGG (Kyoto encyclopedia of genes and genomes), GO (Gene ontology), NR (NCBI non-

redundant database), NT, Swiss-Prot, Pfam, and KOG (EuKaryotic Orthologous Group) [42].

Analyses of gene expression levels and Differentially Expressed Genes

(DEGs)

The clean reads were mapped back to the assembled sequences using Bowtie2 [43], followed

by analysis of gene expression level in each sample using RSEM (RNA-Seq by Expectation-

Maximization) [44]. Fragments per kilobase of transcript per million mapped reads (FPKM)

were used to normalize the gene expression level of every transcript in each sample. The DEGs

in sugarcane after Lxx infection were identified using edgeR software [45]. The differentially

expressed transcripts were selected by applying stringent parameters: i) FPKM > 1, ii) Log2FC

(log2 fold change)> 1 (up-regulated) or Log2FC< -1 (down-regulated), iii) p-value < 0.05

and iv) FDR (false discovery rate)< 0.05.

GO and KEGG pathway enrichment analysis

Based on the results of GO and KEGG annotation, as well as official classification, the DEGs

were classified (FPKM > = 10: at least one of the three biological replicates of each group of

samples had an FPKM > = 10) into groups of cellular function and biological pathway. Mean-

while, R’s phyper function was used for GO and KEGG enrichment analysis. The p-values

were calculated and subjected to FDR calibration and the functions or pathways showing sig-

nificant enrichment were identified using a FDR� 0.01.

Real-time quantitative RT-PCR (RT-qPCR)

Reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) was per-

formed to quantify the expression levels of the transcripts obtained from high-throughput
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sequencing. First, TRIzol1 (Cowin Biosciences) was used to extract total RNA, followed by

RNA quality assessment using NanoDrop 2000. cDNA reverse transcription was performed

using a TAKARA PrimeScriptTM RT reagent kit (TaKaRa). RT-qPCR was performed using

SYBR Premix Ex TapTM II (TaKaRa) using LightCycler1480 II (Roche Applied Science). The

PCR reaction mixture and thermal profile were set up as described by Zhu et al. [21]. Gene rel-

ative expression levels were calculated using the 2−ΔΔCt method [46]. Primers of candidate

genes and an internal reference gene (GAPDH, Glyceraldehyde-3-phosphate dehydrogenase)

were designed using Primer 5.0 software and synthesized at Sangon Biotech (Shanghai) Co.,

Ltd. The primer sequences used are listed in S1 File.

Results

Transcriptome assembly

To study the response of sugarcane to Lxx infection at gene level, we performed RNA-Seq of

leaf and stalk tissues of Lxx-infected and non-infected plants using an Illumina HiSeq 2000

platform with pair-end sequencing technology. After data filtering, 79.73 Gb high-quality

clean reads were obtained. De novo assembly of clean reads using Trinity software produced

107,750 unigenes after redundancy removal. The total assembled unigenes contain

165,562,488 nucleotides (approximately 165 Mb), with an average length of 1,536 bp, an N50

value of 2,200 bp, and GC content of 50.73% (Table 1). Within the 107,750 unigenes, 64,135

unigenes (59.52%) were longer than 1,000 bp, among which 11,720 unigenes (10.87%) were

longer than 3,000 bp. The distribution of unigenes length is shown in S1 Fig.

Benchmarking Universal Single-Copy Orthologs (BUSCO, https://gitlab.com/ezlab/busco)

was used to analyze the assembly results of each sample from 12 groups. It was found that the

completeness of all assemblies was > 89%; samples HS-1, HS-2, HS-3, and IS-1 were the best,

with> 96% completeness. After removing redundant reads, all samples had a completeness of

97%. Among these, 290 genes were complete, 4 were partially recovered (fragmented) and

only 9 were missing (S2 Fig). These results also showed that the de novo assembly of tran-

scripts from the 12 samples covered the majority of sugarcane genes, and the assembly results

were suitable for further analyses and experiments.

Transcriptome annotation and analysis of Differentially Expressed Genes

(DEGs)

Multiple databases were used to perform functional annotations of the transcripts obtained

from the assembly. Among all the databases used, 84,862 transcripts (78.76% of all transcripts)

Table 1. Overview of the assembled sugarcane transcriptome from healthy and Leifsonia xyli subsp.xyli infected

plant tissues.

All-Unigene type Result

Clean reads (Gb) 79.73

Total Number 107,750

Total Length (bp) 165,562,488

Mean length 1,536

N50 length 2,200

N70 length 1,611

N90 length 839

GC (%) 50.73

TransDecoder identified CDSs 72,733

https://doi.org/10.1371/journal.pone.0245613.t001
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were matched to NR, which showed the largest number of matched sequences, followed by

KEGG (65,178, 60.49%). In addition, 464,010 (59.41%), 60,914 (56.53%), and 8,709 (45.21%)

transcripts were matched to Pfam, Swiss-Prot, and the GO database, respectively (Fig 1A).

Fig 1. Annotation of the assembled sugarcane transcriptome. (a) Venn diagram of genes and predicted proteins aligned to

different databases; (b) Distribution of species aligned by the assembled sugarcane genes.

https://doi.org/10.1371/journal.pone.0245613.g001
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Further analysis of NR annotations showed that 52,010 (61.3%) were matched to Sorghum
bicolor, 11,459 to Zea mays (13.5%) and 4,273 to Setaria italica (5.04%) (Fig 1B). Of these three

species, S. bicolor and Z.mays are closely related to sugarcane, which further attests the quality

and reliability of the assembly.

In the four sample groups, namely, HL, IL, HS, and IS, approximately 77,204 transcripts

showed an FPKM�1, and at least 20% of transcripts in the corresponding sample groups had

FPKM�10 (Fig 2). The distribution of FPKM values was shown in S3 Fig. Pearson correlations

for the replicates were above 0.95 in HL, HS, IL, and IS samples (S4 Fig), indicating the repro-

ducibility of replicates. DeSeq software (http://www.bioconductor.org/packages/release/bioc/

html/DESeq.html) was used to analyze the differential expression of transcripts among the

experimental groups. A large number of DEGs was identified in the Lxx-infected leaves

(11,802; 7,721 up-regulated and 4,081 down-regulated) and stalks (9,325; 4,266 up-regulated

and 5,059 down-regulated), compared to the corresponding tissues from healthy plants. In the

leaves, about two-third of the DEGs were up-regulated while in the stalk more DEGs were

down-regulated. To identify important DEGs among different groups, we applied filters to

obtain DEGs with |Log2FC|�1, and an average FPKM value�10.

Functional analysis

Functional analysis was performed to identify the enriched GO terms and KEGG pathways

associated with DEGs (FPKM>10) in sugarcane affected by RSD. Among the significant

GO terms (Fig 3), 69 genes were involved in “metal ion binding” (GO: 0046872), 12 genes

were related to “DNA binding transcription factor activity” (GO: 0003700), and 15 genes

were enriched for “peroxidase activity” (GO: 0004601). Next, a bubble plot was used to

identify the significant KEGG pathways related to DGEs (Fig 4), and the result showed that

104 DEGs were involved in “RNA transport” (ko03013), which was the most significant

Fig 2. Heat map of all transcripts of (FPKM>1) (a) sugarcane leaves; (b) sugarcane stalk.

https://doi.org/10.1371/journal.pone.0245613.g002
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one. Interestingly, 23 DEGs were found involved in “photosynthesis” (ko00195) and “car-

bon fixation in photosynthetic organisms” (ko00710). Besides, 73 DEGs were found to be

involved in the pathways linked to “plant-pathogen interaction” (ko04626). In addition,

plant hormone-related pathways such as “flavonoid biosynthesis” (ko00941; 17 DEGs),

“diterpenoid biosynthesis” (ko00904; 8 DEGs), “phenylpropanoid biosynthesis” (ko00940;

53 DEGs) and “brassinosteroid biosynthesis” (ko00905; 3 DEGs) were also found to be

involved in Lxx infection.

Sugarcane genes in response to Lxx
The DEGs (FPKM>10) in different functional categories that might be related to sugarcane

in response to Lxx, such as photosynthesis, phytohormone biosynthesis and metabolism,

secondary metabolism related proteins, transcription factors, pathogenesis-related (PR)

proteins and some other proteins were analyzed, and the data of these gene families are

shown in Fig 5, including the number of genes identified and those involved in various met-

abolic pathways.

Fig 3. GO enrichment analysis of DEGs (FPKM> = 10) in Lxx-infected and healthy sugarcane. The DEGs functions are displayed with respect to

their statistical significance (Q value< 0.05). “Term candidate gene num” means the number of genes enriched in each GO term category.

https://doi.org/10.1371/journal.pone.0245613.g003

PLOS ONE A transcriptomic analysis of sugarcane response to Lxx

PLOS ONE | https://doi.org/10.1371/journal.pone.0245613 February 2, 2021 8 / 19

https://doi.org/10.1371/journal.pone.0245613.g003
https://doi.org/10.1371/journal.pone.0245613


Photosynthesis-related genes. It was found that, with Lxx infection, the activity of 51

photosynthesis-related DEGs in leaves (33 up-regulated, 18 down-regulated) and 8 in stalks

(5 up-regulated, 3 down-regulated) were altered. However, there were no common photo-

synthesis-related DEGs present in both leaves and stalks (S2 File; Fig 5). In Ko00195, which

is a photosynthesis-related pathway, the genes encoding PSI (PsaB, unigene8780), PSII

(PsbH, unigene1470), F-type ATPase (alpha subunit, CL2043.Contig6), and cytochrome

b6-f complex (PetN, unigene23696) were all up-regulated, whereas the genes encoding pho-

tosynthetic electron transport proteins (PetH, CL946.Contig3, and CL946.Contig5) were

down-regulated in the leaves. In another pathway related to photosynthesis, Ko00196, the

genes encoding antenna proteins (e.g., CL1486.Contig3) were also down-regulated in the

leaves. However, these DEGs were not detected in stalks (Fig 5).

Further analysis showed that, out of the 51 DEGs from leaves, 45 were related to chloro-

plasts (Fig 5). Three chlorophyll-related DEGs were detected in the Lxx-infected leaves.

Among them, CL1486.Contig3, which was annotated as a light-harvesting protein com-

plex, exhibited down-regulated gene expression. The other two genes, CL5309.Contig2

and unigene8780, however, up-regulated. Following Lxx infection, the expression of RuBP
(Ribulose bisphosphate), a key enzyme in photosynthesis, was down-regulated in the

leaves.

Fig 4. KEGG enrichment analysis of the DEGs (FPKM> = 10) in Lxx-infected and healthy sugarcane. Rich Ratio, the ratio of the number of genes

annotated to an entry in the selected gene set to the total number of genes annotated to the entry in this species, Rich Ratio = Candidate Gene Num /

Gene Num; Bubble size represents the number of genes that are annotated on a KEGG Pathway, color represents enrichment Qvalue, and darker color

represents smaller Qvalue lighter color represents higher Qvalue.

https://doi.org/10.1371/journal.pone.0245613.g004
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Signaling pathways in plant-pathogen interactions. In Lxx-infected plants, 5% of the

total DEGs were found to be involved in the plant-pathogen interaction pathway (KO04626)

with 35 and 38 DEGs expressing in the leaves and stalks (S2 File; Fig 5), respectively. No com-

mon DEGs between leaves and stalks were detected. Overall, most of the plant-pathogen inter-

actions DEGs encode calcium-dependent protein kinases (CDPKs), pathogenesis-related (PR)

proteins, and defense-related TFs. It was found that 48 CDPK-related genes were differentially

expressed, with 23 DEGs in the leaves and 25 in the stalks, which comprise 65.75% of DEGs in

the plant-pathogen interaction pathway (Ko04626) (S2 File; Fig 5). PR proteins are closely

Fig 5. Circular map of crucial genes in response to Leifsonia xyli subsp. xyli. The inside and outside of the cyan coils represent the gene IDs of DEGs;

the corresponding middle circle and the innermost circle represent the gene expression in leaves and stems respectively; the red one represents the up-

regulation, and the green one represents the down-regulation. The numbers 1, 2, 3, 4, 5 represent photosynthesis, plant disease interactions, hormone

and secondary metabolism, transcription factors, and other genes (genes related phosphorylated, cell walls and ABC transports), respectively. The

corresponding green and blue colors represent leaves and stems, respectively.

https://doi.org/10.1371/journal.pone.0245613.g005
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linked to the induced resistance in plants. Seven DEGs identified were found to be PR proteins

in response to Lxx infection. Interestingly, most of these DEGs (6) were found in the stalks

and down-regulated. In addition, two genes of pathogen-associated molecular patterns

(PAMPs) were found in the leaves. It was also found that some ZFP (Zinc Finger Protein) and

NBS-LRR (Nucleotide binding site-leucine-rich repeats) genes, which had been reported as

disease resistance genes, were up-regulated in the Lxx-infected sugarcane. Besides, heat shock

proteins and transcription factors were also found to be involved in the sugarcane-Lxx
interactions.

Genes related to phytohormone and secondary metabolism. It was found that as many

as 167 DEGs in Lxx-infected plants were related to phytohormone and secondary metabolism

(S2 File). Among these DEGs, 102 genes were from the leaves, 68 from the stalks, and 3 were

present in both. In this analysis, 38 DEGs, including 27 in the leaves and 12 in the stalks, are

involved in the phytohormone signal transduction pathway (Ko04075). The CL1615.Contig7

gene is particularly interesting because it showed differential expression in both leaves and

stalks, but with opposite trends. Its expression was up-regulated 1.27-fold in the leaves and

down-regulated 1.05-fold in the stalks (Fig 5). Functional annotation of CL1615.Contig7 indi-

cated that it is a gene encoding SRK2, a Ser/Thr receptor kinase involved in plant development

and defense. The DEGs in the phytohormone signal transduction and metabolism pathway

(Ko04075) are mainly involved in the biosynthesis of auxin, gibberellin (GA), ethylene (ET),

abscisic acid (ABA) and jasmonic acid (JA) (S2 File). Eighteen percent of all the phytohor-

mone-related DEGs identified in response to Lxx infection were gibberellin-related and 6 of

them were in the leaves and 1 in the stalks (S2 File; Fig 5). The negative regulator of GA signal-

ing, DELLA (CL5565.Contig1, CL5565.Contig2, and CL11925.Contig5) [47] was up-regulated,

whereas GID1 (GA-insensitive dwarf 1) (CL1271.Contig6 and CL1271.Contig12) [48] that

encodes GA receptors, was down-regulated (Fig 5). Of the other phytohormone-related DEGs,

6 genes were found to encode auxin-related proteins, including auxin responsive factors

(ARFs), indoleacetic acid-related proteins (IAAs), and auxin-induced proteins, of which 5

were up-regulated and 1 down-regulated. Among the other phytohormone-related DEGs, 5

genes were related to ET, and all were up-regulated. PYR/PYL, the negative regulators in

upstream ABA signal transduction [49], was found up-regulated during Lxx infection in sugar-

cane. It was also found that there were 5 DEGs that were related to JA biosynthesis, among

which only one, in the stalk, was up-regulated. In leaves, except for the CL3369.Contig10 gene,

which was down-regulated, all the DEGs were up-regulated, includingMYC (CL9122.Con-

tig2), a central regulator in the JA responsive pathway [50].

In Lxx-infected sugarcane, 16 flavonoid-related DEGs were found in the leaves, and two in

the stalks; also, 5 phenylalanine-related DEGs were observed in the leaves and one in the stalks

(Fig 5). In leaves, the expression of these DEGs was mainly up-regulated. The expressions of

PAL (CL514.Contig17, CL514.Contig28), 4CL (CL4056.Contig2, CL12037.Contig4), CHS
(CL361.Contig1, CL361.Contig6), and CHI (CL10487.Contig3, CL11236.Contig1) were all up-

regulated in leaves.

Regulation by transcription factors. It was found that the DEGs related to TFs were

mainly AP2/EREBP, MYB, WRKY, and MAPK transcription factors (S2 File). In addition, the

MADS-box and NAC transcription factors in sugarcane were also differentially expressed in

Lxx-infected plants. In Lxx infected plants 23 AP2/EREBP transcription factor genes were dif-

ferentially expressed, comprising 37.1% of all transcription factor DEGs found in this study.

There were 14 AP2/EREBP transcription factor-encoding DEGs in the leaves, 11 in the stalks,

and 2 in the both (unigene2858_All and unigene17492_All). Besides, differential expression of

7 MYBs and 5 WRKY genes were found associated with Lxx-infection in sugarcane (S2 File).

Analysis showed that upon Lxx infection, 6MAPK and 3MADS-box genes were differentially
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expressed in the leaves and only 1 each ofMAPK andMADS-box genes in the stalks. The

NAC1 (unigene7159_All) was up-regulated in stalks upon Lxx infection.

Other genes involved in Lxx stress responses. A total of 36 protein phosphorylation/

dephosphorylation genes in sugarcane were differentially expressed in response to Lxx infection

(S2 File; Fig 5). It was also found that the genes related to phagosomes and lysosomes had altered

expression levels (Fig 5). Following Lxx infection, many genes involved in cell wall strengthening

were upregulated (Fig 5), including 6 cellulose synthase (CesA) genes, all of which were found in

stalks. In addition, 9 glycosyltransferases (GTs) in stalks and 1 GT in the leaves were up-regulated,

as well as pectin acetylesterase and polygalacturonate 4-alpha-galacturonosyltransferase

(GAUT1), both of them are related to pectin biosynthesis. Pectinesterase (PME) genes, which are

related to pectin degradation, were down-regulated.

RT-qPCR

RT-qPCR was used to validate gene expression in healthy and Lxx-infected sugarcane in this

study. Nine transcripts were randomly selected for RT-qPCR with three technical replicates.

These genes are specifically involved in photosynthesis (Unigene11031_All, Unige-

ne30239_All), plant and pathogen interaction (Unigene10678_All, Unigene41543_All), phyto-

hormones (Unigene7405_All, Unigene115_All), cell walls (Unigene36011_All, Unigene

39498_All), and secondary metabolism (Unigene34604_All). The qRT-PCR results (Fig 6)

showed similar expression patterns compared to RNA-Seq quantification results. Overall, the

up-down expression trend of DEGs was basically consistent both in qRT-PCR and RNA-seq

results, indicating the qRT-PCR results support RNA-Seq quantification results.

Discussion

In this study, paired-end sequencing technologies were used to investigate the molecular

changes occurring at gene activity level in sugarcane leaves and stalks in response to Lxx

Fig 6. qRT-PCR validation for 9 candidate transcripts. Error bar represents the standard deviation.

https://doi.org/10.1371/journal.pone.0245613.g006
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infection. This is the first transcriptome study on different RSD-infected sugarcane organs

using the deep sequencing technology. Analysis of DEGs (FPKM>10) between HL and IL and

between HS and IS has identified 839 DEGs between HL and IL and 610 DEGs between HS

and IS with only 21 being common across both comparisons. Stalks and leaves are structurally

and functionally very different organs and not surprisingly their gene expression profiles, as

shown in this study, are considerably different.

It was found that many DEGs in infected plants are related to sugarcane photosynthesis.

Most of the photosynthetic reactions take place in chloroplast, and the number of chloroplast-

related DEGs discovered in the diseased plants indicates that Lxx infection significantly

affected chloroplasts. The majority of these chloroplast-related DEGs were chloroplast mem-

brane genes and RuBPcase. The chloroplasts in RSD-infected leaves were deformed, most chlo-

roplasts grana were disappeared, and outer and inner membrane of chloroplasts were

deformed [15]. These results [15, 23] are consistent with the down-regulation of chloroplast

gene transcription observed in this study. Collectively, these findings suggest that Lxx infection

severely disrupts chloroplast function, which in turn affects plant growth. Under pathogen

stress, antioxidant substances could help maintain the production and availability of adenosine

triphosphate (ATP) and nicotinamide adenine dinucleotide phosphate (NADPH) by preserv-

ing photosystem function to fix carbon [51]. Upon Lxx infection, the genes encoding POD,

SOD and CAT were up-regulated, indicating plant’s defense to maintain photosynthesis to

some extent.

During plant–pathogen interactions, plants trigger a series of defense mechanisms to pro-

tect themselves, which include changes in antioxidant enzymes, increase in PR proteins, and

phytoalexin biosynthesis [52]. Calcium-dependent Protein Kinases (CDPKs), involved in the

regulation of a myriad of growth and developmental process, signal transduction and patho-

genesis, exist widely in eukaryotic cells [53, 54]. In this study, the expression of CDPKs was

altered considerably, indicating that CDPKs play critical roles in the signaling transduction of

defense responses to Lxx infection in sugarcane. This was evident from the increased expres-

sion of some of the disease resistance genes such as ZFP and NBS-LRR observed in the present

study.

The role of plant hormones salicylic acid (SA), JA, and ET in plant defense responses to

pathogens has been extensively studied. Ethylene is involved in regulating plant growth and

development, as well as plant responses to biotic and abiotic stresses. Abscisic acid also plays a

role in plant-pathogen interactions, mostly as a negative regulator of plant disease-resistance

[55, 56]. In this study PYR and PYL genes, the negative regulators acting upstream in ABA sig-

nal transduction [49], were found up-regulated during Lxx infection. This is possibly a compo-

nent of defense strategy operating in sugarcane in response to Lxx infection. However,

generalized stunting of plant growth is the most prominent visual symptom of RSD and GA is

a major regulator of sugarcane growth and development [57]. In Lxx-infected sugarcane, up-

regulation of DELLA, the negative regulator GA response, and down-regulation of GID1,

which facilitates DELLA protein degradation, were observed. Lxx infection-induced inhibition

of GA action thus may be a key growth regulatory mechanism in RSD affected plants as

observed in other crops infected with different pathogens [58, 59].

Plant secondary metabolites play roles in transducing environmental and biotic stress sig-

nals. Many DEGs detected here are involved in the biosynthesis of secondary metabolites,

mainly flavonoids and phenylalanine biosynthesis. Phenylalanine is converted into trans-cin-

namic acid, catalyzed by L-phenylalanine ammonia-lyase (PAL), which is then converted into

4-hydroxycinnamic acid by cinnamic acid-4-hydroxylase (C4H) and then to 4-coumaroyl-

CoA catalyzed by 4-coumaroyl-CoA ligase (4CL), which is used to synthesize alkaloids, lignin,

and flavonoids by chalcone synthase (CHS) and chalcone isomerase (CHI) [60]. In this study,
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the expression of the PAL, 4CL, CHS, and CHI genes were upregulated during Lxx infection,

suggesting that sugarcane responded to Lxx infection by increasing the production of polyphe-

nols and other related secondary metabolites with antibacterial properties.

In response to pathogen infection, plants activate numerous transcription factors that are

associated with various plant defense strategies such as induced cell death, growth reduction to

conserve energy, anatomical modifications and production of antimicrobial agents [61].

Among the major plant transcription factors, APETALA2/ethylene-responsive element bind-

ing proteins (AP2/EREBP) form an ancient transcription factor superfamily, of which the AP2

transcription factors regulate reproductive development, while EREBP transcription factors

elicit ET and ABA and stress responses [62, 63]. MYB transcription factors are involved in

SAR and HR during defense responses [64] while transcription factors WRKY, MAPKs, NAC

and MYB were implicated in both biotic and abiotic stress responses and regulation of growth

and development [64–69]. In our study, AP2/EREBP, NAC, WRKY, MYB and MAPK showed

remarkable differential expression in Lxx-infected plants, suggesting the activation of gene net-

works controlling pathogenesis, disease resistance and growth and development, which tallies

well with the growth variation following Lxx infection.

Protein phosphorylation serves as a molecular switch in cellular signal transduction and the

regulation of enzyme activity [70]. In this study, many DEGs are involved in protein phosphor-

ylation, indicating the large variation in protein phosphorylation/dephosphorylation occurring

in Lxx-infected sugarcane. For instance, DEGs related to phagosomes and lysosomes were

detected, which suggests that sugarcane cells may be defending the infection of Lxx through

endocytosis. It is well-known that plant cell walls serve as the first physical barrier to pathogen

infection. A previous report has characterized the genomic islands in Lxx genome that produce

pectinase and cellulase involved in cell wall degradation [38] to initiate infection and to channel

nutrients from the host. In Lxx-infected sugarcane, pectinases and cellulases first degrade the

middle lamella and then gradually disintegrate the cell wall. The degraded cell walls with partial

deformation produced large amounts of debris that block the pit membrane in host xylem ves-

sels, causing xylem occlusion commonly noticed in RSD-affected sugarcane. This blockage

reduces the ability of sugarcane xylem vessels to transport nutrients and water, which exacerbate

plant growth inhibition. In our study, many DEGs identified in Lxx-infected plants were associ-

ated with sugarcane cell wall degradation and this effect was more pronounced in stalks [14].

The molecular mechanism(s) regulating the response to various pathogenic bacterial infections

may be similar among different crops as the biological processes underpinning growth and develop-

ment remain same across plant species. Common response of secondary metabolism was observed

in sugarcane duringAcidovorax avenae subsp. avenae [34] and Colletotrichum falcatum [35] infec-

tion. The activity of genes involved in these two important pathways was also found altered in this

study, suggesting the shared molecular response of sugarcane to diverse bacterial pathogenesis.

Conclusion

In conclusion, the present study has considerably advanced the molecular understanding of

RSD in sugarcane. Transcriptome sequencing of sugarcane leaves and stalks during Lxx infec-

tion identified a total of 107,750 unigenes, with nearly 60% of them were longer than 1,000 bp.

Gene expression analysis detected 38,513 transcripts representing both RSD-affected and

healthy plants studied. Functional analysis revealed that the DEGs are mainly involved in

“metabolic pathways”, “signal transduction”, and “plant–pathogen interactions”. Lxx infection

caused significant variation in transcript abundance associated with chloroplast function. Lxx
infection inhibited gibberellin response through up-regulation of DELLA and down-regula-

tion of GID1 proteins. The alteration of GA response and the chloroplast-associated gene
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expression may account for the majority of growth retardation observed in RSD-affected

plants. A number of DEGs were associated with plant-pathogen interactions such as those

involved in secondary metabolism, protein phosphorylation/dephosphorylation, cell wall bio-

synthesis, and phagosomes, implicating an active defense response to Lxx infection. A better

understanding of the molecular and physiological basis of RSD pathogenesis-related responses

will help develop tools and technologies for producing RSD-resistant sugarcane varieties

through conventional and/or molecular breeding.
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