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Soybean mosaic virus (SMV) is one of the most devastating pathogens that cost
huge economic losses in soybean production worldwide. Due to the duplicated
genome, clustered and highly homologous nature of R genes, as well as recalcitrant
to transformation, soybean disease resistance studies is largely lagging compared with
other diploid crops. In this review, we focus on the major advances that have been
made in identifying both the virulence/avirulence factors of SMV and mapping of SMV
resistant genes in soybean. In addition, we review the progress in dissecting the SMV
resistant signaling pathways in soybean, with a special focus on the studies using
virus-induced gene silencing. The soybean genome has been fully sequenced, and the
increasingly saturated SNP markers have been identified. With these resources available
together with the newly developed genome editing tools, and more efficient soybean
transformation system, cloning SMV resistant genes, and ultimately generating cultivars
with a broader spectrum resistance to SMV are becoming more realistic than ever.
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OVERVIEW

Soybean [Glycine max L. (Merrill)] is one of the most important sources of edible oil and
proteins. Pathogen infections cause annual yield loss of $4 billion dollars in the United
States alone1. Among these pathogens, Soybean mosaic virus (SMV) is the most prevalent and
destructive viral pathogen in soybean production worldwide (Hill and Whitham, 2014). SMV
is a member of the genus Potyvirus in the Potyviridae family and its genome is a single-
stranded positive-sense RNA, encoding at least 11 proteins (Figure 1): potyvirus 1 (P1), helper-
component proteinase (HC-Pro), potyvirus 3 (P3), PIPO, 6 kinase 1(6K1), cylindrical inclusion
(CI), 6 kinase 2 (6K2), nuclear inclusion a-viral protein genome-linked (NIa-VPg), nuclear
inclusion a-protease (NIa-Pro), nuclear inclusion b (Nib), and coat protein (CP) (Eggenberger
et al., 1989; Jayaram et al., 1992; Wen and Hajimorad, 2010). Numerous SMV isolates have
been classified into seven distinct strains (G1 to G7) in the United States based on their
differential responses on susceptible and resistant soybean cultivars (Cho and Goodman, 1979,
Table 1), while in China, 21 strains (SC1–SC21) have been classified (Wang et al., 2003;
Guo et al., 2005; Li et al., 2010). The relationship between G strains in the United States
and SC strains in China has not been fully established yet. SMV resistance is conditioned by
complex gene families. Multiple independent resistance loci with different SMV strain specificities
have been identified, and most of them are non-Toll interleukin receptor- nucleotide binding

1http://aes.missouri.edu/delta/research/soyloss.stm
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site-leucine rich repeat (TIR-NBS-LRR) type R genes (Hill and
Whitham, 2014). So far, three independent loci, Rsv1, Rsv3, and
Rsv4 in the United States and many Rsc loci in China, have been
reported for SMV resistance. However, none of these genes has
been cloned and their identities remain to be revealed.

MAPPING OF SMV RESISTANT LOCI

Complex Nature of Rsv1 Loci in Soybean
Rsv1 was originally identified in the soybean line PI 96983
(Kiihl and Hartwig, 1979), and it confers extreme resistance
(ER) to SMV-G1 through G6 but not to SMV-G7 (Chen
et al., 1991; Hajimorad and Hill, 2001; Table 1). Multiple Rsv1
alleles including Rsv1-y, Rsv1-m, Rsv1-t, Rsv1-k, and Rsv1-r have
been identified from different soybean cultivars with differential
reactions to SMV G1–G7 strains (Chen et al., 2001). Rsv1 was
initially mapped to soybean linkage group F on chromosome
13 (Yu et al., 1994) and two classes of NBS-LRR sequences
(classes b and j) were identified in this resistance gene cluster
(Yu et al., 1996). A large family of homologous sequences of
the class j Nucleotide biinding site-leucine rich repeat (NBS-
LRRs) clustered at or near the Rsv1 locus (Jeong et al., 2001;
Gore et al., 2002; Peñuela et al., 2002). Six candidate genes
(1eG30, 5gG3, 3gG2, 1eG15, 6gG9, and 1gG4) in PI96983 were
mapped to a tightly clustered region near Rsv1, three of them
(3gG2, 5gG3, and 6gG9) were completely cloned and sequenced
(GenBank accession no. AY518517–AY518519). Among the three
genes, 3gG2 was found to be a strong candidate for Rsv1
(Hayes et al., 2004). When 3gG2, 5gG3, and 6gG93 were
simultaneously silenced using Bean pod mottle virus -induced
gene silencing (BPMV-VIGS), the Rsv1-mediated resistance was
compromised, confirming that one or more of these three genes
is indeed the Rsv1 (Zhang et al., 2012). Because, the sequence
identities of these three R genes are extremely high along the
entire cDNAs, it is impossible to differentiate which one(s) is
Rsv1.

Several studies indicate that two or more related non-
TIR-NBS-LRR gene products are likely involved in the allelic
response of several Rsv1-containing lines to SMV (Hayes
et al., 2004; Wen et al., 2013; Yang et al., 2013). Wen et al.
(2013) generated two soybean lines, L800 and L943, derived
from crosses between PI96983 (Rsv1) and Lee68 (rsv1) with

distinct recombination events within the Rsv1 locus. The
L800 line contains a single PI96983-derived member 3gG2,
confers ER against SMV-N (an avirulent isolate of G2 strain).
In contrast, the line L943 lacks 3gG2, but contains a suite
of five other NBS-LRR genes allows limited replication of
SMV-N at the inoculation site. Domain swapping experiments
between SMV-N and SMV-G7/SMV-G7d demonstrate that at
least two distinct resistance genes at the Rsv1 locus, probably
belonging to the NBS-LRR class, mediate recognition of HC-
Pro and P3, respectively (Khatabi et al., 2013; Yang et al.,
2013).

Rsv3 Is Most Likely a NBS-LRR Type
Resistant Gene
Rsv3 was originated from “L29,” a ‘Williams’ isoline derived from
Hardee (Bernard et al., 1991; Gunduz et al., 2000). The diverse
soybean cultivars carrying Rsv3 alleles condition resistance to
SMV G5 through G7, but not G1 through G4 (Jeong et al.,
2002; Table 1). Rsv3 locus was firstly mapped between markers
A519F/R and M3Satt on MLG B2 (chromosome 14) by Jeong
et al. (2002), and was subsequently mapped on MLG-B2 with a
distance of 1.5 cM from Sat_424 and 2.0 cM from Satt726 (Shi
et al., 2008). The 154 kbp interval encompassing Rsv3 contains
a family of closely related coiled-coil NBS-LRR (CC-NBS-LRR)
genes, implying that the Rsv3 gene most likely encodes a member
of this gene family (Suh et al., 2011).

Rsv4 Likely Belongs to a Novel Class of
Resistance Genes
Rsv4 confer resistance to all 7 SMV strains (Chen et al., 1993;
Ma et al., 1995). It was identified in soybean cultivars V94-
5152 and mapped to a 0.4 cM interval between the proximal
marker Rat2 and the distal marker S6ac, in a ∼94 kb haplotype
block on soybean chromosome 2 (MLG D1b++W) (Hayes et al.,
2000; Saghai Maroof et al., 2010; Ilut et al., 2016). A haplotype
phylogenetic analysis of this region suggests that the Rsv4 locus
in G. max is recently introgressed from G. soja (Ilut et al., 2016).
Interestingly, this interval did not contain any NB-LRR type R
genes. Instead, several genes encoding predicted transcription
factors and unknown proteins are present within the region,
suggesting that Rsv4 most likely belongs to a novel class of
resistance gene (Hwang et al., 2006; Ilut et al., 2016).

FIGURE 1 | The genome organization of Soybean mosaic virus. The diagram was drawn based on the nucleotide sequence of SMV N strain (Eggenberger
et al., 1989). The colored boxes represent 11 proteins encoded by SMV genome. The black lines at the 5′ and 3′ ends represent 5′ and 3′ untranslated region (UTR).
The horizontal arrow and the star indicate the start and stop codons of the SMV polypeptide, respectively. The numbers above the vertical lines indicate the start
positions of the SMV proteins. The sizes of the SMV proteins (the numbers of amino acids) are indicated by the blue numbers below the protein names. The PIPO
embedded in the P3 is shown by the overlapping dark blue box with the start and stop positions labeled, respectively. The diagram is not drawn in scale.
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TABLE 1 | Summary of soybean-SMV studies.

Resistant
locus

Chromosome location Type of resistance gene Strain specificity Avirulent factor(s)

Rsvl 13 (Yu et al., 1994;
Gore et al., 2002)

NBS-LRR type
(Yu et al., 1994, 1996;
Khatabi et al., 2013;

Yang et al., 2013)

Resistant to: Gl–G4
susceptable to: G5–G7

(Chen et al., 1991)

He-Pro and P3
(Eggenberger et al., 2008;

Hajimorad et al., 2008)

Cl (Chowda-Reddy et al., 2011b;
Wen et al., 2011)

P3 (Chowda-Reddy et al., 2011b)

Rsv3 14 (Jeong et al., 2002;
Shi et al., 2008)

CC- NBS-LRR type
(Suh et al., 2011)

Resistant to: G5–G7
susceptable to: G1–G4
(Jeong et al., 2002)<

Cl (Seo et al., 2009;
Zhang et al., 2009a;

Chowda-Reddy et al., 2011b)
P3 (Chowda-Reddy et al., 2011a,b)

Rsv4 2 (Hayes et al., 2000;
Saghai Maroof et al., 2010)

Novel class
(Ilut et al., 2016)

Resistantto: Gl–G7 (Chen et al.,
1993; Ma et al., 1995)

P3 (Chowda-Reddy et al., 2011a,b;
Khatabi et al., 2012; Wang et al., 2015)

THE OTHER SMV RESISTANT GENES

Many Rsc loci have been identified. The resistance genes
Rsc-8 and Rsc-9, which confer resistance to strains SC-8
and SC-9 respectively, have been mapped to the soybean
chromosomes 2 (MLG D1b+W) (Wang et al., 2004). The
interval of Rsc-8 was estimated to be 200 kb and contains
17 putative genes and five of them, Glyma02g13310, 13320,
13400, 13460, and 13470 could be the candidates of Rsc-8
based on their predicted functions and expression patterns
(Wang et al., 2011). The Rsc-15 resistant gene was mapped
between Sat_213 and Sat_286 with distances of 8.0 and 6.6
cM to the respective flanking markers on chromosome 6 (Yang
and Gai, 2011). The resistance gene Rsc-7 in the soybean
cultivar Kefeng No.1 was mapped to a 2.65 mega-base (Mb)
region on soybean chromosome 2 (Fu et al., 2006) and was
subsequently narrowed down to a 158 kilo-base (Kb) region
(Yan et al., 2015). Within 15 candidate genes in the region,
one NBS-LRR type gene (Glyma02g13600), one HSP40 gene
(Glyma02g13520) and one serine carboxypeptidase-type gene
(Glyma02g13620) could be the candidates for Rsc-7. The allelic
relationship between the Rsv loci and the Rsc loci has yet to be
determined.

Despite numerous efforts, none of the SMV resistant genes
has been cloned and their identities remain to be identified.
This reflects the complex nature of the resistant genes in
palaeopolyploid soybean, in which 75% of the genes are present
in multiple copies (Schmutz et al., 2010). This statement is
reinforced by a recent finding that the soybean cyst nematode
(SCN) resistance mediated by the Rhg1 is conditioned by copy
number variation of a 31-kilobase segment, in which three
different novel genes are present (Cook et al., 2012). There are
1–3 copies of the 31-kilobase segment per haploid genome in
susceptible varieties, but 10 tandem copies in resistant varieties
(Cook et al., 2012). The presence of more copies of the 31-kb
segment in resistant varieties increases the expressions of this set
of the 3 genes and thus conferes the resistance (Cook et al., 2012,
2014).

IDENTIFICATION OF AVIRULENT
FACTORS IN DIFFERENT SMV STRAINS
THAT ARE SPECIFICALLY RECOGNIZED
BY DIFFERENT Rsv GENE PRODUCTS

Avirulent Factors for Rsv1
SMV isolates are classified into seven strains (G1–G7) based on
phenotypic reactions on a set of differential soybean cultivars
(Cho and Goodman, 1982). The modification of avirulence
factors of plant viruses by one or more amino acid substitutions
can convert avirulence to virulence on hosts containing resistance
genes and therefore, can be used as an approach to determine the
avirulence factor(s) of a specific resistant gene.

Rsv1, a single dominant resistance gene in soybean PI 96983
(Rsv1), confers ER against SMV-G1 through G6 but not to SMV-
G7 (Chen et al., 1991; Hajimorad and Hill, 2001; Table 1). SMV-
N (an avirulent isolate of strain G2) elicits ER whereas strain
SMV-G7 provokes a lethal systemic hypersensitive response
(LSHR) (Hajimorad et al., 2003; Hayes et al., 2004). SMV-G7d,
an evolved variant of SMV-G7 from lab, induces systemic
mosaic (Hajimorad et al., 2003). Serial passages of a large
population of the progeny in PI 96983 resulted in emergence
of a mutant population (vSMV-G7d), which can evade Rsv1-
mediated recognition and the putative amino acid changes that
potentially responsible for the mutant phenotype is initially
tentatively narrowed down to HC-Pro, coat protein, PI proteinase
or P3 (Hajimorad et al., 2003; Seo et al., 2011) and was later
mapped to P3 through domain swapping between the pSMV-
G7 and pSMV-G7d (Hajimorad et al., 2005). The amino acids
823, 953, and 1112 of the SMV-G7d are critical in evading of
Rsv1-mediated recognition (Hajimorad et al., 2005, 2006). By
generating a series of chimeras between SMV-G7 and SMV-
N in combination with site-directed mutagenesis, Eggenberger
et al. (2008) and Hajimorad et al. (2008) independently showed
that gain of virulence on Rsv1-genotype soybean by an avirulent
SMV strains requires concurrent mutations in both P3 and
HC-Pro and HC-Pro complementation of P3 is essential for
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SMV virulence on Rsv1-genotype soybean (Table 1). A key
virulence determinant of SMV on Rsv1-genotype soybeans that
resides at polyprotein codon 947 overlaps both P3 and a PIPO-
encoded codon. This raises the question of whether PIPO or
P3 is the virulence factor. Wen et al. (2011) confirmed that
amino acid changes in P3, and not the overlapping PIPO-
encoded protein, which is embedded in the P3 cistron, determine
virulence of SMV on Rsv1-genotype soybean. Chowda-Reddy
et al. (2011b) constructed a chimeric infectious clone of G7,
in which the N-ternimal part of CI was swapped with the
corresponding part of G2. Compared with wildtype G7, this
chimeric strain lost virulence on Rsv1-genotype plant but gained
infectivity on Rsv3-genotype plant, indicating an essential role of
CI for breaking down both Rsv1- and Rsv3-mediated resistance
(Chowda-Reddy et al., 2011b). Together, it appears that P3, HC-
Pro and possibly CI are virulent determinants for Rsv1-mediated
resistance (Table 1).

Avirulent Factors for Rsv3
It has been proven that cytoplasmic inclusion cistron (CI)
of SMV serves as a virulence and symptom determinant on
Rsv3-genotype soybean and a single amino acid substitution
in CI was found to be responsible for gain or loss of elicitor
function of CI (Seo et al., 2009; Zhang et al., 2009a). Analyses
of the chimeras by exchanging fragments between avirulent
SMV-G7 and the virulent SMV-N showed that both the N-
and C-terminal regions of the CI cistron are required for Rsv3-
mediated resistance and the N-terminal region of CI is also
involved in severe symptom induction in soybean (Zhang et al.,
2009a). In addition to CI, P3 has also been reported to play
an essential role in virulence determination on Rsv3-mediated
resistance (Chowda-Reddy et al., 2011a,b; Table 1).

Avirulent Factor for Rsv4
Gain of virulence analysis on soybean genotypes containing
Rsv4 genes showed that virulence on Rsv4 carrying cultivars was
consistently associated with Q1033K and G1054R substitutions
within P3 cistron, indicating that P3 is the SMV virulence
determinant on Rsv4 and one single nucleotide mutation in
the P3 protein is sufficient to compromise its elicitor function
(Chowda-Reddy et al., 2011b; Khatabi et al., 2012; Wang et al.,
2015). However, the sites involved in the virulence of SMV
on Rsv4-genotype soybean vary among strains (Wang et al.,
2015).

It is clear now that P3 plays essential roles in virulence
determination on Rsv1, Rsv3, and Rsv4 resistant loci, while CI
is required for virolence on Rsv1 and Rsv3 genotype soybean
plants (Chowda-Reddy et al., 2011a,b). These results imply that
avirulent proteins from SMV might interact with the soybean R
gene products at a converged point. This evolved interactions
sometimes could give SMV advantage in breaking resistance
conferred by different SMV resistant genes simply by mutations
within a single viral protein. On the other hand, since multiple
proteins are involved in virulence on different resistant loci,
concurrent mutantions in multiple proteins of SMV are required
to evade the resistance conferred by different SMV resistant
genes. The likelihood of such naturally occuurred concurrent

mutations in different viral proteins is low. Therefore, integration
of all three SMV resistant genes in a single elite soybean cultivar
may provide long-lasting resistance to SMV in soybean breeding
practice (Chowda-Reddy et al., 2011b).

GAIN OF VIRULENCE BY SMV ON A
RESISTANT SOYBEAN GENOTYPE
RESULTS IN FITNESS LOSS IN A
PREVIOUSLY SUSCEPTIBLE SOYBEAN
GENOTYPE

It seems that it is a common phenomenon that gain of virulence
mutation(s) by an avirulent SMV strain on a resistant genotype
soybean is associated with a relative fitness loss (reduced
pathogenicity or virulence) in a susceptible host (Khatabi
et al., 2013; Wang and Hajimorad, 2016). The majority of
experimentally evolved mutations that disrupt the avirulence
functions of SMV-N on Rsv1-genotype soybean also results
in mild symptoms and reduced virus accumulation, relative
to parental SMV-N, in Williams82 (rsv1), demonstrating that
gain of virulence by SMV on Rsv1-genotype soybean results
in fitness loss in a previously susceptible soybean genotype,
which is resulted from mutations in HC-Pro, and not in P3
(Khatabi et al., 2013; Wang and Hajimorad, 2016). It has
been also demonstrated that gain of virulence mutation(s) by
all avirulent viruses on Rsv4-genotype soybean is associated
with a relative fitness penalty for gaining virulence by an
avirulence strain (Wang and Hajimorad, 2016). Thus, it seems
that there is a cost for gaining virulence by an avirulence
strain.

THE SOYBEAN LINES CARRYING
MULTIPLE Rsv GENES DISPLAY
BROADER SPECTRUM OF RESISTANCE
AGAINST SMV

Soybean line PI486355 displays broad spectrum resistance to
various strains of SMV. Through genetic studies, Ma et al. (1995)
identified two independently inherited SMV resistant genes in
PI486355. One of the genes allelic to the Rsv1 locus (designated as
Rsv1-s) has dosage effect: the homozygotes conferring resistance
and the heterozygotes showing systemic necrosis to SMV-G7. The
other gene, which is epistatic to the Rsv1, confers resistance to
strains SMV-G1 through G7 and exhibits complete dominance
over Rsv1. The presence of this gene in PI486355 inhibits the
expression of the systemic necrosis conditioned by the Rsv1
alleles.

Soybean cultivar Columbia is resistant to all known SMV
strains G1-G7, except G4. Results from allelism tests demonstrate
that two genes independent of the Rsv1 locus are present in
Columbia, with one allelic to Rsv3 and the other allelic to none
of the known Rsv genes (Ma et al., 2002). Plants carrying both
genes were completely resistant to both G1 and G7, indicating
that the two genes interact in a complementary fashion (Ma et al.,
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2002). The resistance conditioned by these two genes is allele
dosage-dependent, plants heterozygous for either gene exhibiting
systemic necrosis or late susceptibility.

Tousan 140 and Hourei, two soybean accessions from
Japan, and J05, a accession from China, carry both Rsv1
and Rsv3 alleles and are resistant to SMV-G1 through
G7 (Gunduz et al., 2002; Zheng et al., 2006; Shi et al.,
2011).

These results indicate that integration of more than one
Rsv genes into one cultivar can confers a broader spectrum
of resistance against SMV. Therefore, pyramiding multiple Rsv
genes in elite soybean cultivars could be one of the best
approaches to generate durable SMV resistance with broader
spectrum.

THE HOST FACTORS THAT ARE
INVOLVED IN SMV RESISTANCE

The Host Components in R
Gene-Mediated Defense Responses Are
Conserved in Rsv1-Mediated ER Against
SMV
The key components in R gene mediated disease resistant
signaling pathway have been identified in model plant
Arabidopsis, among which, RAR1 (Required for Mla 12
Resistance), SGT1(Suppressor of G2 Allele of Skp1) and HSP90
(Heat Shock Protein 90) are the most important ones (Belkhadir
et al., 2004). Using BPMV-VIGS, it has been shown that
Rsv1-mediated ER against SMV in soybean requires RAR1
and SGT1 but not GmHSP90, suggesting although soybean
defense signaling pathways recruit structurally conserved
components, they have distinct requirements for specific
proteins (Fu et al., 2009). However, Zhang et al. (2012) showed
that silencing GmHSP90 using BPMV-VIGS compromised
Rsv1-mediated resistance. In addition, silencing GmEDR1
(Enhanced Disease Resistance 1), GmEDS1 (Enhanced Disease
Susceptibility 1), GmHSP90, GmJAR1 (Jasmonic Responsive 1),
GmPAD4 (Phytoalexin Deficient 4), and two genes encoding
WRKY transcription factors (WRKY6 and WRKY 30), all
of which are involved in defense pathways in model plant
Arabidopsis, Rsv1-mediated ER was also compromised (Table 2).
These results suggest that the host components required for R
gene-mediated resistant signaling pathways are conserved across
plant species.

Conserved but Divergent Roles of MAPK
Signaling Pathway in SMV Resistance
Mitogen-activated protein kinase (MAPK) cascades play
important roles in disease resistance (Meng and Zhang, 2013).
The function of MAPK signaling pathways in disease resistance
was investigated in soybean using BPMV-VIGS (Liu et al., 2011,
2014, 2015). Among the plants silenced for multiple genes
in MAPK pathway, the plants silenced for the GmMAPK4
and GmMAPK6 homologs displayed strong phenotypes of
activated defense responses (Liu et al., 2011, 2014). Consistent

with the activated defense response phenotypes, these plants
were more resistant to SMV compared with vector control
plants (Liu et al., 2011, 2014), indicating that both genes play
critical negative roles in basal resistance or PAMP-triggered
immunity (PTI) in soybean. The constitutively activated
defense responses has been reported for mpk4 mutant in
Arabidopsis (Petersen et al., 2000) and the positive role of
MPK6 in defense responses is well-documented (Meng and
Zhang, 2013). However, the negative role of MAKP6 homologs
has not been reported previously (Liu et al., 2014), indicating
that both conserved and distinct functions of MAPK signaling
pathways in immunity are observed between Arabidopsis and
soybean.

Identifications of the Other Host Factors
that Play Critical Roles in SMV
Resistance
Numerous host factors participate in defense responses in
plants. Identification of these factors may facilitate rationale
design of novel resistant strategies. Recently, it has been shown
that silencing GmHSP40.1, a soybean nuclear-localized type-III
DnaJ domain-containing HSP40, results in increased infectivity
of SMV, indicating a positive role of GmHSP40.1 in basal
resistance (Liu and Whitham, 2013). A subset of type 2C protein
phophatase (PP2C) gene family, which participate ABA signaling
pathway, is specifically up-regulated during Rsv3-mediated
resistance (Seo et al., 2014). Synchronized overexpression of
GmPP2C3a using SMV-G7H vector inhibits virus cell-to-cell
movement mediated by callose deposition in an ABA signaling-
dependent manner, indicating that GmPP2C3a functions as a
key regulator of Rsv3-mediated resistance (Seo et al., 2014).
An ortholog of Arabidopsis K+ weak channel encoding gene
AKT2, was significantly induced by SMV inoculation in the
SMV highly resistant genotype, but not in the susceptible
genotype (Zhou et al., 2014). Overexpression of GmAKT2 not
only significantly increased K+ concentrations in young leaves
but also significantly enhanced the resistance against SMV,
indicating alteration of K+ transporter expression could be a
novel molecular approach for enhancing SMV resistance in
soybean (Zhou et al., 2014). Molybdenum cofactor (Moco)
is required for the activities of Moco-dependant enzymes.
Cofactor for nitrate reductase and xanthine dehydrogenase
(Cnx1) is known to be involved in the biosynthesis of
Moco in plants. Soybean plants transformed with Cnx1
enhanced the enzyme activities of nitrate reductase (NR) and
aldehydeoxidase (AO) and resulted in an enhanced resistance
against various strains of SMV (Zhou et al., 2015). The
differentially expressed genes in Rsv1 genotype in response
to G7 infection have been identified (Chen et al., 2016a).
Knocking down one of the identified genes, the eukaryotic
translation initiation factor 5A (eIF5A), diminished the LSHR
and enhanced viral accumulation, suggesting an essential role
of eIF5A in the Rsv1-mediated LSHR signaling pathway.
Eukaryotic elongation factor 1A (eEF1A) is a well-known
host factor in viral pathogenesis. Recently, Luan et al. (2016)
showed that silencing GmeEF1A inhibits accumulation of
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TABLE 2 | Host factors participate in SMV resistance.

Host factors Biological functions Type of resistance Positive or negative Roles Reference

GmHSP90, GmRARl Defense signaling Rsvl-mediated Positive Fu et al., 2009;

GmSGTl, GmEDSl,
GmEDRl, GmJARl,

Zhang et al., 2012

GmPAD4, GmWRKY6,
GmWRKY30

GmMPK4 Defense signaling Basal Negative Liu et al., 2011

GmMPK6 Defense signaling Basal Positive/negative Liu et al., 2014

GmHSP40.1 Co-chaperone Basal Positive Liu and Whitham, 2013

GmPP2C ABA signaling Rsv3-mediated Positive Seo et al., 2014

GmAKT2 K+ channel Basal Positive Zhou et al., 2014

GmCNXl Moco biosynthesis Basal Positive Zhou et al., 2015

GmelF5A Translation initiation flsi/3-mediated Positive Chen et al., 2016a

GmeEFla Translation elongation Basal Negative Luan et al., 2016

GmAGOl Gene silencing Silencing-mediated Positive Chen et al., 2015

GmSGS3 Gene silencing Silencing-mediated Positive Chen et al., 2015

SMV and P3 protein of SMV interacts with GmeEF1A to
facilitate its nuclear localization and therefore, promotes SMV
pathogenicity.

SMALL RNA PATHWAYS IN SMV
RESISTANCE

miRNAs Participate in SMV Resistance
Small RNAs play a fundamental role in anti-viral defense.
Three miRNAs, miR160, miR393 and miR1510, which have
been previously shown to be involved in disease resistance
in other plant species, have been identified as SMV-inducible
miRNAs through small RNA sequencing approach (Yin et al.,
2013), implying that these three miRNAs might play roles in
SMV resistance. Chen et al. (2015) recently showed that the
expression of miRNA168 gene is specifically highly induced
only in G7-infected PI96983 (incompatible interaction) but not
in G2- and G7-infected Williams 82 (compatible interactions).
Overexpression of miR168 results in cleavage of miR168-
mediated AGO1 mRNA and severely repression of AGO1 protein
accumulation (Chen et al., 2015). Silencing SGS3, an essential
component in RNA silencing, suppressed AGO1 siRNA, partially
recovers the repressed AGO1 protein, and alleviates LSHR
severity in G7-infected Rsv1 soybean (Chen et al., 2015). These
results strongly suggest that miRNA pathway is involved in G7
infection of Rsv1 soybean, and LSHR is associated with repression
of AGO1.

Chen et al. (2016b) recently performed small RNA (sRNA)-
seq, degradome-seq and as well as a genome-wide transcriptome
analysis to profile the global gene and miRNA expression
in soybean in response to three different SMV isolates. The
SMV responsive miRNAs and their potential cleavage targets
were identified and subsequently validated by degradome-seq
analysis, leading to the establishment of complex miRNA-
mRNA regulatory networks. The information generated
in this study provides insights into molecular interactions
between SMV and soybean and offer candidate miRNAs and

their targets for further elucidation of the SMV infection
process.

Improving SMV Resistance through
Generating RNAi Transgenic Lines
Targeted for SMV Genome
The multiple soybean cultivars transformed with an RNA
interference (RNAi) construct targeted for SMV HC-Pro
displayed a significantly enhanced resistance against SMV (Gao
et al., 2015). Soybean plants transformed with a single RNAi
construct expressing separate short hairpins or inverted repeat
(IR) (150 bp) derived from three different viruses (SMV, Alfalfa
mosaic virus, and Bean pod mottle virus) confer robust systemic
resistance to these viruses (Zhang et al., 2011). This strategy
makes it easy to incorporate additional short IRs in the transgene,
thus expanding the spectrum of virus resistance. As the cases
in the other plant species, these studies demonstrate that RNA
silencing is obviously the most effective approach for SMV
resistance.

VIGS Is a Powerful Tool to Overcome
Gene Redundancy in Soybean
Bean pod mottle virus -induced gene silencing system has been
proven successful in gene function studies in soybean (Zhang
et al., 2009b, 2010; Liu et al., 2015). There are four GmMAPK4
homologs that can be divided into two paralogous groups
(Liu et al., 2011). The sequence identities of ORFs within the
groups are greater than 96%, whereas the identities between
the groups are 88.7% (Liu et al., 2015). The BPMV-VIGS
construct used for silencing GmMAPK4 by Liu et al. (2011)
actually can silence all four of the isoforms simultaneously. When
only one parologous group was silenced by using construct
targeted for the 3′ UTR (the sequence identity of the 3′
UTRs between the two parologous groups is less than 50%),
the activated defense response was not observed, indicating
that silencing the four GmMAPK4 isoforms simultaneously
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is necessary for activating defense responses in soybean. Using
the same approach, it has been differentiated that GmSGT1-2 but
not GmSGT1-1 is required for the Rsv1-mediated ER against SMV
(Fu et al., 2009). Thus, VIGS is currently the most powerful tool
in overcoming the gene redundancy in soybean.

CONCLUDING REMARKS

As none of the SMV resistant gene has been cloned so far, it
is not possible to generating resistant soybean plants simply by
transforming the resistant genes. In addition, due to the rapid
evolution in avirulence/effector genes, the resistance conditioned
by R genes will be overcome quickly (Choi et al., 2005;
Gagarinova et al., 2008). Therefore, there is urgent need for a
better solution in generating long-lasting SMV resistance with
wide spectrums. As the first step, the identities of different
Rsv genes need to be revealed and the key components in
SMV resistant signaling pathway need to be identified. Cutting
edge functional genomics tools and technologies have been
proven successful in cloning of SCN resistant genes Rhg4
(Liu et al., 2011). TILLING coupled with VIGS and RNA
interference confirmed that a mutation in the Rhg4, a serine
hydroxymethyltransferase (SHMT) gene, is responsible for Rhg4
mediated resistance to SCN (Liu et al., 2011). VIGS has
been proven useful in interrogating gene functions and can
overcome gene redundancy in soybean (Liu et al., 2015). It
has been shown recently that knocking out all three TaMLO
homoeologs simultaneously in hexaploid bread wheat using
TALEN and CRISPR-CAS9 resulted in heritable broad-spectrum
resistance to powdery mildew (Wang et al., 2014). We believe
that the same strategy can be applied to soybean in the near
future. These new functional genomics approaches and genome

editing tools will greatly facilitate the cloning of SMV resistant
genes and elucidating the SMV resistant signaling pathways.
Marker assisted selection (MAS) has become very useful in the
effort of tagging genes for SMV resistance. Single nucleotide
polymorphism (SNP) is a powerful tool in genome mapping,
association studies, and cloning of important genes (Clevenger
et al., 2015) and the increasingly saturated SNPs are being
established in soybean (Wu et al., 2010; Lee et al., 2015). With
all these tools and resources available, pyramiding multiple
SMV resistance genes in elite soybean cultivars to generate
durable resistance with broad spectrum is more realistic than
ever.
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