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The TIPE2 (tumor necrosis factor-alpha-induced protein 8-like 2) protein is a major
regulator of cancer and inflammatory diseases. The availability of its sequence and
structure, as well as the critical amino acids involved in its ligand binding, provides
insights into its function and helps greatly identify novel drug candidates against TIPE2
protein. With the current advances in deep learning and molecular dynamics simulation-
based drug screening, large-scale exploration of inhibitory candidates for TIPE2 becomes
possible. In this work, we apply deep learning-based methods to perform a preliminary
screening against TIPE2 over several commercially available compound datasets. Then,
we carried a fine screening by molecular dynamics simulations, followed by metadynamics
simulations. Finally, four compounds were selected for experimental validation from 64
candidates obtained from the screening. With surprising accuracy, three compounds out
of four can bind to TIPE2. Among them, UM-164 exhibited the strongest binding affinity of
4.97 µM and was able to interfere with the binding of TIPE2 and PIP2 according to
competitive bio-layer interferometry (BLI), which indicates that UM-164 is a potential
inhibitor against TIPE2 function. The work demonstrates the feasibility of incorporating
deep learning and MD simulation in virtual drug screening and provides high potential
inhibitors against TIPE2 for drug development.
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INTRODUCTION

Tumor necrosis factor (TNF)-alpha-induced protein 8 (TNFAIP8 or TIPE) family of proteins is
believed to be regulators of innate and adaptive immunity, as well as cell proliferation,
inflammation, and cell death (Lou and Liu, 2011; Goldsmith and Chen, 2017; Yuan et al.,
2020). As a member of the TNFAIP8 family, TIPE2 protein is mainly expressed in the placenta
and lymphoid tissues (Padmavathi et al., 2018). To maintain immune homeostasis, TIPE2
controls immune cell activation, migration, and apoptosis (Luan et al., 2014). TIPE2 is found to
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promote Fas-mediated T cell apoptosis (Liu MW. et al., 2015).
Depending on the cell types involved, TIPE2 may act as a
tumor suppressor (Zhang et al., 2016) or enhancer through,
for example, MDSCs (myeloid-derived suppressor cells) (Yan
et al., 2017, 2020). Therefore, inhibiting TIPE2 in certain cell
types has the potential to treat certain cancers, e.g., lung
cancer (Bordoloi et al., 2019). Importantly, TIPE2 is a new
target of STAT3, and inhibiting its expression in MDSCs helps
enhance T cell activation in tumors (Yan et al., 2017). This
indicates that inhibitors of TIPE2 may exert an anti-cancer
effect through MDSCs, and hence, it would be medically
meaningful to discover TIPE2 inhibitors. We previously
identified TIPE2 as a new therapeutic target for cancer
immunotherapy since it plays a critical role in the
functional polarization of MDSCs (Yan et al., 2020). To the
best of our knowledge, despite the significance of TIPE2 in
preventing some cancers, no compounds have demonstrated
inhibition against TIPE2 function to date.

The high-resolution crystal structure of TIPE2 protein
(cytoplasmic protein) was solved in 2009 with an
uncharacterized fold that is different from the predicted fold
of a DED (Zhang et al., 2009). TIPE2 protein is made up of 184
amino acid residues and is mainly made up of helices. It consists
of six antiparallel helices in which helix 5 contains a kink (caused
by pro153) and is broken into two short helices (helix 5a and 5b),
forming the base of the helical bundle. Surprisingly, TIPE2
contains a huge hydrophobic central cavity, which helps in
cofactor binding, and this cavity is found to undergo
competitive cofactor binding to activate the immune response
to maintain immune dynamic balance. From the crystal
structures, it is believed that the unique structural features of
TIPE2 protein determine its unique biological functions (Zhang
et al., 2010). The availability of a high-resolution experimental
structure can aid greatly in identifying novel potential drug
candidates against TIPE2 protein.

In general, the drug discovery process against a disease takes a
long time and is a costly process. The advances in machine
learning methods, especially deep learning, will shorten the drug
discovery time, and the researchers in this field will develop more
and more applications that solve well-defined problems in the
near future. Virtual screening is one field that greatly benefits
from the development of deep learning; however, Drug–Target
(DTA) prediction is the core component of virtual screening,
which directly determines its accuracy and efficiency. To improve
the performance of DTA prediction, a model based on deep
learning has been developed by the Wei research group (Kaushik
et al., 2020). In another interesting study, the authors selected
KEAP1 protein, a hot protein in the tumor research field, as a
virtual screening target for a database containing 1.3 billion
ligands (Gorgulla et al., 2020). However, the ability of the
VirtualFlow platform developed in this study lies in its tens of
thousands of combined CPUs for molecular docking and cloud
computing platforms.

In our very recent work, we built a DL model, “DeepBindRG,”
for categorizing native-like protein-ligand complex (Zhang et al.,
2019b). We used a complex figure-like 2D input representation
and ResNet architecture. We also propose a strategy for virtual
screening inhibitors against SARS-CoV-2 3C-like protease
(Zhang et al., 2020a). Most importantly, we recently
demonstrated that a hybrid method can efficiently be used for
drug repurposing for SARS-CoV-2 (Zhang et al., 2020b). It first
demonstrates that deep learning-based methods combined with
MD simulations are promising strategies to aid the drug
development process, especially in identifying novel inhibitors
or modulators against therapeutic protein targets.

In our present study, we have built a TIPE2-ligand complex
model based on the crystal structure of TIPE2. With the
binding pocket from the complex model, we have carried
out a large-scale virtual screening against three datasets.
Compared to our previous drug repurposing virtual

FIGURE 1 | The diagram of our screening pipeline. The screening procedures include preliminary screening by deep learning and docking, fine screening by force
field-based methods, and fine experimental validation.
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screening against RdRp of SARS-CoV-2, we have a very large
data size and have carried much more MD simulations. Since
TIPE2 is much smaller than RdRp, it allows us to carry out
MD simulation of the full protein instead of the simplified
pocket MD simulation to achieve higher accuracy in
acceptable computational consumption.

The ability of our hybrid virtual screening pipeline developed
in this study lies in its highly efficient protein-ligand binding
prediction algorithms and several stages of screening strategies,
which emphasizes a gradual shift from efficiency on a large scale
to accuracy in the later stage. Finally, the authors considered four
out of 69 candidates for experimental validation. They found one
compound with a low-micromolar binding affinity with TIPE2,
which is an excellent candidate for further optimization, and two
compounds with a relatively high-micromolar binding affinity.
Among them, UM-164 has a binding affinity of 4.97 µM. Our
work has shown the promising future of applying deep learning-
based methods and MD simulation-related methods in large-
scale drug lead discovery.

Incorporating deep learning and MD simulation helps achieve
the balance between accuracy and efficiency in virtual drug
screening. Currently, there are very few works that combined
large-scale deep learning and MD in drug screening. Our
previous drug repurposed against RdRp was the first attempt
(Zhang et al., 2020b), but the compound database is relatively too
small to sufficiently demonstrate the power of this hybrid method
in large-scale drug screening. This time, we have screened over
more than 8 thousand compounds and have carried more than 60
standard MD simulations, which is on a much larger scale

compared to screening over 1̃ thousand approved drugs and
only 12 pocket MD simulations in the previous work.

MATERIALS AND METHODS

A previously developed deep learning and molecular simulation-
based hybrid strategy is used for virtual screening against TIPE2
over several compound datasets. The step-by-step virtual
screening pipeline results in 69 high potential binding
candidates with TIPE2. Among them, four were considered to
validate the efficacy.

Structural Modeling of TIPE2 and
Compound Datasets
The TIPE2 sequence was obtained from UniProt Consortium
(2021), and the TIPE2-ligand model was constructed by
I-TASSER (Zhang, 2008). Here, we intended to model the
holo (ligand-bound) conformation, given that the currently
available high-resolution crystal structure of TIPE2 is an apo
structure. The ligand was taken from the template protein (PDB
ID: 4xk8) (Zhou et al., 2008) by the COFACTOR algorithm (Roy
et al., 2012) within the I-TASSER using structure comparison
and protein-protein networks, later manually shifting the
position to avoid atoms clash. We extract the amino acids
within 1 nm of the ligand as the binding pocket. The three
TargetMol datasets (Targetmol-Approved_Drug_Library,
Targetmol-Natural_Compound_Library, and Targetmol-

FIGURE 2 | The predicted atomic interaction details of the three experimental validated potent compounds, among them, UM-164 has the strongest binding affinity
with a KD value of 4.970 µM.
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Bioactive_Compound_Library) and a compiled in-house
dataset were used as virtual screening libraries.

Molecular Vector-Based Drug Screening
A deep learning-based method, DFCNN (Dense fully
Connected Neural Network), has been developed for
predicting protein-drug binding probability (Zhang et al.,
2019a) and used in this article for the initial drug screening
(Figure 1A). DFCNN has used concise mol2vec
representation for the protein pocket and ligand, compared
to many other methods. It is not dependent on protein and
ligand binding conformation, which has greatly accelerated
the prediction efficiency. Moreover, it avoids misleading
outcomes caused by wrong predicted binding conformation
as other methods often encountered. Here, we have used the
training set mean and deviation values for the normalization
of testing data. The loaded model weights of DFCNN are from
the previously completed training. As described in our
previous article (Zhang et al., 2019a), the DFCNN model
was trained on a dataset extracted from the PDBbind database
(2017 version) (Liu Z. et al., 2015). The input representation
is the concatenated molecular vector of protein pocket and
ligand, and all the molecular vectors are generated by
mol2vec (Jaeger et al., 2018), which is inspired by the
word2vec model in natural language processing. The
positive data are directly from the experimental known
protein-ligand pairs, whereas the negative data are created
by cross-combination of proteins and ligands from the
PDBbind database. After finishing the training, we
obtained a model with well-trained weight, which can be
used in future applications. We had written homemade
scripts to prepare the model input and model application,
respectively. A directly loaded trained DFCNN model is
enough to run the prediction; no extra parameter settings
are needed. The virtual screening procedure by DFCNN is
similar to that in our previous work, which is drug
repurposing against RdRp of SARS-CoV-2 (Zhang et al.,

2020b). DFCNN achieved an AUC value around 0.91 for
the independent testing set, which has a much better
performance compared to the other four machine learning
methods, that is, SVM (AUC of 0.6729), RandomForest (AUC
of 0.8444), xgboost (AUC of 0.8601), and CNN (AUC of
0.8642) (Zhang et al., 2019a). The model is about
1̃00,000 times faster than Autodock Vina (Trott and
Olson, 2010) in predicting protein-ligand binding
probability (range 0–1), mostly due to no need to explore
the protein-drug complex conformation. We have previously
validated the efficiency and effectiveness of the DFCNN by
missing the known active compounds in a dataset of 1̃0
million compounds and checking DFCNN’s ability to
recall the known active compounds by scoring. The
following formula is used:

Ratio 0.9 � Ptpr0.9/random0.9 � (N0.9/Ntotal)/(NN0.9/N all),
(1)

where N0.9 is the number of active compounds with scores
higher than 0.9;Ntotal is the total number of active compounds
for each protein. The prediction TPR (P tpr0.9) is defined by
N0.9/Ntotal. NN0.9 is the total number of compounds with
scores above 0.9, N_all is the total number of compounds used
in the test. The random guess rate (random0.9) is defined as
NN0.9/N all. P tpr0.9/random0.9 was defined as the prediction-
random ratio with the cutoff of 0.9 (Ratio_0.9). Our previous
test has chosen a representative target of the DUD.E dataset.

TABLE 1 | The potential inhibitors of TIPE2 from the three TargetMol datasets
(DeepBindBC>0.99, Vina Docking<�−10, and DFCNN>0.99). The table was
ranked by DeepBindBC score in descending order.

Name DeepBindBC Vina docking DFCNN

Sennoside_A 1 −11.3 0.9908
Sennoside_B 1 −10.4 0.9908
Dabrafenib 0.9996 −10.2 0.994
Olmutinib 0.9994 −10.6 0.9971
CEP37440 0.9992 −10.1 0.9967
GW_4064 0.9991 −11.2 0.9976
Omipalisib 0.9991 −10.6 0.9907
FLT3-IN-1 0.9985 −10.2 0.9968
Gedatolisib 0.9984 −11 0.9967
Avitinib 0.9984 −10.2 0.9955
RO_46-8443 0.9978 −10.3 0.9944
VLX1570 0.9972 −10.5 0.993
Orexin_2_Receptor_Agonist 0.9967 −10.8 0.9955
Ponatinib 0.9964 −11.4 0.9921
DJ-V159 0.9928 −11.8 0.997
Flumethrin 0.9914 −10.7 0.9979

TABLE 2 | The potential inhibitors of TIPE2 from the TargetMol dataset
(DeepBindBC>0.99, Docking<�−8.5, and DFCNN>0.998, excluding
compounds in Table 1). The table was ranked by docking score in
descending order.

Name DeepBindBC Docking DFCNN

ARRY380 1 −10.4 0.9982
Probucol 0.9997 −9 0.9995
Radotinib 0.9986 −10.1 0.9988
FIIN-3 0.9982 −9.8 0.9993
Rociletinib 0.9979 −10.6 0.9987
Torin_1 0.997 −9 0.9993
UM-164 0.9968 −10.9 0.9994
Fenretinide 0.9967 −9.2 0.9981
Fedratinib 0.9965 −9.7 0.9993
GNF-7 0.9964 −12.9 0.9991
DCC-2036 0.9959 −10.2 0.9995
AST_487 0.995 −10.5 0.9995
FIIN-2 0.995 −10.8 0.9994
Flumatinib 0.9947 −11 0.9994
Golvatinib 0.9942 −10.9 0.9993
CHMFL-BMX-078 0.9929 −9.4 0.9994
DDR1-IN-2 0.9925 −11.7 0.9991
K_0859 0.9922 −11.4 0.9994
A_740003 0.992 −9 0.9981
ZCL_278 0.9919 −9 0.9989
Dehydroandrographolide succinate 0.9918 −8.5 0.9993
Nilotinib 0.9916 −11.2 0.9993
TG101209 0.9915 −9.9 0.9994
Masitinib 0.9903 −10.2 0.9983
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The result shows six out of eight protein targets, Ratio_0.9 is
greater than 1.4, and the top Ratio_0.9 value is 860, indicating
that DFCNN can enrich the active compounds for many kinds
of targets in pools of ten million compounds (Zhang et al.,
2020b).

Structure-Based Drug Screening
DeepBindBC, an in-house deep learning-based software, is used
for structure-based drug screening. Unlike the DFCNN, the input
of DeepBindBC includes both the physical-chemical information
and spatial information between the protein-ligand interfaces
(Figure 1A); hence, DeepBindBC can achieve higher accuracy but
requires protein-drug complex structure information as input
generated by Autodock Vina.

Autodock Vina is used to dock the target with the potential
ligands (Steffen et al., 2010). The pocket is determined by the

location of the ligand in the template protein. Moreover, we
set the cavity volume space at 2.5, 2.5, and 2.5 nm in x, y, and z
dimensions from the pocket mass center. AutoDock Tools
were used to convert the PDB file format to the PDBQT file
format (Morris et al., 2009). The exhaustiveness was set to 8;
the num_modes was set to 20, and the energy range was set to
3. The scoring function and optimization algorithm of
Autodock Vina has been well discussed in a previous
article (Steffen et al., 2010).

The DeepBindBC is a ResNet model trained over the PDBbind
database. In DeepBindBC, the protein-ligand interaction
interface information will be converted into figure-like metrics,
similar to DeepBindRG (Zhang et al., 2019b). By incorporating
the cross-docking (docking proteins and ligands from different
experimental complexes) conformation as negative training data,
DeepBindBC is highly possible to distinguish non-binders.

FIGURE 3 | The snapshot and 2D interaction of last frame conformation from the 100 ns MD simulations trajectories of candidate list 1.
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Force Field-Based Screening
Further drug screening was carried out by force field-based
molecular dynamics (MD) simulations. In this study, we
selected 69 compound binding complexes, which were
predicted candidates by previous deep learning methods,
for MD simulation, respectively. Binding free energy
calculation can be estimated by metadynamics simulations
to explore whether protein-ligand will bind in solution.
Metadynamics relies on the addition of a bias potential to
sample the free energy landscape along with a specific
collective variable of interest (Laio and Gervasio, 2008;
Saleh et al., 2017). The detailed MD simulation and
followed metadynamics simulation were illustrated in
Supplementary Material Section S1.

Tools Used in Analysis
TheUSCFChimera, VMD, ICM-browserPro, andDiscovery Studio
Visualizer 2019 were used to generate the structure and visualize the
2D protein-ligand interactions (Humphrey et al., 1996; Pettersen
et al., 2004; BIOVIA, 2005; icm_browser_pro, 2020).

Bio-Layer Interferometry
Recombinant TIPE2 proteins were purchased from the Abcam
company and biotinylated by the EZ-Link biotinylation reagent
(Thermo Fisher Scientific). Briefly, TIPE2 proteins and
biotinylation reagent were mixed with a 1:1 molar ratio and
then incubated for 2 h at 4°C. The mixture was purified by 3K
MWCO dialysis cassettes (Thermo Fisher Scientific) to remove
unreacted biotinylation reagent.

FIGURE 4 | The compounds in six clusters of list 2 and the 2D interaction of each representative compound with the binding pocket.
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Affinities (KD values) were determined by BLI using an
OctetK2 instrument (PALL ForteBio). Biotinylated TIPE2
proteins in PBS were loaded onto Super Streptavidin (SSA)
biosensors (ForteBio). Average saturation response levels of
5 nm were observed in 10 min for TIPE2 proteins. PBS with
0.1% BSA, 0.01% Tween-20, and 1% DMSO was prepared as the
assay buffer. Sensors with TIPE2 proteins were then washed in
assay buffer for 10 min to remove nonspecifically bound proteins
and establish stable baselines before starting association-
dissociation cycles with small molecules. DMSO only
references were included in all assays. Raw kinetic data
collected were processed in the Data Analysis software
provided by the manufacturer using double reference
subtraction in which both DMSO only reference and an
inactive reference were subtracted. The resulting data were
analyzed based on a 1:1 binding model from which kon and
koff values were obtained and then KD values were calculated.

Competitive BLI
PIP2 (phosphatidylinositol 4,5-bisphosphate) was purchased
from the Echelon company. To measure competitive binding
to TIPE2 protein between PIP2 and UM-164 by BLI, two

concentrations (5 and 25 μM) of UM-164 were added to PBS
with 0.01% Tween-20 as two sets of assay buffers, respectively,
and the interference patterns from the assay buffer without UM-
164 and a biosensor without TIPE2 protein were used as two of
controls. TIPE2 proteins (10 μg/ml) in three assay buffers were
loaded to Streptavidin (SA) biosensors (ForteBio) for 60 s and
flowed 150 μM of PIP2 for the 60 s, respectively. The competitive
characteristics were analyzed by the Data Analysis software.

RESULTS

The screening pipeline is illustrated in Figure 1. Here, we first
identified the potential ligand binding pocket and then used a
deep learning-based method and docking to do a fast
preliminary screening. After that, molecular dynamics
simulation-based methods were used to further shortlist
the results. We have gone over the final candidates and
have a preference for those that have a good score and a
strong interaction based on a 2D snapshot. Finally, we
selected four compounds from the final candidates and
carried out experimental validation. However, the other

FIGURE 5 | Detailed atomic interaction between TIPE2 and six representative ligands of candidate’s list 2 in the last frame of MD simulation.
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compounds that were not chosen for experiment validation;
nevertheless, they have a good chance of binding the TIPE2.
The result shows that among the four compounds, one has a
low-micromolar binding affinity with a KD value of 4.97 µM,
two compounds have a binding affinity with a KD value of
189.1 and 298.3 µM, and one has a weak binding affinity with
a KD value of 858,100 µM.

Unlike many other drug screening pipelines, our screening
strategy is highly hybrid and takes full usage of different
methods’ advantages to achieve a balance between accuracy
and efficacy. In the deep learning screening section, we have
used the molecular vector-based method DFCNN first since it
is highly efficient as it does not rely on docking structure,
making it quite suitable for large-scale preliminary drug
screening (Zhang et al., 2019a, 2020a, 2020b; Majumdar
et al., 2021). The output list from DFCNN was used for

docking and structure-based deep learning prediction by
the DeepBindBC method (Zhang et al., 2020b), which
makes the prediction more robust. In the force field-based
screening section, we first carry MD simulations for the
predicted protein-ligand complexes from the output of the
deep learning screening section. After that, metadynamics
simulation was continued from previous results to further
examine the binding free energy. The MD simulation results
can provide predicted atomic interaction details and binding
stability; meanwhile, metadynamics simulation predicted
protein-ligand binding free energy landscape. Altogether,
this pipeline provides a highly efficient and accurate way
to identify inhibitors against TIPE2. The molecular diversity
is extremely large; hence, screening over some large databases
would be desirable. This pipeline provides important clues
that may help to virtual screening over billions of compounds

FIGURE 6 | The free energy landscape of several candidates from candidate lists 1 and 2.
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databases while keeping the balance between accuracy and
efficacy.

Figure 2 and Supplementary Figure S1 together display the
interaction between four selected compounds that interacted
with the TIPE2 from the last frame of 100 ns MD simulation.
We observed that the UM-164 has two hydrogen bonds, a
Pi–Pi stacking, and a halogen interaction with the TIPE2 and
has many other non-hydrophobic interactions. The hydrogen

bonds are formed with ASP32 and ALA98. The Pi–Pi
interaction was formed with PHE150. This strongly
supports the experimental result that UM-164 has the
strongest binding affinity among the four test cases, with a
KD value of 4.97 × 10−06.

Golvtinib was also predicted to have formed hydrogen bond
interaction with HIS74 and LYS183, respectively. The binding of
flumatinib seems mostly maintained by Pi–Pi interactions and

FIGURE 7 | The binding affinities of small molecules with TIPE2. TIPE2 proteins were loaded onto SSA biosensors for BLI analysis and incubated with gradient
concentrations of UM-164 (A), Golvatinib (B), Fedratinib (C), and FIIN-3 (D), respectively. The raw binding curves at different concentrations are shown in five kinds of
color, and red curves are the best global fits to the data used to calculate the KD values.

FIGURE 8 | Competitive binding to TIPE2 protein between PIP2 and UM-164. (A) Diagram of PIP2 and UM-164 competitive binding toTIPE2. (B) The competitive
BLI results. For BLI assays, immobilized biotinylated TIPE2 proteins were bound to PIP2 in the presence of 5 μM UM-164 (red) and 25 μM UM-164 (green) and without
UM-164 (blue), respectively, and then respective binding signals of PIP2 were shown. ****: compared with the group without UM-164, p < 0.0001 (unpaired t-test). NS,
no significance.
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other types of hydrophobic interactions. It forms Pi–Pi
interaction with PHE150 and PHE147, respectively. This
supports the findings that golvatinib and flumatinib have
binding affinities with KD values of 189.1 and 298.3 µM,
respectively. Fiin-3 formed one hydrogen bond with ASP32
and formed Pi–Pi interaction with PHE150, as shown in
Supplementary Figure S1; however, experimental results show
that it only has a very little reactivity against TIPE2.

Preliminary Screening by Deep
Learning-Based Methods and Docking
In a step-by-step manner, we obtain TIPE2 inhibitor candidates
with high predicted values from DFCNN and DeepBindBC and
with a low docking score. Sixteen compounds were selected with
the criteria of DeepBindBC>0.99, Docking<�−10, and
DFCNN>0.99, as shown in Table 1. It is found that
Sennoside_A has very high DeepBindBC and DFCNN scores.
Meanwhile, it also has a very low docking score, which indicates
that the compound has a high potential to bind with the TIPE2.
According to the prediction scores, most of the other listed
compounds all have a very high chance of binding with TIPE2.

Considering that in some cases the high docking score may be
due to dominant non-specific hydrophobic interactions, we also
selected candidates with criteria of DeepBindBC>0.99,
Docking<�−8.5, and DFCNN>0.998, which resulted in extra
24 compounds, as shown in Table 2. We found that many
compounds are high potential binders of TIPE2 according to
DeepBindBC and DFCNN. For instance, the UM-164 has a
DeepBindBC score of 0.9968 and a DFCNN of 0.9994.

At the same time, we also obtained 22 candidates from the in-
house TCM dataset, with the criteria of DeepBindBC>0.9,
Docking<�−6, and DFCNN>0.9. Since the TCM ingredients
are an important source of many drug leads, it would be
attractive if there are some active compounds against TIPE2
by binding. Among the 22 TCM ingredients in Supplementary
Table S1, kurarinone and astaxanthin have a high chance of
binding with TIPE2 according to the prediction scores of
DeepBindBC and DFCNN; both scores are above 0.99. Their
docking scores are −9.4 and −10.8, respectively, which support
their potential high-affinity binding.

Fine Screening by Molecular Dynamics
Simulation and Metadynamics
Simulation-Calculated Free Energy
Landscape
To further validate the ligand binding stability and confirm the
atomistic interaction details of the above-selected candidates with
the TIPE2, a 100 ns molecular dynamics simulation was carried
out for each selected complex. The binding stability was mainly
estimated by RMSD of the calculated ligand and protein C alpha
carbons from the simulation trajectory. The top eight stable
ligand RMSD from list 1 are shown in Supplementary Figure
S2. The hydrogen bond numbers over the simulation time were
also shown. The detailed atomic interaction of these eight

complexes from the last frame of MD simulation is displayed
in Figure 3. The RMSD of the top eight most stable ligands from
list 2 are shown in Supplementary Figure S3A. The
corresponding hydrogen bonding number with the protein
along the simulation time is shown in Supplementary
Figure S3B.

As too many potentially inhibiting compounds were found in
our research, we clustered them into six groups and focused on
the representative compounds of each group to better present the
results, as shown in Figure 4. The compounds in the same cluster
show very similar structural conformation and physical-chemical
properties. It was found that cluster 1 and cluster 2 contain a large
number of predicted candidates, while the representative
structure of these two clusters shows that hydrophobic
interaction has a dominant contribution. The representative
structures of clusters 3, 5, and 6 have formed hydrogen bonds
with the TIPE2 according to the 2D interaction plot for the last
frame of MD simulation. Furthermore, we displayed snapshots of
TIPE2 and six representative ligands with detailed atomic
interactions from the last frame of MD simulation in
Figure 5, respectively. It can be seen that the six
representatives have accommodated well with the TIPE2
pockets, which indicates that all the six representatives have a
high chance of binding with the TIPE2.

To more accurately estimate the binding preference of the
selected ligand candidates to TIPE2, we have examined the
calculated free binding free energy landscape from the
metadynamics simulation. Most candidates in list 1 and list 2
were high potential binders according to the calculated binding
free energy, and their binding free energy landscape was shown in
Figure 6. Among the seven selected candidates from the in-house
TCM dataset, four ingredients show favorable binding with the
TIPE2 according to the free energy landscape from the
metadynamics simulation, as shown in Supplementary
Figure S4.

Tomeasure the binding affinities of these small molecules, bio-
layer interferometry using recombinant TIPE2 proteins was
performed. The bio-layer interferometry (BLI) technique is
extremely valuable and one of the most authoritative methods
to estimate protein-ligand binding affinity (Zhou et al., 2018;
Abdul Azeez et al., 2019; Maji et al., 2019). As shown in Figure 7,
UM-164 was able to bind to the TIPE2 protein in appreciable
potency, with a KD value of 4.97 µM, while Fedratinib and
Golvatinib were bound to TIPE2 proteins with KD values of
298 and 189 μM, respectively. Nevertheless, FIIN-3 exhibited a
lack of reactivity against TIPE2 protein.

Inhibition Efficacy of UM-164
To assess the ability of UM-164 to inhibit the interaction between
TIPE2 and PIP2, competitive binding assays were performed by
BLI. Immobilized biotinylated TIPE2 proteins were saturated
with PIP2 in the presence of 5 and 25 μM UM-164 or in the
absence of UM-164, respectively. Compared with 5 μM UM-164
and without UM-164, when 25 μM UM-164 was added to the
assay buffer, a dramatic reduction of PIP2 bound to TIPE2
protein was observed (Figure 8) possibly because UM-164 and
PIP2 may recognize the same or overlapped site on TIPE2
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protein, or allosteric effects, and therefore UM-164 was able to
interfere with the binding of TIPE2 and PIP2. These results
indicate that UM-164 is a potential inhibitor against TIPE2
function.

DISCUSSION

Constructing a computational-aided drug screening pipeline can
greatly facilitate the process of finding drug leads. Finding effective
inhibitors with limited experiments would be a challenging task. We
have already performed virtual screening with a hybrid method of
deep learning and molecular dynamics simulation in our previous
work. Together with a previous SARS-Cov2 drug repurposing work,
we further show the workable and high efficiency of the hybrid
screening strategy. With the high efficiency of deep learning and
relative accuracy of MD simulation, our drug screening pipeline
demonstrated good performance. Deep learning and docking-based
methods can greatly narrow down the candidate pool with
affordable computational cost. Since the TIPE2 has a relatively
small size and a large ligand binding cavity, it is possible for us
to run relatively large-scale MD simulations and metadynamics
simulations that can lead to a more accurate prediction.

MD simulations provide more accurate atomic details of the
protein-ligand interaction, making the prediction much more
explainable, and help gain insights into the mechanisms of ligand
binding. Taking theMD simulation part alone, it is the first time that
we carried more than 60 MD simulations for screening inhibitors
against a given protein target. Thanks to the increasingly available
computational resources nowadays, theMD simulationwould play a
much important role in future drug screening.

It is the first time that a low-nanomolar affinity binder of TIPE2
(UM-164) has been discovered, and its binding is strong enough to
block the binding of native ligand PIP2, indicating that the UM-
164 can inhibit TIPE2’s function. To explore which kinds of ligands
prefer binding with the TIPE2, we have carefully checked the
atomic interaction of candidates binding with TIPE2. We also
provide a large number of TIPE2 inhibitor candidates, which can
greatly promote the future discovery of new inhibitors by future
experimental validation. Together, it may promote the future
development of novel drugs that may cure lung cancer.

Compared to ligand-based drug screening, such as LigandScout
(Wolber and Langer, 2005), our pipeline can select potential drugs
with a much wider chemical space, which greatly promotes real
novel drug development. As we can see from Figure 3, the potential
TIPE2 binding ligands found by our method are diverse and have
been divided into several categories. Compounds with quite different
structures can bind into the same target, while traditional screening-
based on ligand similarity cannot achieve this. Candidates with
different structures provided the chance to develop diversified drugs.

CONCLUSION

With the help of the hybrid drug screening pipeline, we found 69
drug candidates against TIPE2 function. We selected four
candidates for final experimental tests, in which UM-164 could

bind to TIPE2 with low-micromolar affinity (KD � 4.97 µM). In
addition, Golvalinib and Fedratinib were bound to TIPE2 with KD

values of 189.1 and 298.3 µM, respectively. Only FIIN-3 has a weak
binding affinity with a KD value of 8.581 × 10−1 M. This greatly
expanded the available inhibitors for TIPE2, which is a potential
novel drug target related to cancer and inflammation. Moreover,
the high success rate of the hybrid drug screening pipeline indicates
a huge potential for the implementation of similar methods in the
drug discovery of other targets. The active compounds we found
and their possible derivatives have the potential to facilitate drug
development for TIPE2. The detailed interaction between those
inhibitors and TIPE2 also provides insight into understanding the
binding mechanism and drug design and refinement.
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