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Abstract
A number of studies on network analysis have focused on language networks based on

free word association, which reflects human lexical knowledge, and have demonstrated the

small-world and scale-free properties in the word association network. Nevertheless, there

have been very few attempts at applying network analysis to distributional semantic models,

despite the fact that these models have been studied extensively as computational or cogni-

tive models of human lexical knowledge. In this paper, we analyze three network properties,

namely, small-world, scale-free, and hierarchical properties, of semantic networks created

by distributional semantic models. We demonstrate that the created networks generally

exhibit the same properties as word association networks. In particular, we show that the

distribution of the number of connections in these networks follows the truncated power law,

which is also observed in an association network. This indicates that distributional semantic

models can provide a plausible model of lexical knowledge. Additionally, the observed dif-

ferences in the network properties of various implementations of distributional semantic

models are consistently explained or predicted by considering the intrinsic semantic fea-

tures of a word-context matrix and the functions of matrix weighting and smoothing. Further-

more, to simulate a semantic network with the observed network properties, we propose a

new growing network model based on the model of Steyvers and Tenenbaum. The idea

underlying the proposed model is that both preferential and random attachments are

required to reflect different types of semantic relations in network growth process. We dem-

onstrate that this model provides a better explanation of network behaviors generated by

distributional semantic models.

Introduction
How word meaning is represented in human memory is a longstanding problem that has
attracted the interest of linguists, philosophers, psychologists and other scholars. A number of
theories and models for lexical representation or the mental lexicon—e.g., semantic networks
[1, 2], feature-list theory [3, 4], and prototype theory [5, 6]—have been proposed, and their
validity has been examined and debated using psychological experiments [7, 8]. Computational
modeling, especially the connectionist model [9], has also been employed to explore lexical
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representation. Brain science has revealed the biological and neuroanatomical basis of the men-
tal lexicon [10].

Recently, network science or network analysis has emerged as a new research methodology
for the study of language in general and semantic representation in particular [11–13]. Net-
work analysis takes as input a network produced from the observable data (i.e., word cooccur-
rence and word association) about the mental lexicon or human semantic memory, and reveals
the properties of the network. These network properties provide information about the struc-
ture of the mental lexicon and the cognitive mechanism underlying the semantic structure, nei-
ther of which is directly observable from the data [12]. Furthermore, despite their simplicity,
network models that simulate the observed network properties can provide valuable insight
into the process of lexical development by which these network properties emerge. Therefore, a
large number of network studies have investigated semantic or lexical representation and its
related phenomena such as word co-occurrence [14–17], the phonological lexicon [18, 19], the-
saurus [20, 21], and verbal fluency [22]. The most studied phenomenon among these is free
word association [23, 24], because it reflects human lexical knowledge acquired through world
experience, thereby revealing the structure of human semantic memory or the mental lexicon
more directly and efficiently than other lexical phenomena.

Network studies on word association have demonstrated the small-world and scale-free
properties of semantic networks [21, 25–29]. For an association network where each word is
represented by a node and an association relation between two words is represented by an edge
joining the corresponding nodes, the small-world property indicates that any two word nodes
are connected by traversing only a few edges, even if the network is highly clustered locally.
The scale-free property indicates that most word nodes are poorly connected, while a relatively
small number of words are highly connected; as a result, the distribution of the number of con-
nections for each node follows a power law. All existing studies agree on the small-world prop-
erty of the association network, but some studies [29] suggest that the association network is
not completely scale-free; rather the network is characterized by a power law truncated by an
exponential cutoff, where the most connected words have a smaller connection than would be
expected in a purely power-law distributed network. These network properties are expected to
reveal the cognitive mechanism underlying the structure of the mental lexicon [12]. For exam-
ple, the small-world structure sheds light on an efficient search process in semantic memory.
Investigating various network models that generate scale-free networks provides valuable
insight about psychological processes involved in lexical development [21].

Another emerging topic in the study of lexical representation is the distributional semantic
model (DSM) [30–32] (also known as a vector space model). Since Landauer et al. [33] pub-
lished their seminal study on latent semantic analysis (LSA), the DSM framework has been
extensively studied as a computational or cognitive model of human semantic memory. In
DSMs, the lexical meaning of a word is represented by a high-dimensional vector in a semantic
space, and the degree of semantic relatedness between any two words can easily be computed
from their vectors. Word vectors are constructed from a corpus by observing distributional sta-
tistics of word occurrence. DSMs have been demonstrated to explain a number of cognitive
phenomena relevant to semantic knowledge or the mental lexicon such as similarity judgment
[33, 34], semantic priming [35], visual attention to semantically relevant objects [36], and
embodiment [37, 38]. The primary advantage of DSMs is that, despite their simplicity, they are
very useful for a variety of applications in not only cognitive modeling but also natural lan-
guage processing; hence, an increasing number of studies have focused on DSMs and proposed
a variety of new methods for constructing word vectors.

However, these two emerging topics have not yet been linked in the literature, and DSMs
have rarely been investigated in network analysis, in contrast to the growing network-analytic
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interest in word association and the lexical structure of language. It is quite important in the
study of DSMs to examine whether they exhibit the same network properties as observed in the
analysis of word association and other language networks. In so doing, network analysis can
provide evidence for (or against) the validity of DSMs as a cognitive model of semantic mem-
ory or the mental lexicon.

One notable exception is the study by Steyvers and Tenenbaum [21], which investigated
whether LSA [31, 33], one of the most popular versions of DSMs, exhibits the same network
structure as word association. They found that LSA networks were small-world, but not scale-
free. A subsequent study by Griffiths et al. [39] obtained the same result; the scale-free property
of word association is difficult to reproduce in LSA, although it is appropriately simulated by
the topic model based on latent Dirichlet allocation. From these results, they concluded that
LSA is limited as a model of human semantic memory. However, their findings do not imply
that DSMs generally fail to model semantic memory, because a variety of methods for con-
structing semantic spaces other than LSA are devised in the DSM framework [30, 32]. Further-
more, as Morais et al. [29] pointed out, their analysis of the scale-free property was quite
subjective in that their claim of power-law behavior was derived solely from the observation of
the behavior of distribution without any statistical testing.

Therefore, in this paper, we analyze the small-world, scale-free, and hierarchical properties
of semantic networks constructed from various DSMs in a more systematic way to determine
whether DSM networks exhibit the same properties as association networks. Through this net-
work analysis, we investigate whether DSMs can provide a psychologically plausible model of
semantic memory. Furthermore, we explore quantitative variations in these network properties
among various DSM implementations and attempt to explain or predict them in terms of the
intrinsic features and functions of DSMmethods for constructing semantic spaces. In doing so,
we expect network analysis to provide a new way of analyzing the properties and structures of
semantic spaces created by DSMs.

In this paper, we also discuss a growing network model that produces a semantic network
with the observed network properties. Steyvers and Tenenbaum [21] proposed a network
model, based on the Barabási–Albert model [40] for generating scale-free networks, that simu-
lates the scale-free and small-world properties of word association networks. Their model is
characterized by the process of semantic differentiation, an extension of preferential attach-
ment in the Barabási–Albert model. During the process of network growth a new node is con-
nected, not to a node chosen with probability proportional to the number of connections for a
node, but to the neighbors of the chosen node. Although the process of semantic differentiation
enables the network model to simulate small-world properties, the authors’ evaluation of their
model is not sufficient to justify the ability of the model to reproduce the scale-free property of
real semantic networks. Additionally, their model does not have enough flexibility to reflect
behavioral diversity of real semantic networks.

To overcome these limitations, in this paper we propose a new network model by extending
the Steyvers–Tenenbaum model, and demonstrate that the proposed model provides a better
explanation of the behaviors generated by various DSM implementations than the original
Steyvers–Tenenbaum model. The basic idea underlying our extension of the Steyvers–Tenen-
baummodel is consideration of a different mechanism for network growth other than semantic
differentiation (or preferential attachment) to reflect different types of semantic relations
between words to be connected in a semantic network. For this purpose, we introduce the syn-
tagmatic-paradigmatic distinction for semantic relations [41], and integrate the process of ran-
dom attachment into the network model.
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Analysis of Word Association Network
Before examining the network properties of DSM networks, we confirm whether our network
analysis replicates the properties of a word association network demonstrated by previous
studies.

Materials and Methods
We used the English word association norm collected at the University of South Florida (USF)
[24], which has also been used in previous studies on association networks. Following these
studies, we constructed a directed network as follows. First, only cue words were represented as
nodes (i.e., words that appeared only as an associate were not considered). Second, two word
nodes x and y were connected by a directed edge from x to y, if the word y was listed as an asso-
ciate of cue x by at least two of the participants in the association experiment. We also gener-
ated an undirected network by replacing directed edges with undirected ones.

We then analyzed the properties of the word association network according to the method
described below. Following existing studies on word association networks [21, 29], we
restricted the analyses in this paper to the largest connected component. For the small-world
property, we computed the clustering coefficient C and the average shortest path length L of a
generated network, and examined whether the network satisfies C� Crandom and L� Lrandom
(where Crandom and Lrandom are the clustering coefficient and average shortest path length of
the corresponding random network, respectively) [42].

For the scale-free property, we examined whether the degree distribution of the target net-
work follows the power law P(k)* k−α. This was carried out not only by observing the shape
of the plotted distribution, but also by applying Clauset et al.’s [43] statistical framework for
testing the goodness-of-fit between the data and the power law. In their framework, the power-
law distribution is fitted to the data (i.e., plotted distribution) and the power-law exponent α is
estimated using maximum likelihood estimation. This fitting procedure assumes some lower
bound kmin to the power-law behavior, for an empirical reason that most naturally occurring
distributions only follow a power-law distribution above some lower bound. The lower bound
kmin is identified by minimizing the Kolmogorov–Smirnov distance DKS between the data and
the theoretical power-law fit. In this study, to avoid generating a biased estimate by excluding
many legitimate data points, we estimated the optimal kmin within the range kmin� 50. The
goodness-of-fit test was conducted by empirically estimating the probability p that DKS for the
observed data is smaller than that for synthetic data randomly drawn from the power-law dis-
tribution that best fits the observed data. In other words, p denotes the probability of obtaining
the observed data under the null hypothesis that the data follow the estimated power-law
model. If p is small, the null hypothesis is rejected. Clauset et al. [43] suggested that the power
law is a plausible hypothesis if p> 0.1; we also used this criterion.

We also compared the estimated power-law model with two alternative models, namely the
truncated power-law distribution P(k)* k−αe−λk, and the exponential distribution P(k)* e−λk.
These two distributions are frequently observed in many real systems whose degree distribu-
tions do not follow the power law [44]. Selection among these three models was conducted
using 10-fold cross-validation. Each model was fitted to the training data by maximum likeli-
hood estimation and its prediction error for the test data was estimated by a log-likelihood.
Note that, for the statistical testing described here, we employed a Python package powerlaw
[45].

Finally, we analyzed the hierarchical property of the network using the scaling law C(k)* k−β

of the local clustering coefficient C(k) of a node with degree k [46]. A number of studies [46–48]
have demonstrated that networks involving a hierarchical topology exhibit this scaling law.
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However, for non-hierarchical networks, the clustering coefficient C(k) of a node is independent
of its degree k. According to this finding, we examined the correlation between the local cluster-
ing coefficient C(k) and degree k on a log-log plot and a hierarchical exponent β for target net-
works. The hierarchical exponent β for many hierarchical networks is almost equal to 1;
however, some studies [46, 49, 50] suggest that β = 1 is neither a sufficient nor necessary condi-
tion for a network to be hierarchical. The scaling law with β< 1 also indicates the hierarchical
topology of the network.

Results
Table 1 shows the network statistics for the USF association network and their corresponding
random graphs. These random graphs were generated by randomly rearranging connections in
the corresponding association networks. The values of Lrandom and Crandom were computed by
averaging over 10 random graphs. The association network has a small-world structure because
C� Crandom and L� Lrandom. This result is completely consistent with existing findings on the
analysis of association networks [21, 25, 27–29].

Regarding the scale-free property of the association network, Fig 1a and 1b plot the in-
degree distribution of the directed association network and its cumulative distribution. These
graphs show that the distributions deviate from the pure power law, as argued by Morais et al.
[29]. The goodness-of-fit test for the best-fit power-law model (α = 2.91, kmin = 35) indeed
ruled out the possibility of the pure power law, DKS = 0.048, p = .01. Furthermore, the model
selection procedure using 10-fold cross-validation indicated that the truncated power law (i.e.,
the power law with an exponential cutoff) was selected as the model that best fits the observed
distribution (average log-likelihood: −176.41 for the power law, −175.60 for the truncated
power law, and −176.63 for the exponential). These results are completely consistent with the
findings of Morais et al. [29]. It should be noted that, in this paper, we address only the in-
degree distribution to examine the scale-free property of semantic networks, because using the
out-degree or the degree of the undirected network would introduce bias that stems from the
task characteristics such as the number of associations [25].

Comparison of the estimated power-law exponent α in this and other studies also suggests
that the truncated power law better describes the in-degree distribution in the USF association
network. The estimated exponent is α = 2.91 in this study and α = 2.92 in that by Morais et al.
[29], but these values are higher than those of other studies claiming the pure power-law fit
(e.g., α = 1.79 [21], α = 2.03 [39], and α = 2.13 [25]). Interestingly, our estimate of α for the
truncated power-law distribution is 1.78, which is close to their estimates of the pure power
law.

We also applied the fitting procedure to the observed in-degree distribution below kmin(= 35).
This analysis is motivated by the existing finding that some semantic networks obey the power
law with initial exponential decay [51]. The result is that the exponential distribution with

Table 1. Statistics of the semantic network (n = 5,018) constructed from the University of South Florida (USF) association norms.

m nCC hki kmax D L Lrandom C Crandom

Directed 63,620 4,845 12.7 313 10 4.26 3.64 0.187 0.005

Undirected 55,236 5,018 22.0 330 5 3.04 3.03 0.187 0.005

Note. n = number of nodes; m = number of edges; nCC = number of nodes of the largest (strongly) connected component; hki = average node degree;

kmax = maximum node degree; D = diameter of the network; L = average shortest path length; Lrandom = average shortest path length of the random

network with the same size and density; C = clustering coefficient; Crandom = clustering coefficient of the random network with the same size and density.

doi:10.1371/journal.pone.0136277.t001
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λ = 0.124 best fits the data (average log-likelihood: −1375.49 for the power law, −1372.28 for the
truncated power law, and −1333.30 for the exponential). Fig 1c shows that this exponential fit
appears to be the case: P(k) decreases roughly linearly with the degree on the semilogarithmic
(i.e., log-linear) scale, and the slope of the red line is equal to λ log e.

Finally, to examine whether a hierarchical structure is involved in the association network, a
local clustering coefficient C(k) is plotted against the degree k on a logarithmic scale, as shown
in Fig 2. This plot is derived from the undirected version of the largest strongly connected com-
ponent of the directed USF network. Fig 2 shows that the USF association network has a hierar-
chical structure. The local clustering coefficient C(k) of a node is negatively correlated with its
degree k on a log-log plot (r = −.71). The dependency is linearly fitted in a log-log plot, as indi-
cated by the blue line connecting the average of local clustering coefficients across points with
the same degree. The estimated slope β = 0.75 is smaller than 1, but, interestingly, the maxi-
mum value of C(k) follows the line with β = 1.02. This result indicates that hierarchical modu-
larity exists in the USF association network.

Fig 1. Degree distributions of the directed University of South Florida (USF) association network. (a) in-degree distribution, (b) cumulative in-degree
distribution, (c) degree distribution below kmin on a semilogarithmic scale.

doi:10.1371/journal.pone.0136277.g001

Fig 2. Local clustering coefficient as a function of the node degree for the USF network. Red plots
denote the local clustering coefficient of an individual node, the blue line connects the average local
clustering coefficient with the same degree, and the dashed line denotes the clustering coefficient C. β = the
hierarchical exponent, r = the correlation coefficient betweenC(k) and k.

doi:10.1371/journal.pone.0136277.g002
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Analysis of DSM Networks

Materials and Methods
To compare DSM networks directly with the USF association network, we used only the cue
words of the USF association norm when creating the DSM networks. As a corpus for DSMs,
we used the written and non-fiction parts of the British National Corpus, comprising 491,106
documents, 73,422 distinct words, and 4,702 cue words.

We created a semantic network from a given semantic space by first computing the cosine
similarity between pairs of words and then determining local neighborhoods using cosine simi-
larity. Local neighborhoods were determined by two methods, namely the k-nn method and the
cs-method. The k-nn method was used by Steyvers and Tenenbaum in their study [21], while
the cs-method was devised in this study. Although both methods create directed edges from
each word to its nearest neighbors, they differ in the way that the number of nearest neighbors
is determined for each word. In the k-nn method, the number of neighbors for word wi is set to
the number of associates of that word in the USF association norms. Therefore, the out-degree
distribution of a DSM network is identical to the out-degree distribution of the USF association
network. In the cs-method, the number of neighbors for wordwi is determined to be the smallest
k ¼ jVN

i j such that the cumulative similarity ratio of VN
i exceeds the threshold R:

P
wj2VN

i
cosðwi;wjÞP

wj2Vcosðwi;wjÞ
> R ð1Þ

where VN
i is the set of k nearest neighbors of wi, V is the set of all words except wi, and cos(wi,

wj) is the cosine similarity between words wi and wj. The threshold R was determined such that
the created DSM network has the same hki as in the directed association network. Note that
Steyvers and Tenenbaum [21] also used the ε-method, in which local neighborhoods are com-
puted by thresholding the cosine similarity; that is, any pair of words whose cosine value is
equal to or higher than threshold ε is connected by an undirected edge. However, the symmetric
nature of this method is not appropriate for modeling semantic knowledge underlying word
association. In human word association, having word x as an associate of cue word y does not
imply that y is an associate of x, but the ε-method cannot capture this difference. Therefore, we
did not use the ε-method in this paper.

In the DSM framework, semantic spaces are constructed according to the following three
steps [32].

1. Initial matrix construction: A word-context frequency matrix A is constructed with nw
rows for words and nc columns for the contexts. An element aij of A is the frequency fij of
word wi in a context cj; hence, the i-th row corresponds to the initial word vector for the i-th
word wi.

2. Weighting: The elements of the matrix A are weighted.

3. Smoothing: The dimension nc of the row vectors of A is reduced to nr.

The notion of context cj in Step 1 can generally be classified into two types: “documents as
contexts” and “words as contexts.” For a documents-as-contexts (or word-document) matrix,
the frequency fij for A is the number of times that word wi occurs in document dj. For a words-
as-contexts (or word-word) matrix, the frequency fij is the number of times that word wi cooc-
curs with word wj within a certain range such as a window of some words. In this paper, we
used both types of contexts to construct the initial matrix, and a context window of size two
(i.e., two words on either side of the target word) was used to generate a word-word matrix.

Network Analysis of Distributional Semantic Models
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In Step 2, we employed two popular weighting methods, tf-idf and ppmi. In the tf-idf
weighting scheme, the weight is calculated as the product of the local weight based on the term
frequency and the global weight based on the inverse document frequency or entropy. In this
paper, we used the following function (i.e., the product of the logarithm of the word frequency
and the entropy) [52, 53]:

aij ¼ log ðfij þ 1Þ � 1þ
Pnc

k¼1 Pik logPik

lognc

� �
ð2Þ

Pij ¼
fijPnc
k¼1 fik

ð3Þ

where aij is a weighted element for word wi in context cj. In the ppmi weighting scheme, weight
aij is calculated by pointwise mutual information defined in Eq 5, and negative values are
replaced with zero [34].

aij ¼
pmiij ðif pmiij > 0Þ

0 ðotherwiseÞ
ð4Þ

(

pmiij ¼ log
pij

pi�p�j

pij ¼
fijPnw

i¼1
Pnc

j¼1 fij

pi� ¼
Pnc

j¼1 fijPnw
i¼1

Pnc
j¼1 fij

p�j ¼
Pnw

i¼1 fijPnw
i¼1

Pnc
j¼1 fij

ð5Þ

In Step 3, matrix smoothing was conducted using singular value decomposition (SVD). In
this study, we set nr = 300, which is also used in typical applications of LSA.

Using the methods explained above, we created 24 DSM networks from all possible combi-
nations of the two methods for determining neighborhoods (k-nn or cs-method), two initial
matrices (word-document or word-word), three weighting options (tf-idf, ppmi, or
unweighted), and two smoothing options (SVD or unsmoothed). Note that LSA, which was
used by Steyvers and Tenenbaum [21] to construct semantic spaces, corresponds to the combi-
nation of a word-document matrix, tf-idf weighting, and SVD smoothing. We then analyzed
the properties of these DSM networks according to the method described in the Analysis of
Word Association Network section.

Results for Small-world Property
Table 2 shows the network statistics for some representative examples of DSM networks. (Sta-
tistics for all 24 DSM networks are given in S1 Table). Fig 3 depicts the clustering coefficient
and shortest path length of all 24 DSM networks and their corresponding random graphs.
These random graphs were generated by randomly rearranging connections in the correspond-
ing semantic networks. The values of Lrandom and Crandom were computed by averaging over
ten random graphs. Although there are slight differences in these variables among the DSM
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networks, these results clearly indicate that all the DSM networks have a small-world structure
(i.e., high clustering coefficient, small shortest path length, and high connectivity).

Results for Scale-free Property
In this section, we first discuss the overall results of the statistical analysis (i.e., the goodness-
of-fit test for the power law and model selection by 10-fold cross-validation) for all the DSM
networks. Thereafter, we provide a more detailed analysis of the scale-free property of DSM
networks by observing their in-degree distributions. We first compare the in-degree distribu-
tions for two types of initial matrices and then examine the effect of weighting and smoothing
on power-law behavior.

Overall result. Table 3 shows the results of statistical testing of all the DSM networks. The
symbols for each code are divided into two parts. The first symbol (+ or -) denotes the result
of the goodness-of-fit test for the power law, where + denotes that the pure power law is a plau-
sible hypothesis for the data and - indicates that it can be ruled out. The subsequent symbols
(any of P, T, and E) denote the most appropriate distributions selected by 10-fold cross-valida-
tion. Symbols P, T, and E denote, respectively, that the power law, truncated power law, and
exponential are selected as the distribution with the best fit. If multiple models have equal

Table 2. Statistics for some representative examples of distributional semantic model (DSM) networks (n = 4,702).

m nCC hki kmax D L Lrandom C Crandom

Word-document matrix, unweighted, unsmoothed, k-nn method

Directed 60,262 4,519 12.8 1,894 13 4.84 3.59 0.222 0.006

Undirected 49,274 4,702 21.0 2,044 5 2.94 3.06 0.228 0.005

Word-document matrix, tf-idf, unsmoothed, k-nn method

Directed 60,252 4,403 12.8 2,193 14 5.05 3.58 0.257 0.006

Undirected 50,219 4,702 21.4 2,456 5 2.83 3.04 0.270 0.005

Word-document matrix, unweighted, smoothed, cs-method

Directed 59,613 3,897 12.6 176 23 5.92 3.55 0.331 0.006

Undirected 49,925 4,702 21.2 201 8 3.86 3.04 0.318 0.005

Word-document matrix, tf-idf, smoothed, cs-method

Directed 59,613 4,156 12.6 296 27 5.83 3.58 0.317 0.006

Undirected 48,622 4,702 20.7 321 8 3.88 3.07 0.308 0.005

Word-word matrix, unweighted, unsmoothed, k-nn method

Directed 60,251 3,296 13.2 831 24 8.25 3.43 0.363 0.008

Undirected 55,785 4,702 23.7 1122 6 3.06 2.95 0.336 0.005

Word-word matrix, ppmi, unsmoothed, k-nn method

Directed 60,250 3,748 13.1 199 26 6.08 3.50 0.294 0.007

Undirected 51,316 4,702 21.8 235 7 3.54 3.02 0.255 0.005

Word-word matrix, unweighted, smoothed, cs-method

Directed 59,613 3,563 12.8 388 18 6.35 3.50 0.342 0.007

Undirected 52,700 4,702 22.4 473 7 3.48 3.00 0.308 0.005

Word-word matrix, ppmi, smoothed, cs-method

Directed 59,613 4,474 12.7 106 19 5.77 3.60 0.251 0.006

Undirected 48,504 4,702 20.6 108 8 3.76 3.07 0.242 0.005

Note. n = number of nodes; m = number of edges; nCC = number of nodes of the largest (strongly) connected component; hki = average node degree;

kmax = maximum node degree; D = diameter of the network; L = average shortest path length; Lrandom = average shortest path length of the random

network with the same size and density; C = clustering coefficient; Crandom = clustering coefficient of the random network with the same size and density.

doi:10.1371/journal.pone.0136277.t002
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average log-likelihoods rounded to one decimal place, all the corresponding symbols are listed
in the order given above. Details of the statistical tests are given in S2 Table.

Code +P indicates that a pure power-law distribution is definitely the most appropriate,
while codes +PT and +PTE indicate that a pure power law is very likely to be most appropriate.
Conversely, codes -T, -TE, and +T indicate that a truncated power-law degree distribution is
most appropriate, although in the case of -TE, an exponential distribution cannot be ruled out.
Other possible code patterns are not obtained for DSM networks. Note that the test result for
the USF association network is coded as -T, which favors a truncated power law.

Overall, Table 3 shows that all the DSM networks exhibit a power-law or a truncated
power-law distribution; 13 networks are coded as +P, +PT, or +PTE in favor of the pure power
law, and the remaining 11 networks are coded as -T, -TE, or +T in favor of the truncated
power law. In addition, we also analyzed the observed in-degree distribution below the lower

Fig 3. Average shortest path length L and clustering coefficientC of all distributional semantic model
(DSM) networks. The hatched part of each bar graph represents Lrandom andCrandom.

doi:10.1371/journal.pone.0136277.g003
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bound kmin using the same procedure as in the analysis of the word association network. The
result is that, for all 24 DSM networks, the exponential distribution is a significantly better fit
for the data below kmin than both the pure and truncated power laws. These results provide
direct evidence against Steyvers and Tenenbaum’s [21] argument that LSA networks do not
have a power-law distribution, and thus, LSA cannot provide a plausible model of semantic
memory. Instead, the results indicate that a DSM has the ability to produce semantic networks
with a degree distribution that is the same as or similar to that of the association network.
Hence, network analysis also confirms that a DSM can provide a psychologically plausible
framework for modeling human semantic memory.

Comparison of initial frequency matrix. As shown in Fig 4 (and in the second column
+T of Table 3), the in-degree distributions of the DSM networks generated from the initial
word-word matrix follow the truncated power-law degree distribution. These distributions are
similar to, but less truncated than the distribution of the USF association network.

In contrast, as shown in Fig 5a–5d, the shape of the degree distributions of the DSM net-
works generated from the word-document matrix differs from both the distribution of the
association network and the pure power law; the distributions decay exponentially for small k,
but the decay suddenly decreases in a linear fashion, which is unlikely to be observed in real-
world systems. Although the second column of Table 3 indicates that a pure or truncated
power law is favored over an exponential one, the shape obviously differs from these three
distributions.

One probable explanation for these unnatural distributions is that, owing to its high spar-
sity, the word-document matrix may generate inappropriate DSM networks, whereby word
pairs with very low cosine similarity are connected by edges. In general, a word-document
matrix is sparser than a word-word matrix generated from the same corpus; the percentage of
zero elements was 99.36% for the word-document matrix used in this study, and 78.84% for
the word-word matrix. The high sparseness of the word-document matrix leads many word
pairs to have very low cosine similarity. Indeed, in the word-document-based DSM network by
the cs-method, about half the word pairs connected by an edge had a cosine of 0.05 or less.
These low-cosine word pairs must be chosen for an edge such that the DSM network has the
same average degree as the association network. It is appropriate for word pairs that are some-
what related to be connected by an edge. However, despite being semantically unrelated, many
other pairs are chosen because they have low cosine values by chance. In this case, more fre-
quent words tend to have a low, but non-zero cosine similarity to more unrelated words,
because they have more non-zero elements in their vector representation. The fatter tail

Table 3. Summary of statistical testing for power-law behavior of in-degree distributions of directed DSM networks.

matrix / method Unsmoothed Smoothed

raw tf-idf ppmi raw tf-idf ppmi

word-document / k-nn +T +T +PT +PT +P +PTE

word-document / cs +PT +PT +PT +PT +P +T

word-word / k-nn +T -TE -T +T +PT +T

word-word / cs +T -T +PT +T +PT +PT

Note. Codes used in this table start with a symbol denoting the result of the goodness-of-fit test for the power law, followed by one to three symbols

denoting the result of model selection by 10-fold cross-validation. Symbol + denotes that the power law fits the data, while symbol - denotes that the

power law is ruled out. Symbols P, T, and E denote that the power law, truncated power law, and exponential, respectively, are selected as the best fitting

distribution. When more than one symbol is presented as the result of model selection, it means that the average log-likelihoods of these models, rounded

to one decimal place, are equal.

doi:10.1371/journal.pone.0136277.t003
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observed in the degree distribution for the word-document matrix may be a consequence of
this frequency effect; some frequent words are connected by a large number of edges. Hence, if
a network is created by thresholding the cosine similarity of word pairs, it is expected that its
degree distribution approaches the (truncated) power law. Indeed, as shown in Fig 5e and 5f,
the degree distribution of the network we created using the cs-method by limiting word pairs
to be joined by an edge to those with the cosine greater than 0.05, followed the truncated power
law. The same result was obtained in networks created using the k-nn method.

Effect of weighting. Weighting does not change the unnatural degree distribution
observed in the word-document-based networks, as shown in Fig 6a–6c, and in the third and
fourth columns of Table 3. (Note that Fig 6 shows only the distributions for DSM networks
generated by the cs-method. The results of the DSM networks generated by the k-nn method
are shown in S1 Fig, but do not differ from the results of the cs-method.)

However, in the case of the word-word matrix, weighting alters the degree distribution; both
tf-idf and ppmi weighting change the degree distribution into a more truncated form (i.e., with
a sharper cutoff) whose curve is more similar to that of the association network, as shown in Fig
6b–6d. Table 3 (i.e., codes -T and -TE in the third and fourth columns) shows that the distribu-
tions are no longer plausible power laws and follow the truncated power law, although a pure
power law is most plausible for the network generated by the cs-method with ppmi weighting.

Fig 4. In-degree and cumulative in-degree distributions of the DSM network generated from the initial
word-wordmatrix. (a) in-degree distribution of the DSM networks generated by the k-nn method, (b) in-
degree distribution of the DSM networks generated by the cs-method, (c) cumulative in-degree distribution of
the DSM networks generated by the k-nn method, (d) cumulative in-degree distribution of the DSM networks
generated by the cs-method. DSM = DSM network, USF = USF association network.

doi:10.1371/journal.pone.0136277.g004
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The obtained result can be explained by the role of weighting in constructing word vectors.
The role of weighting is to assign a greater weight to unexpected events, that is, contexts that
are more significantly associated with to a target word, and a smaller weight to expected events
[32]. For example, frequent words are likely to occur in a context even if they are not semanti-
cally associated with that context. Weighting downplays these expected events to compute the
similarity between two word vectors correctly. Conversely, weighting highlights those contexts
in which a word occurs more often than would be expected by chance. This function of weight-
ing also makes word vectors semantically more appropriate, and as a result, semantically
related words are more likely to be connected by an edge in the DSM networks generated from
the word-word matrix. However, weighting does not work as a method for reducing the spar-
sity of a matrix; instead, sparsity is often increased. Because the sparsity of the word-document
matrix is the main cause of the unnatural degree distribution of its DSM networks as men-
tioned previously, weighting does not remedy the problem and the DSM networks generated
from the weighted word-document matrix still exhibit the unnatural distribution.

Effect of smoothing. SVD smoothing alters the degree distributions of DSM networks
with both types of context. The smoothed word-document matrix yields a scale-free network
whose degree distribution follows the pure power law above some lower bound, although it

Fig 5. In-degree and cumulative in-degree distributions of the DSM network generated from the initial word-document matrix. (a) in-degree
distribution of the DSM networks generated by the k-nn method, (b) cumulative in-degree distribution of the DSM networks generated by the k-nn method, (c)
in-degree distribution of the DSM networks generated by the cs-method, (d) cumulative in-degree distribution of the DSM networks generated by the cs-
method, (e) in-degree distribution of the DSM networks generated by the thresholded cs-method, (f) cumulative in-degree distribution of the DSM networks
generated by the thresholded cs-method. DSM = DSM network, USF = USF association network.

doi:10.1371/journal.pone.0136277.g005
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exhibits slightly unusual behavior for small k, as shown in Fig 7a. (Fig 7 shows the result for the
network generated from the tf-idf-weighted word-document matrix by the cs-method, but this
does not differ from the results of the unweighted and ppmi-weighted matrix and those of the
networks generated by the k-nn method. For these results, see S1 Fig)

In the case of the word-word matrix, SVD smoothing also affects the DSM network such
that its degree distribution takes a more truncated form. As a result, the DSM network based
on the unweighted word-word matrix follows almost the same truncated power-law distribu-
tion as the USF association network, as shown in Fig 7b. The DSM networks based on the
weighted matrix exhibit a power-law distribution above a high lower bound, as shown in Fig 7c
and indicated by +PT in the last two columns of Table 3.

The obtained result is likely due to the functions of SVD smoothing, namely sparsity reduc-
tion and discovery of latent meanings. For the word-document matrix, its sparsity is greatly

Fig 6. In-degree and cumulative in-degree distributions of the DSM networks generated from different
weighting schemes by the cs-method. (a) in-degree distribution of DSM networks generated from the
word-document matrix, (b) in-degree distribution of DSM networks generated from the word-word matrix, (c)
cumulative in-degree distribution of DSM networks generated from the word-document matrix, and (d)
cumulative in-degree distribution of DSM networks generated from the word-word matrix. raw = unweighted
DSM, tf-idf = DSM with tf-idf weighting, ppmi = DSMwith ppmi weighting, USF = USF association.

doi:10.1371/journal.pone.0136277.g006
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reduced by SVD smoothing and the resulting DSM network exhibits a power-law degree distri-
bution in the same way as other DSM networks. For the word-word matrix, the structure of
DSM networks may be influenced by latent meanings that cannot be directly derived from the
unsmoothed matrix but can be discovered by SVD smoothing. Despite being actually semanti-
cally related, two words that do not cooccur in any context are computed as completely unre-
lated by the unsmoothed DSM. Using SVD smoothing to overcome this difficulty, semantically

Fig 7. In-degree and cumulative in-degree distributions of some DSM networks generated after and before singular value decomposition (SVD)
smoothing by the cs-method. +SVD = smoothed DSM, −SVD = unsmoothed DSM, USF = USF association.

doi:10.1371/journal.pone.0136277.g007

Table 4. Type of power-law behavior of in-degree distribution of DSM networks.

matrix / method Unsmoothed Smoothed

raw tf-idf ppmi raw tf-idf ppmi

word-document / k-nn F F F S S S

word-document / cs F F F S S S

word-word / k-nn L M M M S S

word-word / cs L M M M S S

Note. L: less truncated power law, M: moderate truncated power law similar to that of the USF network, S: power law with a steep power-law slope, F:

power law with an unnatural, fat tail.

doi:10.1371/journal.pone.0136277.t004
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related words are likely to be computed correctly and the resulting DSM network captures
human semantic knowledge more accurately.

Summary. According to the behavior of the USF association network, the power-law
behavior of degree distributions of DSM networks can be categorized into the following four
types.

Table 4 shows the result of categorization of all DSM networks.

• Moderate truncated power law (Type M): This type of distribution follows the truncated
power law exhibited by the USF association network. In other words, Type M distributions
are highly similar or almost identical to the distribution of the USF association network. The
distribution of the DSM network for the unweighted and smoothed word-word matrix (the
red plot in Fig 7b) is a typical example of Type M.

• Less truncated power law (Type L): This type of distribution follows a less truncated power
law (or seemingly moderate power law) than the distribution of the USF network. The distri-
bution of the DSM network for the unweighted and unsmoothed word-word matrix (Fig 4)
is a typical example of Type L.

• Steep power law (Type S): This type of distribution follows a power law above a lower bound,
but its power-law slope is steeper than those of other classes of distributions (i.e., the expo-
nent α> 4). Distributions of the DSM networks based on the tf-idf-weighted and smoothed
word-document matrix (the red plot in Fig 7a) and the ppmi-weighted and smoothed word-
word matrix (the red plot in Fig 7c) are typical examples of Type S.

• Power law with an unnatural, fat tail (Type F): This type of distributions seems to follow a
power law, but exhibits an unnatural, fat tail for large k, owing to the data sparseness of the
initial DSM matrix. The distribution of the DSM network for the unweighted and
unsmoothed word-document matrix (Fig 5a–5d) is a typical example of Type F.

As shown in Table 4, the behavior of the degree distribution of DSM networks differs greatly
between the word-document matrix and the word-word matrix, although it does not depend
on the methods for weighting (tf-idf, ppmi) and neighborhood determination (k-nn, cs).
Owing to its data sparseness, the unsmoothed word-document matrix creates semantic net-
works of Type F. SVD smoothing compensates for the lack of information due to data sparse-
ness, thus leading to scale-free DSM networks of Type S. On the other hand, the unsmoothed
word-word matrix creates a network of Type M or Type L, which exhibits a truncated power-
law degree distribution. When DSMs are smoothed, their networks exhibit more truncated dis-
tributions, becoming Type S or Type M networks.

Results for Hierarchical Property
Fig 8 shows the correlation between the local clustering coefficient C(k) and degree k on a log-
log plot for some DSM networks. (The correlation for all 24 DSM networks is depicted in S2
Fig)

Overall, DSM networks show different patterns of dependency between C(k) and k depend-
ing on the type of context for the initial matrix. The DSM network generated from the initial
word-document matrix does not show a meaningful correlation between C(k) and k (Fig 8a),
although the plot seems to follow a power law above degree k* 102. The result remains
unchanged when the word-document matrix is weighted by tf-idf, as shown in Fig 8b. These
results indicate that unsmoothed word-document-based DSM networks are not organized
hierarchically, or at least do not have the same level of hierarchy as the USF association net-
work. In contrast, the DSM network generated from the initial word-word matrix exhibits
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hierarchical modularity in the same way as the USF association network (see Fig 8d). The cor-
relation between C(k) and k is negative and strong (r = −.73) and the average C(k) follows the
power law, although the hierarchical exponent β is less than that of the USF association net-
work. The ppmi weighted word-word matrix also generates a hierarchically structured network
as shown in Fig 8e. These results indicate that unsmoothed word-word-based DSM networks
are organized hierarchically.

SVD smoothing works differently for word-document-based and word-word-based net-
works. When the word-document matrix is smoothed, C(k) is moderately correlated with
k (r = −.49) and the average C(k) follows a power law with a small exponent β, thus suggesting
that a hierarchical structure seems to emerge in the resulting DSM network (Fig 8c). In con-
trast, when the word-word matrix is smoothed, the correlation between C(k) and k becomes
weaker and C(k) no longer follows a power law in the resulting DSM network (Fig 8f). This
result suggests that the hierarchical modularity tends to collapse partially by smoothing the
word-word matrix. As a result of smoothing, DSM networks generated by both types of matri-
ces exhibit a similar hierarchical structure.

Despite these differences in power-law behavior of C(t) among the DSM networks, the C(t)
plots for all DSM networks share some characteristics. The local clustering coefficient C(k)

Fig 8. Local clustering coefficient as a function of the node degree for some representative DSM networks.Red plots denote the local clustering
coefficient of an individual node, the blue line connects the average local clustering coefficient with the same degree, and the dashed line denotes the
clustering coefficient C.

doi:10.1371/journal.pone.0136277.g008
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diverges around the k* 101 region and the average of this region characterizes the clustering
coefficient C of the whole network, as indicated by the intersection of the dashed line with the
blue line in this region in Fig 8. The wider divergence of C(k) in this region implies that some
nodes are part of densely interlinked clusters, while other nodes are outside of these clusters
despite having a considerable number of connections. This is the main cause of non-hierarchy
in the word-document-based DSM networks shown in Fig 8a and 8b. At the same time, all the
networks share the behavior of the C(k) curve, that is, for nodes with large k above this region,
C(k) decreases linearly with k. Neighbors of hub nodes (i.e., highly connected nodes) have a
small chance of being linked to one another, and thus hub nodes connect distant clusters and
other groups of nodes that do not form clusters. This implies that hub nodes occur at a higher
level in the hierarchical structure of the network. From these common characteristics, we can
reasonably assume that DSM networks consist of a mixture of hierarchical modules and a non-
hierarchical set of nodes. The observed difference in power-law behavior of C(k) among the
DSM networks may reflect the relative proportion of nodes in the hierarchical modularity.
What these results imply about the semantic properties involved in the semantic network is
explained in the next section.

Dynamics of DSM Networks
In the last section, we demonstrated that, in general, some DSMs can generate semantic net-
works with the same scale-free and hierarchical properties as the association network, and in
particular, DSM networks have different degree distributions and hierarchical structures
depending on the way their semantic spaces have been constructed. Two questions that natu-
rally arise and must be addressed are how the structure of these semantic networks emerges
and what structural factors govern the different behaviors of DSM networks. In this section, we
attempt to provide a probable answer to each of these questions in terms of semantic relations
between connected word nodes. We propose that distinction of the two types of semantic rela-
tions, namely, syntagmatic and paradigmatic relations, is a key factor in explaining the struc-
ture and dynamics of semantic networks. The distinction of semantic relations has not been
addressed in existing studies on network analysis of semantic networks; thus, we argue that this
study can shed new light on the structure and dynamics of semantic networks.

Semantic Relation
The basic premise of semantic networks is that two word nodes are connected by an edge if
these words are semantically related. In a word association network [21, 29], semantic related-
ness between two words is determined according to whether one word is an associate of the
other word. In a word cooccurrence network [15, 54], it is determined according to the cooc-
currence frequency in the text. In a DSM network, it is computed as the cosine similarity
between two word vectors in a semantic space. Despite these different approaches to the com-
putation of semantic relatedness, the semantic relation that exists between words determined
to be semantically related is the same and can be classified into a few types. However, existing
network analysis studies on semantic networks do not focus on the type of semantic relations.

In lexical semantics [41], semantic relations can be classified into two types: syntagmatic
and paradigmatic relations. The syntagmatic-paradigmatic distinction originates back to Ferdi-
nand de Saussure, and has been addressed by a number of studies on word associations [25,
55]. Two words are syntagmatically related if they cooccur more often than would be expected
by chance. For example, two words bath and towel cooccur in a text more frequently than
would be expected by the frequency of these words because “bath towel” is a meaningful phrase
used to refer to the towel used after taking a bath. Hence, bath and towel are syntagmatically
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related and people often associate bath with towel. Syntagmatically related words tend to cooc-
cur in a noun phrase (e.g., red rose) or a verb phrase (play soccer), and thus they are likely to
belong to different word classes (e.g., noun–adjective, noun–verb). In other words, syntagmati-
cally related words are not semantically similar, but semantically related. On the other hand,
two words are paradigmatically related if they do not cooccur but can be substituted for one
another; in other words, they cooccur with similar words. For example, two words student and
pupil are unlikely to cooccur, but they occur in the same context such as “A teacher scolded his
[student/pupil] in the classroom,” and thus they are paradigmatically related. Paradigmatic
relations tend to be taxonomically or semantically similar by virtue of synonym, antonym or
other coordinates, and they belong to the same word class (e.g., noun–noun, verb–verb).

The syntagmatic-paradigmatic distinction, by its definition, is closely related to the way in
which contexts are given to construct the initial matrix in the DSM framework [56, 57]. Syntag-
matic relations are likely to be represented by the use of documents as contexts, in other words
by DSMs with the word-document matrix, because two word vectors (i.e., row vectors of the
matrix) are more similar if they cooccur in more documents. Paradigmatic relations are likely
to be represented by the use of words as contexts, in other words by DSMs with the word-word
matrix, because two word vectors are more similar if they share more collocated words. For
example, Table 5 lists the associates (i.e., out-degree neighbors) of the cue words lemon and vio-
let in the DSM networks based on the initial unsmoothed word-document and word-word
matrices, together with the associates in the USF association network. As predicted, more asso-
ciates in the word-word-based network are paradigmatically related to the cue words than
those in the word-document-based network.

In the next subsection, we explain the results of the hierarchical property for DSM networks
obtained in the last section, using the relationship between the syntagmatic-paradigmatic dis-
tinction and the DSMmatrix.

Hierarchical Structure of Semantic Networks and Syntagmatic-
Paradigmatic Distinction
Syntagmatic and paradigmatic relations play different roles in creating the hierarchical struc-
ture of a semantic network. As explained in the previous subsection, paradigmatically related
words are taxonomically similar; they are synonyms or coordinated words (i.e., they share a
superordinate word), or one word is a hyponym (or superordinate) of another word. Therefore,
a semantic network (a word web) created using paradigmatic relations forms a hierarchy of
words or their concepts. In cognitive science, this kind of word hierarchy has been proposed

Table 5. List of associates of some cue words with their semantic relations.

Cue Network Associate words (Out-degree neighbors) # of paradigmatic
relation

lemon DSM (word-document) juice, pepper, parsley, grate, sauce, butter, seasoning, onion, chicken, mayonnaise, cook 0

DSM (word-word) orange, carton, lime, seasoning, orange juice, fruit, zest, juice, mayonnaise, tomato, vinegar 3

USF association lime, sour, orange, tree, fruit, yellow, car, lemonade, peel, apple, squeeze 5

violet DSM (word-document) yellow, bloom, flower, summer, blue, green 3

DSM (word-word) pink, pale, purple, yellow, green, red 5

USF association purple, flower, rose, color, blue, fem 3

Note. Bolded words are paradigmatically related to their corresponding cue word. Both DSM networks used in this table are generated from the

unsmoothed and unweighted matrix.

doi:10.1371/journal.pone.0136277.t005
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for quite some time as a mental representation of semantic memory, such as Collins and Quil-
lian’s hierarchical network model [1]. A thesaurus (e.g., Roget’s thesaurus andWordNet [58])
is also a typical example of this kind of word hierarchy. In contrast, syntagmatically related
words are not semantically (or taxonomically) similar; they are related by virtue of a relation
between a concept and its feature or attribute. For example, “being used after a bath” is a fea-
ture of a towel and “being red” is a feature of a rose. Syntagmatic relations themselves do not
form a hierarchical network because they simply join a concept and its features. Psychological
models for semantic memory built primarily on the basis of syntagmatic relations do not have
a hierarchical structure. For example, feature models [3, 4] argue that a concept (i.e., the mean-
ing of a noun) is represented as an unstructured set of features. Hence, syntagmatic relations
are likely to make a semantic network less hierarchical. Fig 9 shows an example of how a
semantic network is organized hierarchically by paradigmatic relations and non-hierarchically
by syntagmatic relations. In this figure, a hierarchy such as “animal mammal dog, cat,
bear” is formed by paradigmatic relations (denoted by solid lines), while syntagmatic relations
(denoted by dashed lines) are not involved in these hierarchical networks.

Considering the relationship of the syntagmatic-paradigmatic distinction to the hierarchical
structure of a semantic network and the method used to construct the initial DSM matrix, we
can provide a plausible explanation for the results of the hierarchical property of DSM net-
works. First, DSM networks generated from the unsmoothed word-document matrix are orga-
nized non-hierarchically or less hierarchically, because the word-document matrix is likely to
represent syntagmatic relations, which lead to a less hierarchical network. Second, DSM net-
works generated from the unsmoothed word-word matrix are organized hierarchically, because
the word-word matrix is likely to represent paradigmatic relations, which organize a hierarchi-
cal network. Finally, SVD smoothing induces a change in the hierarchy of semantic networks,
because it contributes to the discovery of latent meanings. Latent meanings are not explicitly
represented by a word-context matrix, and it follows that the smoothed matrix has a greater
chance of capturing semantic relations other than those favored by the original matrix.

Fig 9. Illustration of the hypothetical semantic network created by syntagmatic and paradigmatic relations. Solid lines denote paradigmatic relations,
while dashed lines denote syntagmatic relations. The color of a node indicates the word class of the corresponding word (green = noun, yellow = adjective,
red = verb).

doi:10.1371/journal.pone.0136277.g009
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Therefore, non-hierarchical DSM networks for the word-document matrix become hierarchi-
cal, whereas hierarchical DSM networks for the word-word matrix become less hierarchical
when the matrices are smoothed.

To confirm that the syntagmatic-paradigmatic distinction really affects the hierarchical
structure in semantic networks, we examined the correlation between the degree of network
hierarchy and the proportion of edges representing syntagmatic relations. Although there is no
widely accepted method to measure the degree of network hierarchy quantitatively, we used a
dependency between C(k) and k, namely a correlation coefficient between C(k) and k on a log-
log plot. To estimate the proportion of edges connecting syntagmatically related word nodes,
we judged whether each edge was based on a syntagmatic or paradigmatic relation according
to two criteria based onWordNet [58]: specific patterns of the subgraph (i.e., network motif)
connecting two word nodes and a thesaurus-based similarity between these nodes. Because
these criteria are conditions for a paradigmatic relation, a pair of words connected by an edge
was judged to be syntagmatically related if neither criterion was satisfied. For example, two
words were deemed paradigmatically related if they share a parent node in the WordNet hier-
archy (i.e., they are synonyms). Two words were also deemed paradigmatically related if one
word node is a child or a grandchild of another word node (superordination), or if the two
words do not share a parent node but are very closely positioned in the WordNet hierarchy
(coordination). Next, for all 24 DSM networks plus the USF association network, we calculated
the correlation coefficient between the correlation coefficient between C(k) and k and the pro-
portion of syntagmatically motivated edges. If our assumption is correct, the proportion of
edges connecting syntagmatically related words should be positively correlated with the corre-
lation coefficient between C(k) and k, because more syntagmatic relations make a semantic
network less hierarchical, and less hierarchical networks are assumed to exhibit a weaker nega-
tive correlation (and thus a greater negative value of the correlation coefficient) between C(k)
and k.

This correlation analysis revealed that there is a significant positive correlation between the
proportion of syntagmatically motivated edges and the correlation coefficient between C(k)
and k, r = 0.482 (n = 25), p< .05. This result clearly indicates that the difference in semantic
relations does affect the hierarchical structure of a semantic network; semantic networks in
which more paradigmatically related words are connected are likely to exhibit a hierarchical
structure.

Network Model and Semantic Development
In this section, we also demonstrate that the syntagmatic-paradigmatic distinction can explain
a variety of power-law or truncated power-law distributions revealed by different DSM net-
works, by incorporating the syntagmatic-paradigmatic distinction into a growing network
model for simulating a semantic network.

Steyvers–Tenenbaummodel. Barabási and Albert [40] proposed a simple model for a
scale-free network using the mechanism of network growth and preferential attachment, which
leads to the pure power-law degree distribution with an exponent of 3. In this model, a small
fully connected network ofM0 nodes is initially constructed, and then new nodes are succes-
sively added to the network (i.e., network growth). Each new node is connected toM(�M0)
existing nodes selected with probability proportional to their degrees (i.e., preferential
attachment).

To provide a psychologically plausible explanation of semantic growth, Steyvers and Tenen-
baum [21] extended the Barabási–Albert model by introducing the process of semantic differ-
entiation into the simple mechanism of preferential attachment. They assumed that semantic
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differentiation is the process of adding some kind of variation on the meaning of an existing
word by a new word, according to the suggestions made by studies on language and conceptual
development. Their network model differentiates the meaning of an existing word node by
connecting a new node toM randomly chosen neighbors of the existing node. Steyvers and
Tenenbaum [21] demonstrated that the degree distribution of the network generated by this
model fits well with the observed distribution of the word association network. However, their
model cannot explain the observed difference among distributions of DSM networks, because
it does not have sufficient free scaling parameters to generate a variety of pure and truncated
power-law distributions.

It should be noted that Steyvers and Tenenbaum [21] provided a more general formaliza-
tion of the probability Pij with which a particular node vj is chosen in the neighborhood of vi at
Step 2 as given below:

Pij ¼
ujX

vk2Hi

uk

ð6Þ

where uj is the utility of a word of vj, and Hi is a set of neighbors of vi. They suggested two ways
of determining node utilities: utility based on word frequency (uj = log(fj + 1) where fj is the fre-
quency of a word vj) and an equal utility (uj = 1/jHij). They reported that these two utility func-
tions yielded very similar results for degree distributions. Additionally, although they did not
describe how the frequency of words in real semantic networks was used to determine the util-
ity of nodes in a synthetic network, it is very difficult to determine how this should be done
because the order of adding words with different frequencies to the existing network affects the
behavior of the resulting synthetic network. For these reasons, in this study we used the equal
utility function, thereby assuming that the probability of choosing a neighbor node is uni-
formly distributed, as described in the algorithm above.

New network model. We argue that the limitation of the Steyvers–Tenenbaum model can
be overcome by assuming that semantic growth cannot be explained solely by the process of
semantic differentiation. Obviously, two word nodes connected by semantic differentiation (or
preferential attachment) can be regarded as semantically or taxonomically similar (i.e., para-
digmatically related), because a new word added to the network by semantic differentiation
corresponds to more specific variations on existing words. However, as explained thus far, a
new word can be associated with other words by a syntagmatic relation. Furthermore, this pro-
cess of acquiring the connections by syntagmatic relations does not necessarily require prefer-
ential attachment, because there is no reason to assume that highly complex concepts (i.e.,
those with many connections) are likely to be attributes of a new concept. For example, in the
USF association norms, the four most listed associates of the cue word cherry are red, pie, fruit,
and apple. The words fruit and apple are paradigmatically related to cherry, while red and pie
are syntagmatically related to cherry. When we consider the situation where a new word cherry
is added to the network, adding edges from cherry to fruit and applemeans that cherry differen-
tiates the concepts of fruit and apple by introducing their new subcategories. This acquisition
process can be reasonably regarded as semantic differentiation implemented by preferential
attachment. On the other hand, adding edges to red and pie is interpreted differently; these
edges may be added because cherry has the attributes of “being red” and “being an ingredient
of a pie”. In this case, it is not reasonable to assume that preferential attachment always governs
this process. These edges are added simply because cherry has the attributes of “being red” and
“being an ingredient of a pie,” and not because red and pie have a variety or wide range of
meanings to be differentiated. Hence, the acquisition process based on syntagmatic relations
should be modeled by a different mechanism other than semantic differentiation. We refer to
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this mechanism as experiential correlation, which is a term borrowed from cognitive linguistics
that indicates perceptual correspondences grounded in human embodied experience [59].

To integrate the process of experiential correlation into the Steyvers–Tenenbaum model, we
consider random attachment of a new node to the existing nodes. As mentioned above, there is
no reason to assume that highly complex concepts with many connections are likely to be attri-
butes of a new concept. It can be justified by empirical observation that verb and adjective con-
cepts involve much less hierarchical complexity than noun concepts; verb and adjective
concepts are represented by fewer levels of hierarchy (generally two) and with fewer distinc-
tions at the superordinate level than noun concepts [60]. Furthermore, because it is very diffi-
cult to assume a priori information on the attribute of a new concept (e.g., which color is
preferentially selected as an attribute of a new object), we apply the principle of indifference to
the process of experiential correlation by assuming that the probability of choosing an existing
node for experiential correlation is equal over all existing nodes. It should be noted, however,
that we do not claim that experiential correlation is never governed by preferential attachment
or other network growth processes. We simply argue that random attachment is a plausible
assumption when no a priori knowledge is available for node choice for experiential correla-
tion. In some cases, preferential attachment may work as a principle of experiential correlation.
For example, some adjectives have a more basic, wider meaning than other relevant adjectives
(e.g., red versus reddish).

Liu et al. [61] integrated random attachment into the Barabási–Albert model. In their
model, a new node is attached to the existing nodes preferentially with probability 1 − p or ran-
domly with probability p. The resulting network has a degree distribution that follows a mix-
ture of power-law and exponential behaviors. Clearly, the distribution completely follows the
power law if p = 0, whereas it follows the exponential if p = 1. When 0< p< 1, the distribution
exhibits an approximately exponential behavior for small k, and a power-law-like behavior for
large k. Note that, as mentioned earlier, the degree distribution of the USF association network
follows the exponential below kmin and the truncated power law above kmin. This suggests that
both preferential and random attachments may be required for appropriately simulating the
behavior of semantic networks.

Following Liu et al.’s model [61], we propose a new network growth model by extending the
Steyvers–Tenenbaum model to enable both preferential and random attachments. A new node
is attached to the existing network preferentially by semantic differentiation with probability
1 − p, and randomly by experiential correlation with probability p. For preferential attachment,
nodes connected to a new node are chosen from among only the neighbors of node vi that were
previously added by preferential attachment. In random attachment, nodes are chosen from
among all the existing nodes.

A more formal description of the algorithm for connecting a new node toM existing nodes
in our modified Steyvers–Tenenbaum model is given below.

1. Each of theM edges connecting a new node to the existing network is labeled as either
“semantic differentiation” with probability 1 − p or “experiential correlation” with probabil-
ity p. The resulting numbers of edges labeled as “semantic differentiation” and “experiential
correlation” are denoted byMp andMr(=M −Mp), respectively.

2. Mp existing nodes are chosen and connected to a new node as follows. According to the
original Steyvers–Tenenbaum model, an existing node vi is chosen for differentiation with
probability proportional to its degree.Mp nodes are chosen randomly from the neighbors of
node vi labeled as “semantic differentiation.”
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3. Mr existing nodes are chosen randomly (i.e., with equal probability) from all existing nodes,
and connected to the new node.

4. The direction of each edge is determined randomly, pointing toward the existing node with
probability γ and toward the new node with probability 1 − γ, as in the case in the Steyvers–
Tenenbaum model.

Simulation results. We conducted a simulation experiment modeling the behavior of the
USF and DSM networks using the modified Steyvers–Tenenbaummodel. As the target for sim-
ulation, we considered three representative DSM networks created by the cs-method; these
were generated from the tf-idf-weighted and smoothed word-document matrix (corresponding
to LSA), the unweighted and unsmoothed word-word matrix, and the ppmi-weighted and
smoothed word-word matrix, respectively. These target networks were chosen such that differ-
ent types of degree distributions (i.e., Type M, Type L, and Type S) were simulated. As shown
in Table 4, the USF association network is of Type M, the two DSM networks generated from
the tf-idf-weighted and smoothed word-document matrix and the ppmi-weighted and
smoothed word-word matrix are of Type S, and the DSM network generated from the
unweighted and unsmoothed word-word matrix is of Type L. DSM networks of Type F were
not used in the simulation, because they deviate from naturally occurring semantic networks
owing to the unsuccessful construction of word-document-based networks as explained previ-
ously. In all the simulations, we set n equal to the number of nodes in the real networks (i.e.,
n = 5,018 for the USF association network and n = 4,702 for the DSM networks). We also set
M = 13 to ensure that the resulting synthetic networks would have approximately the same
density as the corresponding real networks.

Two important parameters for the model, p and γ, were set as follows. We determined p
using the fraction q of edges connecting a pair of syntagmatically related words in the target
network and compared three settings: p = q (Model A), p = q/2 (Model B) and p = 0 (Model
ST). Model A assumes that all syntagmatic relations are the result of random attachment, while
Model B assumes that syntagmatic relations are caused equally by random and preferential
attachment. We also consider Model ST, corresponding to the original Steyvers–Tenenbaum
model, to compare the simulation performance of the modified Steyvers–Tenenbaum model
and the original one. Note that the rationale behind Model B is that some syntagmatic relations
may be governed by preferential attachment. As mentioned earlier, some verbs or adjectives
are more general than others (e.g., red versus reddish). Some syntagmatically related nouns can
also be assumed to be connected by means of semantic differentiation. For example, cherry and
pie are syntagmatically related because cherry has the attribute of “being an ingredient of a pie,”
but we also assume that cherry subcategorizes a concept pie (i.e., a cherry pie is a specific kind
of pie). Because we have no prior knowledge of how likely syntagmatic relations are to be
caused by preferential attachment, we simply assume equal probability for preferential and ran-
dom attachment for syntagmatically related nodes.

Parameter γ was determined such that the resulting synthetic network would have approxi-
mately the same connectivity nCC as the corresponding real network. Parameter γ is generally
correlated with nCC; a very high value of γ close to 1 generates a network with low nCC, and nCC
increases as γ decreases. Therefore, we decreased γ from 1 in steps of 0.005 (or 0.001 for a very
low values of nCC of a real network), and generated 50 networks for each γ value. We then cal-
culated the average nCC over the 50 networks and determined γ to be the value that achieved
the closest nCC to the real network. This parameter tuning process was conducted for each of
the three models simulating a real network. To analyze the model’s performance, of the 50 syn-
thetic networks, we chose one whose nCC was closest to that of the corresponding real network.
All the results reported below were obtained for the chosen network.
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Table 6 summarizes the statistics of the synthetic networks generated by the model together
with those of the corresponding real networks. Table 6 demonstrates that all the synthetic net-
works have the small-world property; the average shortest path length L and diameter D are
close to those of the real network, and the clustering coefficient C is higher than that of the ran-
dom network. One difference is that the clustering coefficient C of Model A is relatively low
compared with the real network. This result is not surprising because the higher probability
p of random attachment generates a more randomized, and thus less clustered network.

Fig 10 shows the cumulative in-degree distributions of the synthetic networks generated by
the three models (Model A, Model B and Model ST). To quantitatively evaluate how well
the distributions of the model fit those of the real networks, we also show the Kolmogorov–
Smirnov statistic DKS in the graphs and in Table 6. A smaller DKS implies a better fit between
the model and the data. In Fig 10, the best-fit model differs depending on the real network sim-
ulated. Model A reproduces the in-degree distribution that best fits the data for the DSM net-
works of Type S generated by smoothed matrices, as shown in Fig 10c and 10d. Model B is
most appropriate for simulating the distribution of the USF association network (Type M), as
shown in Fig 10a. Model ST also generates an appropriate distribution in some cases; it best fits
the DSM network of the unsmoothed word-word matrix (Type L), as shown in Fig 10b. These
results can be summarized as the relationship between the overall shape (or the tail behavior)
of the in-degree distribution and the probability p of random attachment. A network model

Table 6. Statistics for the simulated network generated by the proposed networkmodels.

m nCC hki D L C DKS r β Lrandom Crandom

USF association (Type M; n = 5,018)

Model A 65,221 4,845 13.0 10 4.07 0.050 0.068 −.069 0.018 — —

Model B 65,221 4,844 13.0 10 3.92 0.147 0.050 −.488 0.517 — —

Model ST 65,221 4,845 13.0 9 3.80 0.261 0.076 −.708 0.698 — —

Data 63,620 4,845 12.7 10 4.26 0.187 — −.706 0.750 3.64 0.005

Word-word matrix, unweighted, unsmoothed, cs-method (Type L; n = 4,702)

Model A 61,113 3,097 13.0 26 6.49 0.027 0.121 .090 -0.346 — —

Model B 61,113 3,099 13.0 28 6.19 0.137 0.077 −.393 0.431 — —

Model ST 61,113 3,091 13.0 19 5.52 0.266 0.056 −.712 0.661 — —

Data 59,621 3,091 12.8 24 8.31 0.366 — −.730 0.644 3.45 0.008

Word-document matrix, tf-idf, smoothed, cs-method (Type S; n = 4,702)

Model A 61,113 4,157 13.0 16 4.76 0.025 0.050 .059 -0.535 — —

Model B 61,113 4,158 13.0 12 4.50 0.129 0.081 −.399 0.424 — —

Model ST 61,113 4,158 13.0 10 4.25 0.270 0.119 −.715 0.703 — —

Data 59,613 4,156 12.6 27 5.83 0.317 — −.487 0.482 3.58 0.006

Word-word matrix, ppmi, smoothed, cs-method (Type S; n = 4,702)

Model A 61,113 4,474 13.0 10 4.20 0.041 0.096 −.022 -0.135 — —

Model B 61,113 4,474 13.0 9 4.04 0.141 0.128 −.482 0.492 — —

Model ST 61,113 4,474 13.0 8 3.89 0.266 0.147 −.708 0.704 — —

Data 59,613 4,474 12.7 19 5.77 0.251 — −.383 0.477 3.60 0.006

Note. n = number of nodes; m = number of edges; nCC = number of nodes of the largest (strongly) connected component; hki = average node degree; D =

diameter of the network; L = average shortest path length; C = clustering coefficient; DKS = Kolmogorov–Smirnov statistic between the model and the

data; r = correlation coefficient between local clustering coefficient C(k) and node degree k on a log-log plot; β = hierarchical exponent; Lrandom = average

shortest path length of the random network with the same size and density; Crandom = clustering coefficient of the random network with the same size and

density.

doi:10.1371/journal.pone.0136277.t006
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Fig 10. Cumulative in-degree distributions of the synthetic networks generated by the modified Steyvers–Tenenbaummodel (Model A and Model
B) and by the original Steyvers–Tenenbaummodel (Model ST). Note that DKS denotes the Kolmogorov–Smirnov statistic, p denotes the probability of
random attachment, and γ is the probability of a new node pointing toward the existing node.

doi:10.1371/journal.pone.0136277.g010
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with a higher p (Model A>Model B>Model ST) produces a more truncated distribution
(Type S> Type M> Type L).

This difference of the best-fit model suggests that how likely semantically related words are to
be connected by random attachment cannot be explained solely by the syntagmatic-paradigmatic
distinction. Although we do not provide a reasonable explanation for why this difference occurs
as this requires further research, these results imply that the ability of the original Steyvers–
Tenenbaummodel is limited. A network model with both preferential and random attachments
is generally more appropriate to explain the in-degree distribution of semantic networks (espe-
cially, the real association network) than the original Steyvers–Tenenbaummodel.

Regarding the hierarchical structure of the synthetic networks, the scaling behavior of the
local clustering coefficient C(k) of the synthetic networks is shown in Fig 11. Table 6 also lists
the correlation coefficient r between C(k) and k, and the hierarchical exponent β. Fig 11 only
shows the results for three synthetic networks generated to simulate the data of the USF associ-
ation network; however the results for the DSM networks do not differ from these ones. Over-
all, the probability p determines the distribution of local clustering coefficients. A model with a
lower value of p yields a stronger negative correlation between C(k) and k and a higher β, and
thus creates a more hierarchically structured network. The hierarchical modularity of the USF
association network (Fig 2) and the unsmoothed word-word-based DSM network (Fig 8d) is
reproduced best by Model ST, while the hierarchical modularity of the smoothed DSM net-
works (Fig 8c–8e) is most similar to that of Model B. This result is not unexpected, because
random graph models cannot generate a structured network in which C(k) correlates with the
degree k [46]. Hence, a network in which more edges are generated by random attachment
(i.e., generated by models with higher p) tends to be less hierarchically structured.

The simulation results reported are summarized in Table 7. The scale-free property of the
USF network and many DSM networks can be explained more plausibly by the modified Stey-
vers–Tenenbaum model (Model A and B), although whether Model A or B is a better fit for the
observed distribution depends on semantic networks. On the other hand, the hierarchical
property of the semantic networks is captured better by the original Steyvers–Tenenbaum
model or the modified model (Model B). Taken together, in many cases the proposed model
better explains the real semantic networks, and Model B seems to provide a balanced account
of both network properties.

The proposed network model has several limitations. In this paper, we aim to demonstrate
the validity and merits of simple integration of random attachment into the network model for

Fig 11. Local clustering coefficient as a function of the node degree for three synthetic networks generated by the modified Steyvers–Tenenbaum
model (Model A and Model B) and by the original Steyvers–Tenenbaummodel (Model ST): case of simulating the USF association network.Red
plots denote the local clustering coefficient of an individual node, the blue line connects the average local clustering coefficient with the same degree, and the
dashed line denotes the clustering coefficientC.

doi:10.1371/journal.pone.0136277.g011
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lexical development, rather than providing a network model that can simulate the real semantic
networks as accurately as possible. The most serious limitation of the proposed model is that,
as shown in Table 7, the optimal value of p (i.e., the probability of random attachment) in the
proposed model differs between the degree distribution and the hierarchical structure; the
degree distribution of a real network is appropriately explained by models with high values of p
(i.e., Model A or B), whereas models with lower values of p (i.e., Model B or ST) than these
ones are more appropriate for the highly hierarchical structure of the same real network. These
incompatible results are attributed to the limitation of the simple idea of regarding random
attachment as a model of experiential correlation. To build a model that can consistently
explain both the degree distribution and hierarchical structure, we need to explore how human
lexical knowledge is acquired through experiential correlation and integrate such a mechanism
into the proposed network model.

Although a more plausible model requires further research, we suggest some possible modi-
fications that would achieve more precise simulation of the behavior of real semantic networks.
One possible modification relates to the utility of neighbors (Eq 6) being connected to a new
node in the process of semantic differentiation. If the choice of neighbors is governed by the
idea of preferential attachment, for example, based on word frequency or other properties, the
modified Steyvers–Tenenbaum model may be able to simulate the hierarchical structure more
precisely. As a related modification, we can also assume a model that connects a new node to
the node chosen for semantic differentiation as well asM − 1, instead ofM, neighbors of the
chosen node. Additionally, to reproduce a more realistic degree distribution and scaling of
local clustering coefficients C(k), we can modify the model such that the number of edgesM
added to the network fluctuates. For example, use of the Poisson distribution with a mean
equal to hki of a real semantic network may be able to simulate an in-degree distribution and a
C(k) distribution for low values of kmore precisely. Finally, we may need to develop a more
plausible model of experiential correlation by considering the characteristics of syntagmatically
related words (i.e., difference among word classes) to simulate the in-degree distribution more
precisely. It is worth pursuing these extensions in future research.

Discussion
The complex network analysis reported in this paper demonstrates that all the DSM networks
have the same small-world property as the association network. Furthermore, some DSM net-
works (especially, DSM networks generated from the weighted and unsmoothed word-word
matrices) have the same scale-free and hierarchical properties as the association network.
From this result we can conclude that DSM provides a plausible model of human semantic
memory; this is in contrast to Steyvers and Tenenbaum’s [21] argument that LSA and other
semantic spaces are limited as a model of human semantic memory. They argued that the
degree distribution of the USF association network follows a pure power law, whereas the dis-
tribution of the LSA network does not. However, our analyses and other similar analyses [29]

Table 7. Summary of simulation results: The best model for simulating the network properties of each real semantic network.

Network (Type of degree distribution) Network property

Small-world Scale-free Hierarchical

USF association (Type M) All models Model B Model ST

Word-word matrix, unweighted, unsmoothed (Type L) All models Model ST Model ST

Word-document matrix, tf-idf, smoothed (Type S) All models Model A Model B

Word-word matrix, ppmi, smoothed (Type S) All models Model A Model B

doi:10.1371/journal.pone.0136277.t007
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yield a different result. The degree distribution of the USF association network follows not a
pure power law, but a truncated power law with an initially exponential decay. Indeed, a closer
look at Steyvers and Tenenbaum’s [21] plotted distribution reveals that it deviates from a pure
power law. This difference in the scale-free structure of the association network may be the pri-
mary reason for the incompatibility between their arguments and ours regarding the ability of
the DSM. Furthermore, in our analysis, the degree distribution of the LSA network (which cor-
responds to the DSM network created from the tf-idf-weighted and smoothed word-document
matrix) also exhibits a similar degree distribution, although its power-law slope is steeper than
that of the association network. More importantly, some semantic spaces generated by DSM
methods other than LSA (e.g., semantic spaces generated from the weighted and unsmoothed
word-word matrices) yield a degree distribution very similar to that of the association network.
Steyvers and Tenenbaum [21] analyzed only the semantic network based on LSA, and specu-
lated that other semantic spaces are unlikely to reproduce scale-free connectivity. This specula-
tion is derived from the assumption that LSA and other semantic spaces share geometric
properties of Euclidean-space semantic representations that are not consistent with human
similarity judgments. Our findings indicate that this speculation is not valid. Hence, it provides
empirical evidence of the DSM’s ability to simulate the network structure underlying human
semantic knowledge or word association; this is one of the original contributions of this study.

Regarding the psychological plausibility of the DSM as a model of human semantic knowl-
edge, a number of existing studies [33, 35, 62, 63] have already provided empirical evidence by
demonstrating that the DSM well explains human performance on behavioral tasks (e.g., simi-
larity judgment and semantic priming) for some individual words. These findings demonstrate
the plausibility of DSMs by focusing on the microscopic behavior that emerges from semantic
knowledge, but they divulge little about the holistic structure. In contrast, our analysis reveals
that the DSM can generate semantic spaces whose holistic structure is similar to that of human
semantic knowledge; thus, this study provides new evidence for the argument that the DSM is
a plausible model of semantic memory.

The findings on network properties of different DSM networks have several implications
for the theory of DSMs. First, the DSM networks constructed from the weighted and
unsmoothed word-word matrix best simulate all the network properties of the USF association
network; these DSM networks are small-world (as shown in Table 2), follow a truncated power
law almost identical to the distribution of the association network (as shown in Fig 6b–6d), and
have the same degree of hierarchical structure as the association network (as shown in Fig 8e).
This finding indicates the advantage of word cooccurrence statistics, or a words-as-contexts
method, for modeling human semantic knowledge. Some previous studies [34, 64] have dem-
onstrated that DSMs based on word cooccurrence statistics achieve higher performance on lex-
ical tasks such as similarity judgment and synonym identification, but it is not clear whether
this superiority holds for the modeling accuracy of the structure of semantic knowledge or the
mental lexicon. The network analysis presented in this paper is a first step toward identifying
theoretical evidence for the DSM’s ability to model the holistic structure of semantic knowl-
edge, and it demonstrates that DSMs based on word cooccurrence have this ability.

Second, the observed differences in network properties between the word-word- and word-
document-matrix-based DSMs provide empirical evidence of the effect of the initial matrix’s
context type on the semantic properties of constructed semantic spaces [56, 57]. As described
earlier, Sahlgren [56] argued that a word-document matrix is likely to assign higher similarity
to syntagmatically related words, while a word-word matrix is likely to assign higher similarity
to paradigmatically related words. Utsumi [57] justified his argument by comparing the perfor-
mance of the two types of matrices in predicting word association. The network analysis pre-
sented in this paper provides new empirical evidence for his argument from a different
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perspective. Hierarchical structure in DSM networks, which is assessed by a power-law rela-
tionship between node degree k and local clustering coefficient C(k), is explained in accordance
with the argument for the relationship between DSMmatrices and semantic relations.

Finally, SVD smoothing does not improve the performance of simulating the network
properties of a real association network as well as generally expected in the DSM framework.
Smoothing yields a considerable effect on DSM networks based on the word-document
matrix, but the obtained scale-free and hierarchical properties are not sufficiently consistent
with those of the association network. For the word-word matrix, smoothed DSMs exhibit
network properties slightly less consistent with the association network than unsmoothed
DSMs. In particular, when a word-word matrix is weighted by tf-idf or ppmi, SVD smoothing
results in a more truncated degree distribution and a less hierarchical structure than the asso-
ciation network. This result seems to show that SVD smoothing is not effective in developing
a cognitive model of human semantic knowledge or the mental lexicon; in other words,
excessive discovery of latent meanings may have a harmful effect on modeling human seman-
tic knowledge. It may suggest that latent meanings revealed by SVD smoothing are not
explicitly represented in human semantic knowledge, or at least they do not emerge in
human behavior of free word association. However, a more reasonable explanation of this
result could be that SVD smoothing of a word-word matrix generally fails to improve the per-
formance of similarity judgment. The semantic information involved in a (ppmi-weighted)
word-word matrix is richer than a word-document matrix and becomes even richer as the
corpus size increases. A recent study [65] reported a finding supporting this assumption. The
authors demonstrated that SVD smoothing of a ppmi-weighted word-word matrix does not
improve the performance on semantic tasks such as a multiple-choice synonym test and
semantic categorization. Note that this study also reported an interesting finding that
dimensionality reduction using SVD achieved significant improvements in all semantic tasks
when the contributions of the initial dimensions (corresponding to large singular values)
were reduced, rather than when all dimensions contributed equally as in the usual manner
for DSMs. Therefore, DSMs using this kind of unbalanced smoothing may be effective in
modeling semantic knowledge.

The simulation results of network growth demonstrate that, in many cases, the modified
Steyvers–Tenenbaum model with both preferential and random attachments better reproduces
real semantic networks. This result suggests that preferential attachment alone is insufficient;
both preferential and random attachments are necessary to explain the developmental process
of semantic or lexical knowledge. Given that preferential attachment or semantic differentia-
tion is basically a process of acquiring unknown words paradigmatically related to already-
known words, it also suggests that lexical development is motivated by semantic relations other
than paradigmatic or taxonomic ones. We argue that syntagmatic-paradigmatic distinction of
semantic relations is critical in explaining this result. Concerning adult semantic knowledge, a
large number of lexical priming experiments [66–69] have shown that its structure is under-
pinned by both paradigmatic (or taxonomic) and syntagmatic (or associative) relations. In
these experiments, reliable priming effects are repeatedly observed for taxonomically related
pairs (e.g., cherry—fruits) and associatively related pairs (e.g., cherry—soda), although very
often there is a confounding between taxonomic (or semantic) and associative relatedness in
the pairs used in the experiments [67]. Furthermore, Arias-Trejo and Plunkett [70] have
recently found that 24-month-old infants exhibited a priming effect for both taxonomically
related word pairs and associatively related word pairs. To distinguish precisely between the
two types of semantic relations, they carefully selected taxonomically related words that are not
associatively related, and associatively related words that are not taxonomically related; hence,
their finding does indicate that early lexical development is also driven by both taxonomic and
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associative relations. The findings of this study are interpreted as lending theoretical support to
the need for both taxonomic and associative relations to explain lexical development.

Conclusion
In this paper, we examined the network structure of DSMs using complex network analysis
and reported the following findings: (a) Some DSMs have the ability to generate semantic net-
works with the same scale-free and hierarchical properties as the USF association network, sug-
gesting that the DSM is a plausible model of human semantic memory; (b) Different patterns
of observed network properties of DSM networks reflect a way of constructing semantic spaces,
suggesting that complex network analysis provides a new method for exploring the properties
and structures of different DSMs in a systematic way; (c) Considering both preferential and
random attachments as a mechanism for network growth better explains the network struc-
tures observed in the association and DSM networks, suggesting that lexical development can-
not be explained solely by the process of semantic differentiation for paradigmatically related
words. To the best of our knowledge, no previous studies have applied network analysis to vari-
ous DSMs in a comprehensive way. This is the first study to analyze the network structure of
semantic knowledge represented by a DSM, and thus provides an original contribution to
research on DSMs.
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