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Abstract: In this article, a combination of non-destructive NIR spectroscopy and machine learning
techniques was applied to predict the texture parameters and the total soluble solids content (TSS)
in intact berries. The multivariate models obtained by building artificial neural networks (ANNs)
and applying partial least squares (PLS) regressions showed a better prediction ability after the
elimination of uninformative spectral ranges. A very good prediction was obtained for TSS and
springiness (R2 0.82 and 0.72). Qualitative models were obtained for hardness and chewiness (R2 0.50
and 0.53). No satisfactory calibration model could be established between the NIR spectra and
cohesiveness. Textural parameters of grape are strictly related to the berry size. Before any grape
textural measurement, a time-consuming berry-sorting step is compulsory. This is the first time a
complete textural analysis of intact grape berries has been performed by NIR spectroscopy without
any a priori knowledge of the berry density class.

Keywords: PCA; ANN; PLS; MC-UVE; β coefficients; R statistics; table grape

1. Introduction

Sensory texture characteristics play a key role in the customer’s perceived quality
of fresh table grape [1,2]. Texture characterization is conventionally performed either by
sensory or instrumental texture analysis. Grape berries are usually sorted based on their
density before the instrumental texture analysis. Berries belonging to the same class (a
small range of density values) are considered technical replicates and are used to compute
statistical parameters such as mean and standard deviation [3]. In the sensory texture
analysis, a trained sensory panel evaluates the product following an experimental design.
The application of specific statistical analyses allows the interpretation of the outcome [4].
Both sensory and instrumental texture analysis are destructive methodologies. This means
they do not allow for any technical repetition of the measurement nor further analysis of
the same sample. In this scenario, the use of a fast and non-destructive analytical technique
that allows a multi-component analysis looks like a promising alternative.

Near-infrared (NIR) spectroscopy associated with multivariate data analysis has been
widely employed for fruit and vegetable analysis [5,6]. Chemometric techniques are applied
to extract the data from the recorded spectra, which are employed to build a prediction
model for various parameters (e.g., sweetness, acidity, antioxidant content, and so on), in
conjunction with data from reference methods.

The NIR technique is a secondary method that strongly relies on the accuracy and
precision of the data obtained with the reference methods when it is used for prediction
purposes [7,8]. The application of NIR spectroscopy to the prediction of textural properties
could also be hindered by the poor accuracy and precision of conventional analytical
methods used for texture properties. Indeed, the primary method employed in this work
was the instrumental Texture Profile Analysis (TPA), which requires an a priori densimetric
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sorting of the berries since it does not allow for technical replicates and relies on a standard
deviation value obtained from a pool of samples within the same density range.

NIR spectroscopy is a sensitive analytical technique, and it can even identify the
geographical origin of samples since it is able to differentiate among samples based on the
effects of different cultural systems and different pesticide treatments, and so on [9].

It is evident how a selection of the samples before the analysis would greatly simplify
the procedure and increase the prediction performances of the models. However, not only
are these preliminary steps time-consuming but, moreover, a model built only for berries
belonging to a selected range of density has limited practical application, since the actual
need is to characterize berries randomly picked in the vineyard.

This work aimed to build optimal prediction models for texture parameters of grapes
of the same variety, grown in the same vineyard but collected from three different distant
blocks without any a priori knowledge on the ripening stage (i.e., density class).

NIR spectroscopy is usually coupled with Partial Least Squares (PLS) regression
analysis that allows the development of linear regression models for the prediction of the
parameters of interest. However, linear regressions models are not always able to effectively
predict parameters that are not linked to a specific compound or class of similar compounds
(e.g., different sugar molecules for sweetness), but rather to a complex combination of
factors (e.g., water content, types of pectins, and so on), which is not yet clearly known, as
it is for texture-related parameters [10,11]. In these cases, the use of non-linear models in
the creation of an optimal prediction model, such as artificial neural networks (ANNs), has
been shown as advantageous over PLS models. The theory and the application of ANNs in
modeling chemical data have been exhaustively reported in the literature [12]. ANNs are
powerful methods with pattern recognition abilities. These abilities make them perfect for
the extraction of quantitative information from large spectroscopic databases where non-
linearity is inherent due to complex biological, environmental, and instrumental variations.
The efficiency of ANN methods is undisputed, however, the network implementation,
method setup, training, and estimation of parameters are relatively complex compared to
linear regression methods [13].

The sugar content of fruits is a parameter usually well-predicted by NIR since sugar
molecules possess NIR active groups and are among the most abundant compounds in
fruits. The total soluble solids (TSS) index is a measure of the density (mass/volume) of
all soluble solids. The TSS value mainly reflects the sugar content in grapes at harvest.
TSS prediction was performed following the same procedure implemented for the tex-
ture parameters as a comparison. To our knowledge, this is the first time that texture
parameters have been predicted from NIR spectra of intact berries with sufficient accuracy
and precision.

2. Material and Methods
2.1. Grape Samples

Regal Seedless grape berries were harvested from the experimental vineyards of
CREA Research Centre for Viticulture and Enology of Turi, Southern Italy (40◦57′26′′ N;
17◦00′26′′ E) in 2018. Fifteen bunches were collected at harvest from three blocks in different
areas of the vineyard. For each block, 3 plastic bags containing 50 berries each were placed
in a cold store at 0 ◦C, until the analysis. A total of 30 berries were randomly picked from
each plastic bag and left at room temperature (20 ◦C) for 2 h. Each berry was weighed on
a top-loading balance (accuracy of ±0.001 g). The berries were then sorted according to
their density by flotation in different saline solutions following the procedure described
elsewhere [14]. The densimetric sorting described here was performed only in order
to obtain standard deviation values, and the NIR analysis was performed without any
knowledge of the density class of the single berries. Each berry was shortly washed with
distilled water and gently tapped with paper before the NIR measurement. After spectra
acquisition, a TPA was performed followed by a TSS measurement.
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The 270 berry samples were measured over several days. Two different operators per-
formed the TPA and NIR analyses in parallel. The dataset used for the external validation is
comprised of samples randomly taken from the whole dataset, and therefore is composed
of berries measured in a span of time. This protocol ensures the robustness of the models.

2.2. TSS Measurement

A total soluble solids (TSS, ◦Brix) measurement, in triplicate at 20 ◦C using a digital
refractometer Atago PR1 (Atago Co., Tokyo, Japan), was performed following the official
OIV method [14].

2.3. Instrumental Texture Analysis

The TPA was performed on each berry using an XforceP texture analyzer (Zwick/Roell
GmbH & Co., Ulm, Germany) equipped with the Zwick Roell software package (testXpert
II Zwick/Roell, ver. 3.31, Ulm, Germany). On each berry, a double compression test was
performed. The individual berries were placed in their equatorial position on a metal base
(first probe) and underwent a double compression with a 35 mm P/35 flat cylindrical probe
(second probe) under 20% deformation. The waiting time between the two compressions
was 2 s and the test speed was 1 mm/s. From the force–time curve obtained, the software
automatically calculated the following parameters: hardness (BH in N), springiness (BS
in mm), cohesiveness (a-dimensional, BCo), gumminess (BG in N, as BH × BCo), and
chewiness (BCh in mJ, as BH × BCo × BS) [15]. The equatorial diameter of each berry was
also provided by the software as the distance between the two probes when the second
probe touched the surface of the berry.

2.4. NIR Spectral Data

NIR spectra of berry samples were acquired in diffuse reflection mode with a TANGO
FT-NIR (Fourier Transform Near-Infrared) spectrometer produced by Bruker, Germany.
The spectral scanning range was 12,000–4000 cm−1 (833–2500 nm), with 8 cm−1 resolution
and 64 scans. Each berry was scanned three times, moving the berry in different positions
(three different berry faces), and the resulting mean spectrum was used to represent each
sample. A background spectrum was automatically recorded, before each sample, while
both temperature and humidity were kept constant.

2.5. Statistical Analysis

The statistical procedures described in detail in the following paragraphs, including
pre-treatments of the original spectra, Mahalanobis distance calculation, principal com-
ponent analysis (PCA), calibration, cross-validation, and external validation of prediction
models obtained with PLS regression and ANN, were performed using the open-source R
statistical software (R version 3.6.3 (29 February 2020) Copyright © 2020 The R foundation
for Statistical Computing [16]). The R packages used are listed in alphabetical order, as
follows: chillR [17], ClassDiscovery [18], enpls [19], ggbiplot [20], ggplot2 [21], keras [22],
mdatools [23], Metrics [24], prospectr [25], signal [26], and SimDesign [27].

2.6. Pre-Treatment Selection, PCA, and Outlier Removal

The original spectra were pre-treated with the preprocessing steps conventionally
applied to spectroscopic data: scatter correction (Standard Normal Variate (SNV), Multi-
plicative Scatter Correction (MSC)), noise reduction by smoothing (Savitzky–Golay smooth-
ing with different window width, polynomial, and derivative order), and scaling (mean
center) [28]. Derivatives can be very useful in NIR spectroscopy for removing some of
the extraneous signals from the spectra. However, since derivatives tend to increase the
noise, we applied the Savitzky–Golay algorithm for smoothing after derivatization. Con-
cerning the derivative degree, we even performed third and fourth derivatives. However,
as expected the higher-order derivatives did not provide any improvement. A PCA was
performed on each pre-treated spectral dataset. A summary of the combination of pre-
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treatments applied together with the cumulative variance explained by the first two PCs is
reported in Supplementary Figure S1.

The pre-treatments to be applied before the PLS modeling were selected based on the
highest amount of cumulative variance explained. However, pre-treatments leading to a
PCA discrimination of the sample based on the experimental design were discarded. The
application of mean centering or SNV as pre-treatments resulted in the samples forming a
quite compact group in the center of the PCA plot, with only a few detected as outliers. The
application of smoothing (despite the polynomial exponent or the sampling space) resulted
in a spread of the samples in the PCA plot with a higher number of spectra recognized as
outliers. In some cases, the samples were divided into three groups, resembling the three
sampling sites used in the experimental box plot design. Since those pre-treatments are
probably able to discriminate the sample mainly based on the experimental design in the
field, the smoothing was discarded.

Based on the selection criteria described above, the selected pre-treatments were: mean
center and SNV followed by mean center. The outlier detection on each of the selected
pre-treated spectral datasets was performed by calculating the Mahalanobis distance for
spectral data. A PLS analysis was performed on each of the selected spectral datasets to
check for outliers and extreme objects based on the computation of the critical limits with
the robust approach (which utilizes median and inter-quartile range instead of mean and
standard deviation, as in the data-driven approach) [29]. The outliers that were eventually
found were also removed from the dataset.

2.7. Development of the Prediction Models
2.7.1. Beta-Coefficients and MC-UVE

Two wavelength selection methods were applied to eliminate the relatively uninfor-
mative variables: the Monte Carlo uninformative variable elimination (MC-UVE), and
the high β regression coefficients [30]. This step was performed to reduce the number of
variables used to build the PLS model and to train the ANN.

MC-UVE is a frequently applied variable selection method that combines the Monte
Carlo strategy with the uninformative variable elimination method. Wavenumbers with
large effects are important for predicting the parameter. However, predictors with large
size but also large variance (their importance may vary on different subsets of the samples)
were discarded [31]. The MC-UVE method builds a large number of models with randomly
selected calibration samples at first, and then evaluates the “importance” of each variable
with a value of stability of the corresponding coefficients in these models. Variables with
poor stability are known as uninformative (their contribution to models is small) variables
and are eliminated [32].

The β regression coefficients were obtained from PLS models as previously de-
scribed [33]. Confidence intervals, statistical significance, and other statistics for the
coefficients were calculated using the Jack-Knife method. The wavelengths that corre-
sponded to the statistically significant highest absolute values of β-coefficients and the
MC-UVE selected ones were used as data inputs to establish multiple linear regression
models using R.

2.7.2. Data Normalization and Split into Training and Test Sets

In the training of a neural network, a common practice is to normalize the input
data (mean close to 0). Normalized data generally increase the learning rate and lead to
faster convergence. A min-max normalization was applied to scale the input variables in
the interval [0,1]. For each selected pre-treatment, the Kennard–Stone algorithm split the
normalized data into a training set composed of 80% of the samples and a test set containing
the other 20%. The training set was used to calculate and optimize the regression models
with cross-validation. The test set was employed to evaluate the predictive ability of
the model.
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2.7.3. PLS Models

A multivariate calibration was performed using the PLS regression (SIMPLS algorithm)
with a leave-one-out cross-validation. The optimal number of components was calculated
for the different number of components and through predictions. The detection and re-
moval of the outliers performed were previously described [34]. Shortly, a robust approach,
insensitive to small and larger deviations, which utilizes the median and inter-quartile
range instead of mean and standard deviation, was used for computing the critical limits
for residual distances [29]. After the outliers’ detection and removal step, a classic approach,
namely the data-driven approach, based on classical estimators (statistical moments), was
used to build the final model [35]. The performance of a PLS regression can be improved
by selecting characteristic wavelengths (holding sample-specific or component-specific
information) from the full spectrum. Eliminating uninformative variables can be useful
to build better quantitative calibration and prediction models [31]. Several methods have
been developed, and are described in the literature. The ones performed on our data are
explained in detail in the previous paragraphs.

2.7.4. ANN Structure

The structure of the feed-forward fully connected neural network consisted of one
layer for each of the three classes. We found that increasing the number of hidden layers
resulted in a worsening of the prediction of our parameters. The number of neurons in
each layer was: number of predictors + 1 for the input, half of the input data for the hidden
one, and one neuron for the output layer since we were performing a regression analysis.
In summary, the ANN configuration was input:hidden:output, n + 1:(n + 1)/2:1, where
n is the numeric vector representing the selected wavenumbers for each NIR spectrum.
The activation function for the first and second layer was a Rectified Linear Unit (ReLU)
activation function with a He normal initialization, commonly used for weight initialization
parameters with ReLu activation. An L1 regularization was applied to both the input and
the hidden layers to reduce over-fitting by keeping network weights small. In the training
procedure of the ANN model, we used the Adam optimizer, the mean squared error as
a loss function (the function to minimize during optimization), and the mean absolute
error to monitor the training. The training was structured into 1000 epochs, with a batch
size of 32 and a validation split of 0.2 (80% of the data was used to train and 20% to test
the model).

3. Results and Discussion
3.1. Raw NIR Spectral Analysis

In a previous article, samples from the same vineyard subjected to identical treatments
were collected, sorted by density, and analyzed with PLS and iPLS regressions for hardness
prediction [11]. In order to evaluate the ability of the NIR technique to overcome the
differences induced by different treatments and avoid the sorting step, in this work, samples
collected from vines grown with three different practices belonging to different areas of the
same vineyard were analyzed.

Figure 1 shows the NIR original and raw spectra of 270 Regal berries. The spectrum
of each berry is a mean of three spectra recorded on different berry faces. Water signals
are dominant in the NIR spectra of grape, since water is the main component of this fruit,
and show very strong absorption bands in the NIR region. Another important component
of grapes is sugar [36]; however, the molecular bonds of the different sugar molecules,
which are active in the NIR region, are often placed in the same region as the major
absorption peaks of water. The comparison of the main peaks observed in our spectra with
literature data allowed a tentative attribution of the signals to molecular bonds of specific
compounds. Wavelengths near 950 and 1460 nm (10,526 and 6849 cm−1) can be related to
the third O–H overtone from water absorption. The absorptions at 1450 and 1950 nm (6896
and 5128 cm−1) were related to the first overtone of the O–H stretch and the combined
stretch and deformation of O–H groups from water and glucose. Absorptions at 1690 nm
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(5917 cm−1) can be related to the first overtone of the C–H3 stretch, while those at 1750 nm
(5714 cm−1) relate to the first overtones of the C–H2 and C–H stretches in glucose and
water. Absorption bands near 1200 nm (8333 cm−1) are related to sugars. Variations near
990 nm (10,101 cm−1) are associated with the O–H stretch second overtones from organic
acids and various sugars. The absorption at 2260 nm (4424 cm−1) is likely related to a
combination of C–H and O–H stretch overtones, the latter from glucose, and absorption at
2302 nm (4344 cm−1) is primarily related to C–H combination vibrations (CH3 and CH2)
from carbohydrates and organic acids [33,37–39].

Figure 1. Spectra of single berries (each spectrum is a mean of three repetitions of different berry
faces).

3.2. Prediction of Unknown Samples

The model created with the known samples can then be used for the prediction of the
same parameters of unknown samples. The analysis performed in this work faced some
challenges linked to the nature of the samples, the precision and accuracy of the primary
methods, and the sensitivity of the NIR technique. Intact berries are highly inhomogeneous
samples. This natural characteristic of the berries produces random noise in NIR spectra
that can be hard to detect and remove.

3.3. TSS Model

For the sugar content prediction model, the selected pre-treatment was an SNV fol-
lowed by a mean center. From high β-coefficients selection, 290 wavenumbers with a
p-value < 0.05 were retained as input data. The prediction capability of the models on the
training and test sets was evaluated by the root mean square error (RMSE), coefficient of
determination (R2), bias, and residual predictive deviation (RPD, ratio of standard error
of performance to standard deviation) index. The performance of the PLS models did
not improve after the removal of the relatively uninformative variables (Figures 2 and 3
and Supplementary Figures S1 and S2). The ANN model gave the best prediction for TSS
with the better fit (R2 0.82), higher RPD (over 2), smaller bias, and smaller RMSE (Figure 4
and Supplementary Figure S3, and Table 1). The β selection of optimal wavebands for
the prediction of TSS in grape berries resulted in better performing models compared to
the MC-UVE. A comparison between the wavenumbers selected with the two methods
shows how the very different spectral areas were chosen. Probably, the selection was based
on β-coefficient extracted spectral areas, which more effectively described our samples.
The β-coefficient plot is shown in Figure 5. The selected wavenumbers do not include the
spectral areas in which the overtones of sugars are usually found. The peak selection criteria
commonly followed are: wavelengths should have a statistically significant large absolute
regression coefficient value and be in specific peaks and valleys of the regression coefficient
curve [40]. Selecting the wavelengths which contribute to the investigated attribute of a
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sample should increase the prediction of the attribute itself. An additional ANN model
was created adding sugar-related statistically significant (p < 0.005) signals to the set of
predictors, however, the prediction ability decreased (302 predictors, test set model: R2

0.4513, RMSE 0.97, bias 0.396, and RPD 1.38). In NIR spectra, a specific attribution to a
class of compounds is not possible since signals are produced by functional groups found
in different molecules. We hypothesized that the contribution to those spectral areas in
which sugar overtones are usually reported in the literature was mainly attributable to
compounds other than sugars (i.e., water and organic acids) for our samples.

Figure 2. PLS model for TSS on the test set, using the full spectral range.

Figure 3. PLS model for TSS on the test set, using the selected wavenumbers.

Table 1. Best performing models’ parameters for TSS.

Model Spectra R2 RMSE Bias RPD

PLS Entire spectrum
(nComp 7)

Training with CV 0.69 1.02 0.004 2.33
External validation 0.69 0.74 0.225 1.91

PLS Selected
wavenumbers (nComp 4)

Training with CV 0.74 0.95 0.007 1.95
External validation 0.46 0.87 −0.303 1.46

ANN
Training with CV 0.93 0.50 −0.132 3.66

External validation 0.82 0.52 −0.048 2.35
nComp: number of selected components; CV: cross-validation; ANN: artificial neural networks.
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Figure 4. ANN model for TSS on the test set.

Figure 5. Beta-coefficient values after outlier removal and mean center: values selected for ANN (in
green), main NIR peaks for water (in blue), sugar and water (in light blue), and sugar and organic
acids (in yellow).

The good correlation between the optical data and this ripening parameter confirms
what has been previously found for both table and wine grapes [41,42].

3.4. Springiness

The model obtained with an SNV pre-process afforded the best prediction for BS
using both PLS and ANN. A model built without any information about berry weight
or size led to models with low prediction ability (data not shown). Due to the known
strong influence of berry size on the TPA parameters, the instrumental outcome of the
texture profile analysis is often normalized with the berry diameter or the berry volume [43].
Therefore, we used the equatorial diameter, which can be easily measured with a caliper as
an additional factor.

A total of 165 wavenumbers from high β-coefficients selection with a p-value < 0.05
were used as input data for the models. The performance of the ANN model strongly
improved after the removal of the relatively uninformative variables, providing a better
prediction over the PLS models (Figures 6–8, and Supplementary Figures S4–S6 and Table 2).
The β selection of optimal wavebands for the prediction of BS in grape berries resulted in
better performing models compared to the MC-UVE. The selected wavenumbers include
just two of the spectral areas, in which the overtones of sugars and water are usually
found, produced by vibrational modes of O–H groups (Figure 9). Since the other signals
produced by sugars are not among the selected wavelengths, we hypothesize that the
influence of chemical composition on the BS is mainly attributable to compounds other
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than sugars. Therefore, it would be interesting to investigate the correlation of BS with the
main molecules bearing hydroxyl functional groups found in grapes such as polyphenols,
alcohols, and amino acids.

Figure 6. PLS model for BS on the test set, using the full spectral range.

Figure 7. PLS model for BS on the test set, using the selected wavenumbers.

Figure 8. ANN model for BS on the test set, using the selected wavenumbers.
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Table 2. Best performing models’ parameters for BS.

Model Spectra R2 RMSE Bias RPD

PLS Entire spectrum
(nComp8)

Training with CV 0.430 0.191 0.0010 1.33
External validation 0.394 0.160 −0.0324 1.33

PLS Selected
wavenumbers (nComp 2)

Training with CV 0.591 0.161 0.0005 1.57
External validation 0.473 0.159 −0.0087 1.39

ANN
Training with CV 0.899 0.191 −0.1079 2.56

External validation 0.724 0.133 −0.0094 1.94
nComp: number of selected components; CV: cross-validation.

Figure 9. Beta-coefficient values after outlier removal and mean center: values selected for ANN (in
green), main NIR peaks for water (in blue), sugar and water (in light blue), sugar and organic acids
(in yellow), and pectins (in red).

3.5. Hardness

The model that obtained with mean-centered spectra provided the best prediction for
the hardness parameter using both PLS (Figures 10 and 11, and Supplementary Figures S7
and S8) and ANN (Figure 12 and Supplementary Figure S9). The best predictive perfor-
mances were obtained from an ANN model built on 759 wavenumbers selected from high
β-coefficients and with mean center as the pre-treatment (Table 3). The number of selected
variables is more than three times higher than the input data used for the prediction of
the other parameters. It is known that if the number of retained variables is too large,
uninformative variables may be contained in the model and make its performance poor.
However, the choice of the number of retained variables on this dataset was crucial in
order to avoid over-fitting of the training set model, which was inevitable with each of the
smaller sets of input data tested. However, even the best ANN model built with the TPA
values for hardness on 759 selected wavelengths only showed screening abilities.

The ANN model provided the best prediction with a better fit, however it is worse
compared to our previous models for the same parameter [11]. This is due to the lack
of berry sorting in the present work. The performance of the developed models has
been strongly influenced by the experimental variability. Sources of variability in the
experimental design of a study can be divided into two categories, biological variability
(due to the biological sample’s nature) and technical variability (due to measurement,
instrumentation, and sample preparation) [44]. It is known that the NIR predictive ability
in terms of accuracy and precision is strictly linked to the accuracy and precision of the
primary reference method used [45]. In previous works, the importance of densimetric
sorting of the berries before TPA testing was shown, since density greatly affects the texture
properties of berries. The density class influences the berry hardness [43]; therefore, without
any densimetric sorting, higher variability was expected. This is reflected in the prediction
model’s accuracy and precision.
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Figure 10. PLS model for BH on the test set, using the full spectral range.

Figure 11. PLS model for BH on the test set, using the selected wavenumbers.

Figure 12. ANN model for BH on the test set, using the selected wavenumbers.
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Table 3. Best performing models’ parameters for BH.

Model Spectra R2 RMSE Bias RPD

PLS Entire spectrum
(nComp 6)

Training with CV 0.44 2.49 −0.007 1.34
External validation 0.44 2.32 −0.061 1.35

PLS Selected
wavenumbers (nComp 8)

Training with CV 0.54 2.27 −0.002 1.49
External validation 0.42 2.28 0.618 1.37

ANN
Training with CV 0.49 2.38 −0.022 1.40

External validation 0.50 2.24 −0.198 1.41
nComp: number of selected components; CV: cross-validation.

The ANN model built on not-sorted berries, however, fulfills a useful purpose since it
can be used to assess the perceived grape crunchiness, not for quantitative purposes but
for a qualitative fast screening.

Interestingly, the peaks of pectins and water were all included in the wavelengths
selected to build the model (Figure 13), while two main peaks linked to sugars and organic
acids were discarded. This observation supports and corroborates the hypothesis of water
and pectin contents’ influence on grape crunchiness [46,47].

Figure 13. Beta-coefficient values after outlier removal and mean center: values selected for ANN (in
green), main NIR peaks for water (in blue), sugar and water (in light blue), sugar and organic acids
(in yellow), and pectins (in red).

3.6. Chewiness

Gumminess and chewiness are two alternative textural parameters. Gumminess is
only applicable to semi-solids and is mutually exclusive with chewiness since a product
would not be both a semi-solid and a solid at the same time [48]. Therefore, even though
the texture analyzer produces a numeric outcome for gumminess and chewiness, we have
only used the chewiness values for our grape samples.

The chewiness value (BCh as BH × BCo × BS) is a value (Joules) which is equal to
force (Newtons) × distance (meters). Several authors have suggested that the influence of
berry size on the force developed is of great importance. Indeed, the instrumental outcome
of the TPA is often normalized using the berry diameter or the berry volume [43]. Therefore,
we added the equatorial diameter values as an additional factor.

From the SNV pre-treated spectra, 116 wavenumbers were selected and used to build
the best prediction model with an ANN. This model was superior to the best PLS models
obtained with a mean center using all the wavenumbers or removing the uninformative
ones (Figures 14–16 and Supplementary Figures S10–S12, and Table 4). The water peak
at 10,526 cm−1 is among the selected wavenumbers (Figure 17). The inclusion of water
confirms previous findings showing that chewiness is a function of the moisture content in
apple slices [49] and plays a critical role in the chewiness of bread. Indeed, both water and
chewiness are lost with bread staling [50].
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Figure 14. PLS model for BCh on the test set, using the full spectral range.

Figure 15. PLS model for BCh on the test set, using the selected wavenumbers.

Figure 16. ANN model for BCh on the test set, using the selected wavenumbers.
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Table 4. Best performing models’ parameters for BCh.

Model Spectra R2 RMSE Bias RPD

PLS Entire spectrum
(nComp7)

Training with CV 0.545 1.096 0.0027 1.49
External validation 0.383 0.790 −0.1506 1.31

PLS Selected
wavenumbers (nComp 5)

Training with CV 0.604 1.002 −0.0053 1.59
External validation 0.436 0.910 −0.0926 1.35

ANN
Training with CV 0.900 0.505 −0.2082 2.90

External validation 0.530 1.176 0.0017 1.48
nComp: number of selected components; CV: cross-validation.

Figure 17. Beta-coefficient values after outlier removal and mean center: values selected for ANN (in
green), main NIR peaks for water (in blue), sugar and water (in light blue), sugar and organic acids
(in yellow), and pectins (in red).

3.7. Cohesiveness

Cohesiveness describes how well a food retains its form between the first and second
chew. The BCo value is directly related to the compression strength of the internal bonds
comprising the body of the food (due to the intermolecular attraction) [51]. Even the best
models obtained for BCo had an R2 below 0.5 for both PLS and ANN models (data not
shown). We hypothesize that the NIR spectra were not able to predict this parameter since
the difference among our samples was too small. Indeed, the cohesiveness values show a
small variability for values obtained with the texture analyzer (0.24 ± 0.03) and for BCo
values divided by the equatorial diameter (0.012 ± 0.002).

4. Conclusions

In this article, NIR spectroscopy was applied to intact berries to predict textural
parameters of table grape for fast screening. Together with the texture parameters, a
chemical-related parameter (TSS) was measured for comparison. Besides the difficulties
linked to the non-homogenous nature of the grape berries, an additional hurdle was the
inevitable experimental variability arising from the lack of knowledge of the berry density
class. The density class selection is compulsory before any instrumental texture measure,
however, this is a time-consuming step we wanted to avoid. Unfortunately, an accurate
quantification for all the textural parameters was not achieved without a density selection.

We obtained accurate quantitative models for springiness and sugar content and only
qualitative models for hardness and chewiness. No satisfactory calibration model could be
established between the NIR spectra and cohesiveness. However, previous articles found
that the perceived cohesiveness is not accurately predicted by instrumental measures based
on food rheological properties [51]. Therefore, we plan to build a prediction model for this
parameter based on sensory data.
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Based on these results, it was concluded that NIR spectroscopy combined with an
appropriate wavelength selection could be applied for a rapid preliminary screening of the
main textural parameters of grape berries prior to other analyses.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/foods11030281/s1, Figure S1. PLS model for TSS on the training
set using the full spectral range; Figure S2. PLS model for TSS on the training set using the selected
wave numbers; Figure S3. ANN model for TSS on the training set; Figure S4. PLS model for BS on
the training set using the full spectral range; Figure S5. PLS model for BS on the training set using the
selected wave numbers; Figure S6. ANN model for BS on the training set using the selected wave
numbers; Figure S7. PLS model for BH on the training set using the full spectral range; Figure S8. PLS
model for BH on the training set using the selected wave numbers; Figure S9. ANN model for BH on
the training set using the selected wave numbers; Figure S10. PLS model for BCh on the training set
using the full spectral range; Figure S11. PLS model for BCh on the training set using the selected
wave numbers; Figure S12. ANN model for BCh on the training set using the selected wave numbers.
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