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Abstract: Schistosomiasis japonica caused by the trematode flukes of Schistosoma japonicum was one
of the most grievous infectious diseases in China in the mid-20th century, while its elimination has
been placed on the agenda of the national strategic plan of healthy China 2030 after 70 years of
continuous control campaigns. Diagnostic tools play a pivotal role in warfare against schistosomiasis
but must adapt to the endemic status and objectives of activities. With the decrease of prevalence
and infection intensity of schistosomiasis in human beings and livestock, optimal methodologies
with high sensitivity and absolute specificity are needed for the detection of asymptomatic cases
or light infections, as well as disease surveillance to verify elimination. In comparison with the
parasitological methods with relatively low sensitivity and serological techniques lacking specificity,
which both had been widely used in previous control stages, the molecular detection methods based
on the amplification of promising genes of the schistosome genome may pick up the baton to assist
the eventual aim of elimination. In this article, we reviewed the developed molecular methods
for detecting S. japonicum infection and their application in schistosomiasis japonica diagnosis.
Concurrently, we also analyzed the chances and challenges of molecular tools to the field application
process in China.

Keywords: schistosomiasis japonica; elimination; diagnostic tools; molecular techniques

1. Introduction

The worldwide pandemic of COVID-19 made administrators of government and all
residents aware of the enormous threat from infectious disease to public health safety
and social–economic growth [1,2]. Being a widespread tropical disease, schistosomiasis is
endemic in 78 countries, with at least 236.6 million people required preventive treatment in
2019 according to the data from WHO. There are three major types of schistosomiasis affect-
ing human beings: schistosomiasis japonica, schistosomiasis mansoni, and schistsomiasis
hamatobium. Schistosomiasis japonica caused by Schistosoma japonicum (S. japonicum) is
distributed in China, the Philippines, and small pockets of Indonesia in Asia, whereas the
other two kinds of schistosomiasis, caused by S. haematobium and S. mansoni, are mainly
distributed in countries belonging to Africa and South America [3,4]. Schistosomes are re-
markable parasites for being exquisitely adapted to their two-host life cycle, which involves
a short period of substantive population booms in the molluscan intermediate host and
a long sheltered life, including prodigious egg laying in definitive mammalian hosts [5].
Based on the insight and experience that blocking any stage of the life cycle of S. japon-
icum would interrupt the transmission, the detection of individual or worm carriers and
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infected snails with the intention of identifying sources of infection and risk environments
is extremely vital in control activities [6,7].

Applying optimal methodologies for diagnosis adapted to the changing control sit-
uation is crucial to every aspect of schistosomiasis control. Parasitological tests, such as
the miracidia hatching technique (MHT) and Kato–Katz method (KK), are recommended
as the “gold” standard for schistosomiasis diagnosis, especially in situations with high
prevalence, but they are highly likely to miss infection with light intensity from low preva-
lence areas [8,9]. That is to say, the insensitivity of etiological detection will lead to an
underestimation of disease burden, even threatening the success of the national program
and the ultimate goal of elimination [10]. Serological tests based on the immunological
response of antigens and antibodies have been widely applied in preliminary screening of
patients and disease surveillance in many endemic countries with schistosomiasis, owing
to advantages such as low cost, ease of operation, independence of complicated and ex-
pensive equipment, etc. [11,12]. However, serological methods have often been criticized
for being relatively non-specific, prone to cross-reaction with other parasitic diseases, and
unable to distinguish past from current infections [13,14]. With the flourishing of gene
and genome research, nucleic acid detection provides a new idea for the diagnosis of
schistosomiasis, presenting advantages of higher sensitivity and overwhelming specificity
over immunological tests [13,15]. They are also superior in identifying infection by differ-
ent species of Schistosoma in cases of low-grade infection [16,17]. Better yet, nucleic acid
detection-based methods could complete detection based on various samples, including
snail tissue [18,19], environmental samples [20], sera, and stool [21,22]. Although most
molecular techniques still require expensive infrastructure and highly accurate pretreat-
ment of samples, such as DNA extraction, they are the most potential and valuable methods
used for disease surveillance and verifying elimination in many countries with very low
endemicity of schistosomiasis, especially with the development of isothermal amplification
techniques [23,24].

In this paper, we reviewed the existing diagnostic methods specially focused on
schistosomiasis japonica, emphatically introducing the progress of nucleic acid detection-
based methods. We also analyzed the potential of the molecular techniques applied in
the national control program and the challenges that exist to provide reference for related
experts of diagnosis and policymakers.

2. Schistosomiasis Japonica and the Agenda of China

Schistosomiasis japonica is a zoonotic disease, with human beings and more than
40 mammalian definitive hosts identified thus far [3,4]. Although it is endemic in China,
the Philippines and Indonesia, the strain of S. japonicum in China is more virulent, with a
wide range of epidemic areas and a heavier disease burden than the parasite in the other
two countries [25]. Schistosomiasis japonica was a great public health threat in the 1950s
with around 12 million infected people mainly distributed in 12 provinces of China along
the Yangtze River [26–28], where the climate and environment are highly suitable for the
propagation of oncomelanade snails. Slightly different from the WHO NTD roadmap’s
three time-bound goals for the control or elimination of schistosomiasis, the control process
was divided into four stages or three criteria, in order: infection control (prevalence < 5%
in humans and animals), transmission control (prevalence < 1% in humans and animals),
transmission interruption (zero infection in local residents, domestic animals and snails in
five consecutive years), and elimination (zero infection in local residents, domestic animals
and snails in another five consecutive years after transmission interruption) [29–31].

Nowadays, schistosomiasis japonica has been eliminated in many previous endemic
regions due to the high priority over schistosomiasis control at the political level, nearly
70 years of continuous national control program and the effort of multi-sectoral experts
and local residents, as well as the flourishing development of economy and technology in
China [10,32–34]. Five provinces, Shanghai, Guangdong, Guangxi, Fujian, and Zhejiang,
have been pioneers in schistosomiasis elimination [35,36]. In 2019, only 5 cases (5 out of
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327,475) and 7 domestic animals (7 out of 134,978) were found to be etiologically positive
nationwide [37]. By 2020, only 15 of 450 previous endemic counties were maintained
in the stage of transmission control due to their complicated environment and relatively
retarded economy. However, interrupting the transmission and eventually eliminating
schistosomiasis completely nationwide, which set the national strategic plan of Healthy
2030, has turned out to be difficult [33,38]. To accelerate the process of schistosomiasis
elimination, optimal methodologies with high sensitivity and absolute specificity are
needed for the detection of asymptomatic cases or light infections, as well as disease
surveillance to verify elimination.

3. Traditional Diagnostic Tools Applied in Schistosomiasis Control in China

It cannot be exaggerated that diagnosis is the essential basis of schistosomiasis control
for case identification and treatment, assessment of morbidity, and evaluation of control
strategies, which are all dependent on the performance of diagnostic tests [27,39]. Two
kinds of diagnostic methodologies, namely parasitological techniques mainly including KK
and MHT [40,41], and immunologic approaches based on detection of specific antibodies,
were widely used in the national control program in China, accelerating the process of
schistosomiasis control significantly [11,42].

3.1. Parasitological Methods

The KK method, which was originally developed in the mid-1950s, and MHT, based
on the positive phototactic behavior of miracidia, are the most broadly used techniques
in epidemiological surveys pertaining to schistosomiasis in China [43]. At the stage of
morbidity control, especially in the 1950–1980 period, the parasitological methods were the
most applicable to the field, featured by high prevalence and high infection intensity. In
1989, with the first national survey of schistosomiasis japonica, direct stool examination of
the KK method or MHT was still the recommended method to evaluate the prevalence of
schistosomiasis [6,43]. Until now, the KK method and MHT have been the most accepted
“gold” standard methods for identifying whether people or animals are infected [6,44].
Additionally, some studies indicated that multiple KK tests per sample, or increasing the
collection frequency of stool samples, would increase the diagnostic sensitivity [45–47],
and the MHT technique possessed higher sensitivity than the KK method due to the larger
volume of stool tests received. Additionally, the combination of MHT and microscopic
examination of filtered stool sediment would increase the detection rate [48].

3.2. Immunologic Tests

The immunological tests for schistosomiasis diagnosis also have a long history in
China. The earliest immunologic test in China was the intradermal text (ID) recorded
in 1936, and it was adapted for screening prior to further parasitological examination
in the national general survey in the 1950s. Subsequently, a variety of immunologic
techniques were applied to the national schistosomiasis control program, such as the
circumoval precipitin test (COPT), indirect hemagglutination assay (IHA), the enzyme-
linked immunosorbent assay (ELISA), and some rapid diagnostic tests (RDTs). Nowadays,
ID and COPT have been out of use due to their low specificity, while IHA is still widely
used in most endemic areas of China. Currently, there are two IHA kits with high quality
control accredited by the China Food and Drug Administration. In the 10-year World Bank
Loan Project (WBLP), aiming to control the morbidity of schistosomiasis, immunological
tests were used directly to determine the target of chemotherapy in areas of medium
endemicity (15% > prevalence > 3%) and low endemicity (prevalence < 3%) [43]. In the
second national survey of schistosomiasis in 2004, in China, the ELISA method was adopted
as a screening tool followed by stool examination to understand the real infection status
of schistosomiasis in human beings. With the achievement of infection control reached
in 2008 and transmission control reached in 2015, a diagnostic strategy with primary
immunodiagnostic screening followed by KK or MHT for antibody-positive individuals
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was widely used in the Chinese national control program and routine surveillance activities
in sentinel sites [27].

4. Molecular Methods Developed to Detect the Pathogen of Schistosomiasis

With the goal of the national program shifting from the control of schistosomiasis to
elimination, extremely sensitive and specific diagnostic tools are needed emergently to
explore asymptomatic cases with light infection and verify transmission interruption or
elimination [34,49]. With the development of genomics and genome data for parasites and
the urgent demands, molecular diagnostic techniques based on nucleic acid detection have
emerged as new hot spots [50]. Various polymerase chain reaction (PCR)-based parasite
DNA detection assays, including conventional polymerase chain reaction (cPCR), nested
PCR (nPCR), real-time quantitative PCR (qPCR), and droplet digital PCR (ddPCR), have
stimulated much interest as alternative options due to their proven diagnostic accuracy and
the ability to detect early pre-patient infections [51,52]. The emergence of isothermal ampli-
fication methods, such as loop-mediated isothermal amplification (LAMP) and recombinase
polymerase amplification (RPA), solves the dilemma of costly instrument dependence on
PCR-based methods. The molecular diagnostic techniques of schistosomiasis japonica and
the year first reported in China are shown in Figure 1. Regrettably, we have not seen any
product based on molecular techniques applied in the field on a large scale.
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Figure 1. The molecular diagnostic techniques of schistosomiasis japonica and the year of first
report in China. 1 nPCR is characterized by two pairs of primers, inner primer and outer primer;
2 qPCR can quantitatively and qualitatively analyze the initial template of samples by detecting the
fluorescence signal corresponding to each cyclic amplification product in real time; 3 The combination
of RPA and lateral flow dipstick (LFD) for visual detection. Generally, visualization of control line
and the test line is positive, and only the control line is negative; 4 cPCR determined positive or
negative results by the size of the gel electrophoresis band; 5 The combination of LAMP reaction
with chemical dyes for visual detection. + positive reaction, − negative reaction; 6 Dilute sample
or samples DNA to the single molecule level and collect the fluorescence signal of a single reaction
unit to achieve the absolute quantitative detection. Black spots: positive reaction units, blank spots:
negative reaction units.
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4.1. Conventional Polymerase Chain Reaction (cPCR)

cPCR emerged in the 1980s with a specific ability to amplify a small amount of target
DNA and was the first nucleic acid amplification test used in schistosomiasis japonica
diagnosis [53]. The character of amplification of microscale DNA of different samples
greatly improves the analytical ability, simplifies the diagnostic process, and increases the
sensitivity [14,16,51]. Another obvious advantage of this technology is that the amplified
products can be visualized by gel electrophoresis and verified by sequencing. So far, many
cPCR methods for the diagnosis of schistosomiasis japonica targeting various genes from
chromosomes and mitochondria extracted from different samples have been established
(Table 1). One of the most important factors impacting the sensitivity of cPCR or other
types of molecular detection assays is the abundance of the target sequences or biomarkers
in the chromosome or mitochondrial genome [16,51]. The earliest reported PCR test for
schistosomiasis diagnosis in China was based on the gene coding miracidium antigen
named Sj5D [54–56]. Nowadays, the highly repetitive and conserved subunits of 18S
rRNA [57–60], 28S rRNA [18,61–63], cytochrome c oxidase subunit 1 (COX I) [64,65], and
the repetitive sequences SjR2 (an RTE-like, non-long terminal repeat retrotransposon from
S. japonicum) [18,21,66–69] were the most common detection biomarkers. To evaluate the
efficiency of established cPCR methods, several kinds of specimens, including genomic
DNA (gDNA), pooled samples of snail and cercaria, and a mixture of eggs and feces, were
employed. The lowest detection limit of cPCR established targeting a 607 base pair (bp)
region of COX I can reach 10 fg of gDNA, which is less than that of 1 egg or 1 cercariae [64].

cPCR also provided a potential tool for the early detection and therapy evaluation
of S. japonicum infection. The cPCR assay using a 230-bp sequence of SjR2 established by
Xia could detect S. japonicum DNA in sera at the first week post-infection, and it became
negative at 10 weeks post-treatment in a rabbit model infected by S. japonicum [21]. Similarly,
schistosome DNA can be detected from one day post infection using pooled urine samples
of mice by COX I-cPCR [65]. Moreover, the cPCR assay was always used as a reference
method to assess the efficacy of other established methods, not only molecular methods but
also serological methods [60,70,71]. The cPCR assay targeting 254-bp size of COX I gene
was used in the detection of human samples in highly endemic areas of the Philippines, and
the results showed that schistosome DNA in the serum and urine of KK-positive subjects
could be detected by COX I -cPCR with 100% sensitivity [65]. However, few studies have
reported on detecting field samples by the cPCR method, which may largely be due to its
dependence on specific equipment and relatively complicated producers.

Table 1. The target genes and sample types of established cPCR methods for schistosomiasis japonica.

Target Sequence No. of GenBank
Accession

Fragment
Size (bp) Detection Limit Specimen Year of

Publication

1 Sj5D N/D 1 262 1 cercarial;
1 egg Animal tissue and blood 1997,1998

[54,55]
2 Sj5D N/D 262 10 fold diluted single cercarial DNA Cercarial DNA 2004 [56]
3 18S rRNA DQ442999 469 40 pg gDNA 2006 [57]
4 18S rRNA DQ442999 469 1 cercaria Cercaria 2008 [58]
5 18S rRNA DQ442999 463 62.5 pg gDNA 2010 [59]

6 18S rRNA FJ176682 157

1 cercaria in pooled 10
non-infected snails;

2 eggs in 100 mg of non-infected
fecal sample

Snail;
Fecal of mice 2013 [60]

7 28S rRNA Z46504 405 100 fg gDNA 2010 [18]
8 28S rRNA Z46504 607 15 pg gDNA 2006 [61]
9 28S rRNA Z46504 200 N/D Cattle fecal 2017 [62]
10 28S rRNA EU835689.1 330 N/D Snail 2018 [63]
11 COX1 AF215860 614 10fg gDNA 2010 [64]
12 COX1 AF215860 254 N/D Serum and urine 2015 [65]
13 SjR2 AF412221 230 1 pg gDNA 2010 [18]
14 SjR2 AF412221 230 0.8 pg gDNA 2009 [21]
15 SjR2 N/D 176 1 cercariae Cercariae 2005 [66]
16 SjR2 AF412221 230 0.021 eggs Egg DNA 2007 [67]
17 SjR2 AF412221 230 0.5 eggs/g of feces Human feces 2012 [68]
18 SjR2 N/D 408 1 egg Colon tissue 2019 [69]
19 Mitochondrial

DNA gene N/A 2 668/242 0.3 eggs Fecal of mice 2005 [72]

1 N/D: Non-disclosed; 2 N/A: Non-applicable.
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4.2. Nested PCR (nPCR)

The assay of nPCR, which can be considered a variant of cPCR, requires two rounds
of PCR amplification using two sets of primers, commonly called the outer primers and the
inner primers [17]. nPCR is more sensitive and specific than cPCR because the probability
is extremely low if the first round amplification produces an erroneous fragment; primer
pairing and amplification will occur in the second round amplification using the wrong
fragment [51]. The repetitive sequences of SjR2 and SjCHGCS19 (a new 303-bp sequence
from non-long terminal repeat (LTR) retrotransposon) are the common biomarkers in
nPCR assays [73,74]. The published literature showed that the detection limit of SjR2-nPCR
stabilized at fg level with 10fg of minimum limit [75]. Validated by the schistosome-infected
mice model [76], rabbit model [74,77], and domestic animals (goat and buffalo) [78], the
SjR2-nPCR or SjCHGCS19-nPCR could all be used for early diagnosis of schistosomiasis,
even light infection, showing positive results at 3 days post-infection through testing sera
samples. For samples from humans with chronic schistosomiasis, the detection rate of 230-
bp SjR2-nPCR assay was 88.79% (95/107), significantly higher than that of the KK method
(69.16%, 74/107) [79]. The sensitivity of the SjR2-nPCR method established by Zhang
et al. using 14 and 28 days post-infection buffalo samples was 92.30% (36/39) and 100%
(39/39), while the specificity was 97.60% (41/42) [78]. Moreover, the SjCHGCS19-nPCR
assay demonstrated 97.67% sensitivity for 43 patient serum samples and 96.07% specificity
for 51 serum samples from healthy individuals [74]. In addition, an nPCR assay targeting
the 420-bp fragment of the Sjα1 gene, which is a short dispersal element retrotransposon
gene with high copy and expression throughout the life cycle of schistosomes, could detect
0.1 fg of gDNA and distinguish the infection status of snail 4h post-infection [80]. However,
the impressive performance of the detection efficacy of nPCR needed more verification.

4.3. Real-Time Quantitative PCR (qPCR)

The technique of the qPCR assay uses fluorescent labeled probes or double-stranded
DNA-specific fluorescence dye to enable the continuous monitoring of amplicon (PCR
product) formation throughout the reaction, thus allowing the quantification of PCR prod-
ucts by measuring fluorescence [81,82]. Compared with cPCR, qPCR has the following
advantages: the amount of DNA in a sample can be measured using a standard curve,
which can be determined by either spiking samples with a known amount of template or
serial DNA dilutions; the qPCR procedures are streamlined with no need for an additional
electrophoresis step to detect end-products of PCR, and the results can be preserved for
a long time; and qPCR can utilize multiplex assays to detect multiple infections within a
single clinical sample using specific probes and is preferred over cPCR in multiplex assays
for having improved specificity by the use of probes [51,83].

The first reported qPCR assay for the detection of S. japonicum appeared in 2006, with
mitochondrial NADH I as the target gene, and its detection limit could reach 1 egg per
gram (EPG) fecal [84]. In the detection of 1,727 persons in field settings of Anhui Province,
China, the prevalence (no. positive/no. examined) determined by NADH I-qPCR was
5.3%, significantly higher than those of the hatching test (3.2%) and Kato-Katz thick smear
(3.0%) [85]. In a field evaluation of qPCR assay conducted in Hunan, Anhui, Hubei, and
Jiangxi provinces of China, the qPCR assay exhibited a high level of sensitivity (100% for
humans, 96.83% for bovines) and specificity (100%), and obtained a significantly higher
prevalence in both the human (11.06% for qPCR, 0.93% for MHT) and bovine samples
(24.73% for qPCR, 7.69% for MHT) [86]. The research conducted in the Philippines also
showed similar trends, demonstrating that traditional copro-parasitological techniques
underestimate the infection rate, signifying the advantages of qPCR for case finding and
disease surveillance and monitoring [87–91]. Besides the gene of NADH I [85–95], several
qPCR methods have been established targeting other genes, including COX I [96], 18S
rRNA [97–101], ITS 2 [102], SjR2 [99,103,104], SjCHGCS20 [22], SjCHGC08270 [20,105], and
Sjrh1.0 [99,106] (Table 2). Those established qPCR methods have mostly completed the
laboratory evaluation, but further validation should be conducted in field settings. Notably,
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the TaqMan qPCR assay targeting the COX I gene was developed to detect the environ-
mental DNA (water samples) of S. japonicum, and its potential utility to schistosomiasis
japonica surveillance in the Philippines was assessed. The results showed that the qPCR
method could complement malacological surveys for monitoring schistosomes in endemic
areas, especially those with a high risk of human infection [96].

Table 2. The target genes and application performance of qPCR assay for schistosomiasis japonica.

Target
Sequence

No. of
GenBank
Accession

Fragment
Size (bp) Detection Limit Sensitivity

(%)
Specificity

(%) Prevalence 1 Specimen Year of
Publication

1 NADH I N/D 2 82 1 EPG N/A 3 N/A N/A Human feces 2006 [84]
2 NADH I N/D 75 1 EPG N/A N/A 5.3% Human feces 2009 [85]

3 NADH I N/D 82 5 EPG 100/96.83 100
11.06% of
human;

24.73% of
bovines

Buffalo and
human feces 2018 [86]

4 NADH I N/D 82 1 EPG 100 100 51.5% Buffalo feces 2010 [87]

5 NADH I N/D 82 one egg; 14 pg 95.25/94.0 100 95.45%
buffalo and

Human feces;
gDNA

2012 [88]

6 NADH I N/D 82 N/A N/A N/A 87.50% Bovines feces 2015 [89]
7 NADH I N/D 82 N/A N/A N/A 90.2% Human feces 2015 [90,91]
8 NADH I N/D 82 N/A N/A N/A N/A Serum, urine and

fecal of pig model 2008 [92]
9 NADH I N/D 82 5 EPG N/A N/A N/A Buffalo feces 2009 [93]

10 NADH I N/D 82 N/A N/A N/A

9.21% of
rodents;

18.37% of
dogs; 6.9% of

goats

Rodents, dogs and
goats feces 2017 [94]

11 NADH I AF215860 75 N/A N/A N/A N/A Organs 2018 [95]
12 COX I N/D 119 N/A N/A N/A N/A Water samples 2019 [96]
13 18S rRNA AYl57226 81 6.15 pg N/A N/A 48.0% gDNA 2008 [97]
14 18S rRNA AY157226 81 10 fg N/A N/A N/A gDNA 2011 [98]
15 18S rRNA AY157226.1 N/D 20 fg N/A N/A N/A gDNA 2011 [99]

16 18S rRNA FJ176682 156

4.3 × 102 copies
plasmid; 0.4 fg
gDNA; 10 EPG;

one cercaria in 10
pooled snails;

N/A N/A N/A Plasmids; gDNA;
mice feces; snail 2013 [100]

17 18S rRNA AY157226 280 10 fg N/A N/A N/A gDNA 2015 [101]

18 ITS 2 U22167 192
1.42 × 102 copies

plasmid; 10 pg
gDNA; 10 EPG;

100 100 N/A Snail and mice
feces 2011 [102]

19 SjR2 AF412221.1 N/D 2 pg N/A N/A N/A gDNA 2011 [99]

20 SjR2 AF412221 N/D 44.7 copies
plasmid N/A N/A N/A Plasmids and sera

of rabbit 2014 [103]

21 SjR2 N/D N/D N/A N/A N/A N/A Water samples 2021 [104]
22 SjCHGCS20 FN356222.1 N/D N/D 98.74 100 8.33 Plasma of goat 2020 [22]
23 SjCHGC08270 AY812553 85 half of one cercaria 93.75 N/D N/A N/A 2008 [20]
24 SjCHGC08270 AY812553 85 one cercaria N/A N/A 6.48 Water samples 2011 [105]
25 Sjrh1.0 U92488.1 N/D 2 fg N/A N/A N/A gDNA and sera of

mice 2011 [99]

26 Sjrh1.0 U92488.1 N/D 2 fg N/A N/A N/A gDNA and water
samples 2011 [106]

1 Prevalence: no. positive/no. examined; 2 N/D: Non-disclosed; 3 N/A: Non-applicable.

4.4. Droplet Digital PCR (ddPCR)

The technique of ddPCR can still be considered a ‘new’ technology in parasitology,
including schistosomiasis. Owing to its sensitivity and absolute quantitative character-
istics, ddPCR is a potential candidate to become an appealing new method for parasite
detection and quantitative analysis in the future [107]. Weerakoon et al. developed a
ddPCR duplex assay targeting SjR2 and NADH I for the detection of S. japonicum, which
provides improved detection sensitivity and specificity. The assay was able to detect as
little as 0.05 fg of template DNA, and exhibited a high sensitivity for the detection of low
levels of parasite DNA in stool, serum, urine, and saliva of mice model [108,109]. The
ddPCR assay was also validated using clinical samples collected from 412 residents in a
moderate-endemic area of schistosomiasis in the Philippines, proving its higher level of
sensitivity obtained for human stool, serum, urine and saliva samples compared with the
microscopy-based KK test [110,111]. Moreover, the capacity of ddPCR to quantify infection
intensity has important public health implications for schistosomiasis control. Van Dorssen
et al. determined the infection prevalence of S. japonicum in fecal samples of goats using
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the gene NADH I (46.4% ddPCR vs. 6.9% qPCR), showing that ddPCR was more sensitive
than qPCR [93]. In general, the ddPCR technique with high sensitivity and specificity
attracts increasing interest in its potential for clinical diagnosis and screening, and has the
potential to be considered in schistosomiasis diagnosis as a complement to routine assays
in schistosomiasis elimination programs.

4.5. Loop-Mediated Isothermal Amplification (LAMP)

The LAMP technique, which uses isothermal conditions to amplify DNA, is relatively
simple, cost-effective, rapid, and more field-friendly compared with commonly used PCR-
based methods [51,112]. Isothermal amplification does not require specific equipment,
such as a thermocycler, electrophoresis apparatus, UV transilluminator, etc., while only a
heating block or hot water bath is required for the reaction to progress [83,113,114]. The
amplification results can be judged by precipitation turbidity of magnesium pyrophosphate
or color reaction with the naked eye [115]. Hence, it is more suitable in resource-poor
settings and grass-roots units. In addition, the four specific primers designed for six regions
of target genes make the assay highly specific [113,114]. Of course, the LAMP technique
has some shortcomings that need to be improved. It is complicated and time-consuming
in the process of initial optimization with the use of multiple primers. Sometimes, the
false-positive reaction is the fatal defect of the LAMP assay because of its high sensitiv-
ity [116,117]. Overall, the LAMP method is an extraordinary innovation trying to break
through the restriction of equipment, and it has tremendous potential to apply in schis-
tosomiasis control program for rapid screening, identification of transmission foci and
environmental risk assessment.

A series of LAMP assays have been designed for schistosome-infected snail detection,
schistosomiasis japonica diagnosis, and chemotherapy efficacy evaluation. The genes of
CaBP (calcium-binding protein) [118,119], 28S rRNA [18,19,60], and SjR2 [120–125] were
selected as the target sequence in the LAMP assay. Research has shown that the LAMP
assay usually displays a higher detection rate than the conventional microscopy method
for snail at different stages from 1 to 10 weeks post-infection [126]. 28S rRNA-LAMP was
able to amplify the target band using DNA of a 1 day post-infection snail infected with
one miracidium [18]. Nowadays, the LAMP assay has been applied to the surveillance
of schistosoma infection of O. hupensis snail in national schistosomiasis sentinel sites in
China [60,127]. In addition, a few studies have been conducted to evaluate the detection
efficacy of LAMP for definitive hosts of S. japonicum. The SjR2-LAMP assay developed by
Xu et al. was able to detect S. japonicum DNA in rabbit sera on the 3rd day post-infection.
When LAMP was used to detect S. japonicum DNA in clinical serum samples (n = 152)
from S. japonicum-infected patients and healthy persons, the sensitivity and specificity were
95.5% and 100%, respectively [71]. Moreover, for 47 patients after treatment 3 months,
6 months, and 9 months, the negative conversion rate of S. japonicum DNA in patient sera
increased from 23.4% to 61.7% to 83.0%, respectively [123]. The above study demonstrated
that the SjR2-LAMP method provides a useful and practical tool for the routine diagnosis
and therapeutic evaluation of animals and human schistosomiasis.

4.6. Recombinase Polymerase Amplification (RPA)

Another isothermal amplification technology named RPA is a relatively new method
that has experienced exponential growth in terms of publications, popularity, and appli-
cations since its first report in 2006 [128]. The central components of RPA mainly include
DNA polymerase, DNA binding proteins, and recombinase. It is reported that RPA can
operate at 37~42 ◦C and amplify as low as 1~10 copies of target DNA to detectable levels
in less than 20 min. Therefore, the novel method is remarkable for its high sensitivity,
simplicity, and extremely rapid amplification, as well as its operation at a low and constant
temperature [129,130]. The RPA technique has been successfully integrated with different
detection strategies, from end-point lateral flow strips to real-time fluorescent detection,
among others, making this technique more user friendly, equipment-free, and facilitating
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the quantification of DNA [130]. In a meta-analysis of the diagnostic value of nucleic acid
detection in schistosomiasis japonica, the isothermal amplification technique showed a
relatively higher accuracy than the PCR-based amplification technique, and the sensitiv-
ity and specificity of the RPA method was higher than the LAMP assay [131]. However,
RPA also has some disadvantages, such as the higher cost, carry-over contamination, and
complicated optimization process [129,130]. Furthermore, due to the single source of RPA
reagents or commercial kits, alternative products of the recombinase-aided isothermal
amplification technique (RAA) have been developed in China [132–137].

The diagnostic method of RPA established for schistosomiasis japonica are concen-
trated after 2015, and the first retrievable literature was published in 2016 [23]. The visual
detection method LFD-RPA (combination of RPA and lateral flow dipstick (LFD)) target-
ing SjR2 could detect 5 fg of S. japonicum DNA and showed no cross-reaction with other
parasites. The reaction could be finished within 15~20 min at a wide temperature range
(25–45 ◦C). Furthermore, the LFD-RPA assay performed 92.86% sensitivity (13/14), 100%
of specificity (31/31) and excellent diagnostic agreement with the KK method (k = 0.947,
Z = 6.36, p < 0.001), indicating that the LFD-RPA assay has a great potency in field applica-
tion [35]. The real-time RPA (RT-RPA) targeting SjR2 gene performed 0.9 fg S. japonicum
DNA detection limit, 100% sensitivity and specificity in detection of S. japonicum in stool
samples from 30 infected patients and 30 healthy persons. The reaction could distinguish
S. japonicum from other worms by measuring fluorescence using the TwistaTM incubator
block [24]. Deng et al. tried to establish a detection method for S. japonicum using the
SjR2 gene by RPA combined with electrochemical (EC) DNA biosensor. The RPA-EC
combinational detection method also exhibited high sensitivity (0.01 fg detection limit),
good specificity, and the ability to complete reaction within 30 min at 37 ◦C [138]. After-
wards, the RPA or LFD-RPA assay for different biomarkers of 28S rRNA and SjCHGCS19
was developed, which also proved that the technology was sensitive, specific, fast, and
convenient [139,140].

5. Prospect of Molecular Detection Methods in Schistosomiasis Diagnosis

Unlike laboratory research, the costs for large-scale screening using the molecular
detection method certainly constitute a major constraint. This is why the KK method is
widely used for epidemiological surveys and recommended by WHO for surveillance
and monitoring of schistosomiasis control programs [29,141]. However, in the current era
featured by low endemicity of schistosomiasis, the asymptomatic cases or light infections
would be missed by the KK method and MHT, resulting in significant underestimation of
prevalence. There is also a consensus that diagnostic tools should be adapted when moving
from morbidity control to elimination of infection [29]. It emphasizes that the accuracy of
a given diagnostic technique may vary significantly with different schistosomiasis trans-
mission levels. Antibody detection methods are indeed the most widely used nationwide
in China, but this pattern of invasive sample collection may not be accepted in the future.
Additionally, the detection results are prone to cause confusion and equivocal answers due
to their low specificity. Therefore, in the case of reducing the cost, the molecular detection
methods are greatly promising, at least in China. In fact, China is also promoting molecular
detection methods in surveillance activities, such as LAMP for snail infection detection.

Among the available molecular detection methods, the methods of directly displaying
results may be more suitable for the elimination stage, such as qPCR, LAMP, RPA, or RAA.
Less procedures, especially casting off an additional electrophoresis step to detect PCR
end-products, can be less time consuming and less labor intensive. The qPCR methods can
also provide a measurement of infection intensity. The isothermal amplification methods,
including LAMP and LFD-RPA, are more field-friendly for visualizing the results directly
using the naked eye. The technique of RPA or RAA further reduces the reaction temperature
and shortens the reaction time, which is more in line with the requirements of POCT (point
of care test). However, the reagents of RPA are much more expensive than the two other
methods, and the purchase of its reagents is harder than others for a source of monopoly.
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Overall, the above molecular detection methods should also be optimized and verified
before large-scale application. For other molecular detection methods, they can be used
as reference methods for laboratory testing, and are not suitable for field use. The key
advantages, limitations, and relative costs of involved molecular methods are summarized
in Table 3.

Table 3. Advantages, limitations, and prospects of large-scale application of different DNA diagnos-
tics in China [51]. (The copyright permission of the Table 3 in the cited reference with modified form
has been obtained from corresponding author of Professor Don McManus).

Method
Type Advantages Limitation Instrument

Cost *
Reagents

Cost *

Prospect of
Large-Scale

Application **

cPCR

Low cost and simple among the
molecular detection methods;
Can be multiplexed based on

different size domains of
the gene.

Requires post-PCR processing
causing it to be more time

consuming and labor intensive;
$ $ ∆

nPCR
Improved the sensitivity and
specificity for using two sets

of primers

Relatively complicated initial
optimization process; More time
consuming and labor intensive

than two rounds of cPCR
amplifications; Prone to

contamination with amplified
PCR products

$ $ ∆

qPCR

Higher sensitivity and
specificity when probes are

used; No post PCR processing
and less time consuming and

less labor intensive compared to
cPCR and nPCR; Can quantify

the amount of amplicons;
Lower potential laboratory

contamination

Relatively complicated initial
optimization process; Requires
triplicate reactions to improve

the accuracy of final
calculations

$$ $ ∆∆

ddPCR

Higher sensitivity, specificity,
specifically when probes are

used; Can quantify the amount
of amplicons (absolute

quantification); Lower potential
laboratory contamination

Requires specific and expensive
machinery for the initial

establishment; Relatively time
consuming and complicated
initial optimization process

$$$ $$ ∆

LAMP
Less equipment required; Can

visualize the end products
directly using naked eye

Relatively time consuming and
complicated initial optimization

process; Prone to carryover
contamination

- $ ∆∆∆

RPA

Less equipment required; End
products can be visualized on a

chip/lateral flow device; Has
great potential to be developed
as a point of care diagnostic tool

Relatively complicated initial
optimization process; Prone to

contamination
- $$$ ∆∆

* The cost of the instrument and reagents is given as a relative scale to each other. Although the same conformity
is used, the price of the instrument and reagents is not the same. $:—low, $$—moderate, $$$—high. ** It
represents the possibility that it can be used as a tool for on-site screening and surveillance in the future: ∆—low,
∆∆—moderate, ∆∆∆—high.

6. Chance, Challenges, and the Way Forward

The pandemic of COVID-19 is really a catastrophe for human beings; however, this
control progress has promoted the improvement of detection ability for disease control
units and personnel, including those engaged in schistosomiasis control, especially for



Pathogens 2022, 11, 287 11 of 18

primary-level staff. In a questionnaire survey conducted in 36 countries or districts among
the 12 schistosomiasis-endemic provinces in China, all CDC (Center for Disease Control and
Prevention) or schistosomiasis control stations participated in the local campaign against
COVID-19, and the participation rate of professionals previously engaged in schistosomiasis
was 84.32% (936/1110) [38]. A few schistosomiasis control agencies have become a fixed
point of coronavirus detection. Moreover, 9.51% of professionals from schistosomiasis
control stations participated in virus detection, and the average working time reached
53 days, remarkably promoting the practice ability of molecular detection technologies [38].
Nowadays, most schistosomiasis control stations can independently carry out molecular
detection assays, including PCR, qPCR, and isothermal amplification methods. Besides,
the recognition for nucleic acid detection of residents and employees is getting higher with
the widespread use of nucleic acid detection methods in COVID-19 control, providing an
inside track for the field application of molecular detection methods of schistosomiasis, as
long as methods with high sensitivity and accuracy are developed.

Although DNA amplification-based molecular diagnostic techniques for schistosomia-
sis japonica truly have made gratifying progress in recent 20 years, continuous efforts are
still needed to establish accurate, field-deployable diagnostics, meeting the demands of
national control programs and adapting to resource-limited and low prevalence endemic
settings. It should also be noted that the current variable temperature and isothermal
DNA amplification techniques present several important disadvantages in real applica-
tion, including complicated DNA extraction, inseparable cryogenic storage, instability,
carry-over contamination, and the unfriendliness of large-scale screening [51,113,116,117].
Nucleic acid extraction is a pivotal procedure, and it may be a bottleneck in DNA detection
assays since the yield and quality of DNA directly affect the outcome of the amplifica-
tion procedure. Meanwhile, nucleic acid purification is considered one of the important
challenges preventing molecular diagnostics adoption from reaching the field, and the
extraction procedure is also often the most expensive part of DNA-based diagnosis, par-
ticularly when using commercially available extraction kits [142,143]. Hence, simplifying
available DNA extraction procedures to make them more convenient and less expensive
is an urgent challenge to be solved. Currently, most molecular diagnostic reagents need
cold chain transportation, and even some enzymes require more stringent temperature
conditions [143,144]. Although the developed logistics can partly solve the transportation
problem, long-distance transportation will undoubtedly increase the cost and waste of
reagents, especially in resource-limited areas and remote areas. Nowadays, there are studies
focused on ready-to-use reaction mixes stored at room temperature or at 4 ◦C [145]. Stability
is also a crucial factor in evaluating a method, especially in different conditions of carriage,
storage, and experimental environments. Unfortunately, contrasting results occurred in
some studies [18,71,146], suggesting that the developed approaches should be evaluated
in a multicenter manner. Carry-over contamination is another nerve-wracking problem,
especially for isothermal amplification techniques with higher sensitivity [51,112]. More-
over, once the contamination appeared, it was very difficult to remove it in the same lab
room. Hence, it is necessary to optimize the operation procedure to adapt to the resource-
limit lab. However, this optimization process is also time-consuming, complicated, and
costly [116,117].

There are a set of criteria that the diagnostic methods should fulfill to be considered
an ideal POCT or large-scale screening test. The criteria can be established by the acronym
ASSURED, namely affordable, sensitive, specific, user-friendly, rapid, and robust, equip-
ment free, and deliverable [147]. The isothermal amplification techniques, especially LAMP,
already fulfill most of the requirements of the criteria of ASSURED. However, there is a
very low probability that the isothermal amplification techniques (LAMP and RPA) can be
developed to be completely equipment-free technologies; equipment dependence can be
reduced and simplified to the fullest by combining with lateral flow dipsticks, microchips,
and other lab-on-chip displays [148–150]. Actually, we have to admit that there are no
significant changes in current molecular diagnostic protocols for schistosomiasis japon-
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ica, including the isothermal amplification method, although LAMP has been available
since 2000.

7. Conclusions

Development and implementation of optimal methodologies for diagnosis is crucial
in all aspects of schistosomiasis japonica control. Diagnostic tools with high sensitivity
and specificity are needed as programs shift their goals from control to elimination in
China [6,7]. Diagnostic technologies based on nucleic acid amplification can offset the
deficiency of traditional parasitic methods. Meanwhile, the isothermal amplification tech-
niques have made significant breakthroughs in breaking traditional laboratory boundaries
by providing nucleic acid replication at constant temperatures [129]. It is gratifying that
some glorious progress has been achieved, including the discovery of various biomarkers
and the establishment of multiple kinds of detection techniques. Moreover, we have also
tried to carry out the integration of LAMP in routine surveillance of schistosomiasis [127].
In the stage of schistosomiasis elimination, not only PCR-based detective methods but also
isothermal amplification assays can be used as a vital supplement to traditional diagnostic
methods of etiological and serological techniques. Certainly, simplifying and standard-
izing the existing molecular diagnostic methods and adjusting them to field application,
especially the isothermal amplification method, are aspects that require continuous effort.
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