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Mycobacteriosis, mostly resulting fromMycobacterium tuberculosis (MTb), nontuberculous
mycobacteria (NTM), and Mycobacterium leprae (M. leprae), is the long-standing
granulomatous disease that ravages several organs including skin, lung, and peripheral
nerves, and it has a spectrum of clinical-pathologic features based on the interaction of
bacilli and host immune response. Histiocytes in infectious granulomas mainly consist of
infected and uninfected macrophages (Mjs), multinucleated giant cells (MGCs), epithelioid
cells (ECs), and foam cells (FCs), which are commonly discovered in lesions in patients with
mycobacteriosis. GranulomaMj polarization or reprogramming is the crucial appearance of
the host immune response to pathogen aggression, which gets a command of endocellular
microbe persistence. Herein, we recapitulate the current gaps and challenges during Mj
polarization and the different subpopulations of mycobacteriosis.
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INTRODUCTION

Mycobacteriosis is a contagious disease ravaging the skin tissue, respiratory system, and peripheral
nerves, which results from Mycobacterium tuberculosis (MTb), nontuberculous mycobacteria
(NTM), and Mycobacterium leprae (M. leprae). Tuberculosis (TB), caused by the MTb complex,
has plagued humanity when it has killed billions of populations over the past two centuries (1).
Cutaneous TB, including 1% to 2% of all cases, is a rare clinical manifestation of MTb or M. bovis
infection. Rapidly growing mycobacteria, such as M. abscessus group, M. fortuitum group,
M. mucogenicum, and M. smegmatis and slow-growing mycobacteria, such as M. avium
complex, M. kansasii, and M. marinum, are compose of NTM (2). NTM cutaneous infection is
unwonted, and predisposing factors, such as skin injury (such as gardening and fish-related injuries,
injections, and surgery) or immunosuppression make up 95% of cases (3). Leprosy, Hansen’s
disease, is a remarkable public health problem, especially in countries such as Brazil, India, and
Indonesia (4). Leprosy is a neglected tropical disease encountered by M. leprae or M. lepromatosis.
At present, effective vaccines against infection and markers for beneficial immunity are not available
(5, 6). The inability to eradicate the bacteria can result in infection in the immune system in a
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granuloma structure. Macrophages (Mjs), primary effectors of
inherited response, are considered essential pathophysiologic
factors in wide-spread disease procedures involved with
chronic inflammation. The heterogeneity of Mjs, either due to
their developmental origin or their particular activation
morphologies, is becoming increasingly distinct with regard to
their diverse roles within infection of microbes (7). As a central
part of the innate immunity and as the paramount host of infectious
granuloma pathogens, Mjs have been the central focus of
mycobacteriosis investigation.
INFECTIOUS GRANULOMA

Granuloma is a highly structured and organized collection of Mjs,
often with phenotypic switches and other immune cells recruited,
including multinucleated giant cells (MGCs), epithelioid cells (ECs),
and foam cells (FCs). Someone claimed a new ex vivo granuloma
culture technique to study granuloma consolidation (8).
Mechanistically, Cronan et al. have found that in the existence of
robust interferon-gamma (IFN-g) signaling immune response,
confronting interleukin (IL)-4 and IL-13 signals were associated
with Mj epithelial transition. IL-4/13 signaling, induced by stat6,
was required for epithelioid transformation and granuloma
architecture. Apart from stat6 function required in the new
granuloma formation, persistent stat6 pathway was required to
maintain the expression of E-cadherin and granuloma (9).
MAB_4780, encoding a dehydratase, was required for intracellular
M. abscessus growth and to avoid lysosome-mediated degradation,
which compromises survival of DMAB_4780 in Mjs and
granuloma formation (10). In granuloma transformation, IFN-g
and tumor necrosis factor-alpha (TNF-a) were deemed to be
effective regulators, whereas IL-10 was a passive effector.
Intriguingly, etanercept and adalimumab, the human monoclonal
anti-TNF-a IgG1, exacerbated M1 polarization and delayed MGC
generation in granuloma (11). Magically, there are two types of
granulomas in leprosy. At one pole of leprosy, the presence of
MGCs and granuloma configuration in tuberculoid leprosy (TT)
contributes to the containment of M. leprae proliferation and
transmission (Figure 1A). At the other pole, lepromatous leprosy
(LL) has phagocytic FCs heavily parasitized with freely multiplying
intracellularM. leprae (Figure 1B) (12). Ma et al. have constructed a
map via integrating single-cell RNA sequencing with spatial
sequencing to identify that the primary cell types, consisting of T
cells, Mjs, keratinocytes, endothelial cells, and fibroblasts, were
described to research the cellular composition and status
discrepancies between reversal reactions and LL, and LGCs are
more frequent in both lesions. IL-1b and IFN-gwere supposed to be
important upstream effectors of the pseudo time trajectory and the
activation of Mjs in granulomas to product genes contributing to
antimicrobial responses in human leprosy granulomas (13).

Granuloma is a leading gateway for the host immune
response to microorganisms and shape immune interplays,
disease progression, and degeneration (14). The granuloma is a
functional paradox, for example, it contains the bacilli in a local
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reservoir, preventing mycobacterial dissemination to near
normal tissues of the host, or to shield itself from host’s
immunologic killing mechanisms and antimicrobial response (15).
Mj PHENOTYPES IN MYCOBACTERIOSIS

Mjs show the increment of plasticity, and they can be
differentiated into two contrary subsets: M1 Mjs and M2 Mjs.
The network of molecular mediators is regulated in response to
the diversity of stimulus. Binding of IFN-g to its cellular surface
receptor, for example, induces the activation of receptor-linked
JAKs, which trigger STAT1 to dimerize and translocate to the
nucleus where it initiates gene transcription that skew toward
M1-correlated functions such as promoted microbicidal activity
and proinflammatory cytokine production (Figure 1C). By
contrast, IL-4 and IL-13 activate STAT6 to promote M2 profile
inhibiting these effects (Figure 1D) (16). Furthermore, Yun−Ji
et al. have shown that c-JUN N-terminal kinase (JNK)-mediated
M1 plasticity was important in the elimination of bacilli via p53-
mediated apoptosis by Mjs. Similarly, virulent MTb H37Rv
infection can induce M2 Mjs and in turn restrain p53 by the
activation of mouse double minute 2 (MDM2). These
consequences elucidated that M2 population decreases p53-
elicited cell death by MDM2 induction (17). In addition, early
secreted antigenic target of 6 kDa (ESAT6), a prerequisite step to
support the formation of granuloma, was one of the effectors
used by MTb to facilitate the proinflammatory M1 Mj at the
primo-infection and then triggered the switch of M1 to M2 Mj
at a later infection phase (18). In particular, proinflammatory
environment or bacterial product could perturb the classical M1
or M2 phenotypes. Bénard et al. recently showed that type I IFN
hyperproduction by MTb-stimulated B cells drove an altered
Mjs polarization toward a regulatory/anti-inflammatory profile,
namely, M2 Mj, during TB which associated with increased
MTb burden in lungs (19). Moreover, Mj polarization may
augment antimicrobial response against MTb in the existence of
vitamin D (20).

Furthermore, high-mobility group N2 (HMGN2) regulates anti-
NTM-inherited response function of Mj. In addition, HMGN2 is
triggered in NTM and IFN-g-primed M1-skewed subpopulation
polarization (21). Yet, M. abscessus infection robustly induced p38
MAPK-dependent heme-oxygenase-1 (HO-1) induction in the
THP-1 cells. HO-1 production was important for M. abscessus
growth during the early stages of infection, and that the HO-1
producted bilirubin and biliverdin, perhaps through modulation of
intracellular ROS levels, may be involved (22). Glycopeptidolipids
limited the virulence of M. abscessus among Mjs by inhibition of
apoptosis and spreading of bacteria (23). In TT, the activation of the
classical signal by M1 Mjs results in the expression of TNF-a,
IFN-g, and iNOS, which trigger the multiplication of free radicals
that remove Bacillus (24). Moreover, the LL shows a superiority of
M2 Mjs that promotes the expression of IL-10, transforming
growth factor-b, fibroblast growth factor-b, Arg-1, CD206, and
CD163, causing immunosuppressive response and tissue
November 2021 | Volume 12 | Article 752657
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repairment (25, 26). M. leprae could then utilize infected Mjs by
two mechanisms: first, M. leprae-infected Mjs preferentially
activated Treg but not Th1 or cytotoxic T-cell responses; second,
M. leprae-infected Mjs were effective in escaping CD8+ T-cell-
primed cytotoxicity (27).

Other than the M1 and M2 subpopulations, a M3 switch profile
exists. The M3 Mj could be divided into two subsets such as the
M1/2 paradigm, which in response to a reprogramming factor M1
(RF-M1) skews toward M2 Mj, and the M2/1 dichotomy, which
responding to RF-M2 favors M1Mj (28). In murine mesothelioma
microenvironment, flow cytometry disclosed that themixture ofM1
and M2 phenotypes (CD11b+ F4/80+ Ly6Chi CX3CR1hi), that was,
M3 Mj, secreted IL-10 and TNF-a. Jackaman et al. have suggested
that the shifts of M1 to M2 Mj and vice versa could occur through
Frontiers in Immunology | www.frontiersin.org 3
the M3 changing formation (Figure 1E) (29). The M3mediator can
be triggered by upregulation of M1-reprogramming signals with
coinstantaneous suppression of the M2 Mj transcription factors,
STAT3, STAT6, and/or SMAD3 in Ehrlich ascites carcinoma (30).
Nevertheless, the role of M3 Mj in mycobacteriosis remains
undetailed, and more studies are required for further investigation.

Unluckily, the part of M4 macrophages following M3
macrophages in Mj phenotypes in mycobacteriosis notably,
considerable evidence for another subpopulation of Mf,
namely, M4 Mf, was frequently observed. In the presence of
CXCL4, M0 Mf changed to M4 Mf, expressing CD206, CD68,
matrix metallo proteinase (MMP) 7, myeloid-related protein 8
(MRP8) and S100A8, producing IL-6, TNF-a, MMP7, and
MMP12 in atherosclerosis and cardiac remodeling (31–33).
A B

D

E F

C

FIGURE 1 | The granuloma and macrophages subsets. (A, B) Two frameworks of mycobacterial infection granuloma. (C–F) Reprogramming of macrophages and
main markers of M1, M2, M3 and M4 Mf. Created with BioRender.com.
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At date, de Sousa et al. have also characterized the existence of
M4 Mf in leprosy. Immunostaining determined that the
expression of CD68, MRP8 and MMP7 was significantly
higher, while IL-6 and TNF-a was significantly lower in the LL
group compared with the TT group. The higher expression of
M4 profile in LL lesions implied that the subpopulation was
ineffective in the removal of bacilli, resulting in the development
of multibacillary form and microbes replication (Figure 1F) (34).
Further work is necessary to robustly establish this mechanism.
Notwithstanding, the role of the new subset in TB and NTM
is unclear.
MGCs IN MYCOBACTERIOSIS

Specific lineage of MFs, particularly MGCs containing a
horseshoe-shaped ring of nuclei, contributes to the core of
granulomas. Previously, cells with three nuclei and the
expression of iNOS were markers for MGC transformation
(35). In addition, the formation of MGC, involving cell fusion
(36), was a Mj-specific, evolutionarily ancient program that
proceeds in response to the persistence of extrinsic and intrinsic
stimuli (37). Mjs or monocytes can be transformed into MGCs
under several statuses, including cultivating with IL-4 or IL-13,
GM-CSF combined with IL-4, IFN-g bounding with IL-3, or
bacterial glycolipids. E-cadherin is a necessary player in fusion,
and its production can be stimulated by the activation of STAT6
through IL-4 or IL-13 pathway, similar to epithelialization under
the circumstance of schistosome granulomas (38). However, the
development of polyploid MGCs involves cell autonomous
affliction of Toll-like receptor-elicited DNA damage, cell
autonomous cell-cycle alterations, and impairment of p53
function by the potent antimicrobial effector, namely, NO,
driving mitotic defects and multinucleation (35, 39). Wang
et al. have corroborated experimental evidence that IL-15
primes M1 Mj transformation, reprograms peripheral blood
mononuclear cells in humans to transform into MGCs via direct
activation of T cells and myeloid cells (40). Queval et al. have
shown that out of the four infection combinations (blood-
derived primary human and bovine Mfs [hMf or bMf,
respectively] infected with M. bovis and MTb), bMf infected
withM. bovis promotes the formation of MGCs. Mechanistically,
they have distinguished the functional differences between M.
bovis and MTb host-pathogen interplay and demonstrated that
MPB70 from M. bovis and extracellular vesicles released by M.
bovis-infected bMf promote Mf multinucleation (41).
Startlingly, local adaptive immune response, particularly
programmed cell death ligand-1, fatty acid, and cholesterol
metabolism could take part in containing granuloma
progression in human lung TB (42, 43).

Unfortunately, the distinct role of MGCs in mycobacterial
infection immune response remains as major gaps. MGCs may
restrict mycobacterial cell-to-cell dissemination, involve in
mycobacterial latency, or promote tissue destruction because of
their high expression of extracellular matrix-degrading
Frontiers in Immunology | www.frontiersin.org 4
epithelioid macrophage marker molecules (EMMMs) (38, 43).
The maturation of MGCs supplies a restrictive environment for
M. bovis. The major lysosomal degradative signals remain
functional within MGC transition. In addition, the increase of
M. bovis in acidified compartments and correlation with LC3B in
matured MGCs indicates that MGCs presented a restrictive
milieu for microorganism replication (41). Nonetheless, the
role of MGCs in NTM and leprosy remains an elusive issue.
ECs IN MYCOBACTERIOSIS

Microscopic analysis discloses that tightly interdigitated cell
membranes are formed in zipper-like arrays to resemble
epithelioid histiocytes. Nevertheless, none of the fusion
molecules is strictly required to give rise to ECs, and the
procedure is complicated. Epithelial differentiation can occur
during days of granuloma transformation. Using the M.
marinum-zebrafish model, Cronan et al. have found recently
that granuloma Mjs undergo reprograming, which involves E-
cadherin-dependent formation of fusogenic epithelial cell (44).
In TB, ESAT6 plus TLR2 can activate iNOS/NO and ROS
signaling to reduce the trimethylation of H3K27, thereby
promoting the expression of EMMM that improved the
transformation of Mjs into ECs (45).

The EC functions are amphibolous and nebulous from being
repleted with organelles and strongly phagocytic and
microbicidal to being nonphagocytic cells with secretory
functions, which might be adjunctive in granuloma function.
Notwithstanding, some people have demonstrated by electron
microscopy that the ECs in TB are “primarily biosynthetic rather
than phagocytic” (46). However, ECs control the multiplication
of mycobacteria at least in one experimental model. Previous
dates, therefore, have elucidated that interference to E-cadherin
production, a tight junction protein among ECs, enhanced the
transformation of untightly structured granuloma, resulting in
unrestricted MTb motion and leads to MTb regeneration and
dissemination (47). In NTM, EC surrogates restrain M. avium
growth and serves as APCs in vitro and in vivo. ECs were
commonly seen in TT and borderline tuberculoid leprosy (BT).
Inconceivably, ECs from TT granulomas exhibited the M1
phenotype (CD68+ CD163−), whereas Mjs in LL granulomas
showed the M2 phenotype (CD68+ CD163+) (48).
FCs IN MYCOBACTERIOSIS

FCs, with deregulated lipid metabolism, are a manifestation of
maladaptive responses in chronic inflammatory statuses (49, 50).
The biogenesis of FCs varies with underlying diseases. FC
biogenesis is involved in the disruption of cholesterol
homeostasis and consequent endocellular accumulation of
cholesteryl esters in atherosclerosis, but it is linked to
triglyceride accumulation in hMjs infected with MTb that is
elicited by TNF receptor pathway via downstream activation of
November 2021 | Volume 12 | Article 752657
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the caspase cascade and mammalian target of rapamycin
complex 1 (51). In comparison, Genoula et al. suggested that
alternatively activated Mjs were loath to the accumulation of
lipid droplets (LDs) via the STAT6, which facilitated the
degradation of lipids. However, MTb offsets lipolysis via
switching alternatively activated Mj metabolism to accumulate
LDs due to the HIF-1a activation (52). Similarly, the zebrafish-
M. marinum granuloma contained FCs and the mycobacterial
ESX1 pathogenicity locus thought to elicit the morphology
switch of Mjs to FCs (53). The biogenesis of FCs in leprosy
remains a challenging enigma.

Diverse, and in part controversial, we summarize the current
findings in the role of FCs in mycobacteriosis. First, Mj ontology
may be a major paramount factor of the inherited response in the
containment of MTb infection. LDs may take part in inherent
immunity against MTb by directly eliminating intracellular MTb
and modulate metabolism to infection (54). Strikingly, PPAR
signaling is responsible for lots of adipocyte differentiation-
correlated genes, leading to amassing of intracellular lipids to
accommodate M. leprae parasitization in host FCs (55, 56).
Furthermore, the formation of LD may support the host by
averting access of MTb to host’s fatty acids (FAs) while favoring
native immune responses (54). In comparison, unlike other
programs, FC formation reduced the avidity of host cell and the
phagocytosis of MTb while protecting the cells from death. The
protective effect is associated with enhanced inflammatory
potential of FCs and cause slower proliferation of MTb. Also,
the balance of TNF-a, IL-1b, IL-6, and NF-kB innate
inflammatory responses was altered in response to MTb vs. LPS
in FCs compared with uninfected controls (57). Additionally, FCs
triggered the formation of necrotic core by releasing triglyceride-
rich content into the caseum (51), resulting in progressive lung
tissue destruction and pulmonary function loss in infected rabbits
and marmosets and in individuals with active TB (50).

Lastly, FCs may result in TB pathogenesis by enhancing MTb
persistence and drug resistance. Moreover, a lipid-rich diet
rather than nutrient deprivation in caseum rewires the
Frontiers in Immunology | www.frontiersin.org 5
condition of MTb toward drug resistance (58). In addition, IL-
10/STAT3 axis primed FC differentiation during MTb infection,
favoring pathogen persistence (59). Palma et al. have shown that
controlled caloric restriction protected murine model against
pulmonary MTb infection by decreasing bacterial load and FC
proliferation to reduce lung damage and limit MTb spreading
(60). Thus, the reduction of LDs in MTb-infected FCs might
restrain the endocellular survival of MTb (61). Likewise,
ultrastructural analysis of demic leprosy tissue showed
colocalization between cholesterol-laden lipid bodies and M.
leprae-containing phagosomes in FCs. The mechanisms of
leprosy indicate that lipid abundance has a pathophysiological
effect on the persistence of microbes in the host. The function of
FCs remains the unsolved mystery of NTM.
DISCUSSION

Mycobacterium-infected disease is an infectious granuloma
disease with a spectrum of clinical and pathological features.
Granuloma formation and immune mechanism are primarily
observed in mycobacteriosis. Different cellular immune and
clinical manifestations are primed by Mj polarization or
reprogramming. Different Mj subphenotypes may be
positively correlated with the number of germs and host
immune response. The increment of M2 Mfs and FCs and a
low degree of MGCs are more likely to attribute to the bacillary
multiplies and impaired innate immune. Conversely, the results
reveal a positive correlation between high-level M1 Mjs and
MGCs, the diminution of FCs, and a limited bacterial load and
immunocompetent innate immune response. Particularly, ECs
are commonly seen in TT and borderline BT, FCs are mostly a
commonly factor in leprosy, particularly LL. Now, we
recapitulate the main findings of Mjs, MGCs, ECs, and FCs in
mycobacterial infection (Table 1). Mj reprogramming or
markers can shed light on the cell immune response in
mycobacteriosis. Moreover, the mycobacterial granuloma
TABLE 1 | Main findings described in Mjs, MGCs, ECs, and FCs.

Cell
types

Stimulus Main cyto/chemokines and
enzymes

Functions/Immune responses References

M1 Mj IFN-g/STAT1, p53, ESAT6 iNOS, IFN-g, TNF-a, CD86, IL-6, and
HMGN2

Microbicidal activity and proinflammatory cytokine
production

(16–18, 24)

M2 Mj IL-4 plus IL-13/STAT6, ESAT6, type I IFN Arg-1, IL-10, TGF-b, fibroblast growth
factor-b, CD206, CD163

Immunosuppressive response and tissue repairment (16–19, 25,
26)

M3 Mj RF-M1/2 IL-10, TNF-a, CD11b, F4/80, Ly6Chi

CX3CR1hi
Undetailed (28, 29)

M4 Mj CXCL4 CD68, MRP8, MMP7 Weak phagocytosis, favoring bacillus regeneration (35–38)
MGC IL-4 or IL-13, GM-CSF plus IL-4, IFN-g plus

IL-3, E-cadherin, IL-15
iNOS, EMMMs, PD-L1 Inhibiting mycobacterial cell-to-cell spread or tissue

destruction and mycobacterial latency
(39, 42, 45–

47)
EC ESAT6 plus TLR2 CD68+ CD163-, CD68+ CD163+ Strongly phagocytic and microbicidal or nonphagocytic

cells with secretory functions
(49, 52)

FC PPAR, IL-10 TNF-a, IL-1b, IL-6 Favoring inherited response or pathogen persistence,
Less-bactericidal, Less-phagocytic

(59–61)
November 2021 | Volume 12 | A
Arg-1, arginase-1; CXCL, C-X-C motif ligand; ECs, epithelioid cells; EMMMs, extracellular matrix-degrading epithelioid macrophage marker molecules; ESAT6, early secreted antigenic
target of 6-kDa; FCs, foamy cells; HMGN2, high-mobility group N2; IFN-g, interferon-gamma; IL, interleukin; iNOS, inducible nitric oxide synthase; IRF, Interferon regulatory factors; Mjs,
macrophages; MGCs, multinucleated giant cells; MMP, matrix metallo proteinase; MRP8, myeloid-related protein 8; PD-L1, programmed cell death ligand-1; RF-M1, reprogramming
factor M1; STAT, signal transducer and activator of transcription; TGF-b, transforming growth factor beta; TNF-a, tumor necrosis factor-alpha.
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model may delineate the development of alternative vaccines for
mycobacteriosis. Accordingly, these researches prompt that
Mjs, especially M1 Mj and LGCs represent a therapeutic
target for the emergence of antibacterial immunity. Together,
therapies targeting some particular cells are being studied as
novel therapies for TB, leprosy, and other bacterial infections.
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