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Abstract: The Cryptococcus neoformans/Cryptococcus gattii species complex is a group of
fungal pathogens with different phenotypic and genotypic diversity that cause disease in
immunocompromised patients as well as in healthy individuals. The immune response resulting
from the interaction between Cryptococcus and the host immune system is a key determinant of the
disease outcome. The species C. neoformans causes the majority of human infections, and therefore
almost all immunological studies focused on C. neoformans infections. Thus, this review presents
current understanding on the role of adaptive immunity during C. neoformans infections both in
humans and in animal models of disease.
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1. Introduction

The Cryptococcus species complex is a group of related fungal pathogens that cause disease
in both healthy and immunocompromised patients. A recent study proposed to separate the
Cryptococcus species complex into seven species; C. neoformans, C. deneoformans, C. gattii, C. bacillisporus,
C. deutorogattii, C. tetragattii, and C. decagattii [1]. The first two species (C. neoformans and
C. deneoformans) were previously known as C. neoformans var grubii and C. neoformans var neoformans
respectively, while the other five species (C. gattii, C. bacillisporus, C. deutorogattii, C. tetragattii and
C. decagattii) represent what was previously known as C. gattii VGI to VGIV [1]. C. neoformans and
C. deneoformans mainly cause infections in profoundly immunosuppressed patients such as individuals
with advanced HIV-AIDS, various T cell defects, patients with chronic lung, renal and hepatic diseases,
and patients receiving immunosuppressive therapy before organ transplantation [2–4]. However,
the five C. gattii species can cause disease both in immunocompetent and immunocompromised
individuals [5–8]. In C. gattii infections, approximately 60% of affected populations have underlying
diseases including respiratory diseases, diabetes or hematological malignancy [9]. These differences
in patient populations suggest that the Cryptococcus species may exhibit subtle differences in their
interaction with the host. However, the vast majority of studies exploring immune responses in both
humans and animal models have utilized C. neoformans infections. Thus, this review will primarily
focus on C. neoformans.

1.1. Dendritic Cells and Macrophages Connect the Innate and Adaptive Immune Systems during
C. Neoformans Infection

C. neoformans is found in the environment throughout the world, and has been extracted from
soil, bird droppings and decaying wood [10,11]. C. neoformans infection starts following inhalation of
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fungal spores. Upon entering the lungs, Cryptococcus cells are recognized by host innate immune cells
such as dendritic cells (DCs), epithelial cells, endothelial cells, and alveolar macrophages. These DCs
and macrophages ingest and destroy invading Cryptococcus, present Cryptococcus antigens to T cells,
and produce mediators (cytokines and chemokines) that initiate and direct the adaptive immune
response [12–15]. Depletion of resident pulmonary DCs and alveolar macrophages results in rapid
deterioration and death of mice infected with C. neoformans [16]. Thus, alveolar macrophages and
DCs play an important role in the initiation of anti-cryptococcal immune responses, and link the
innate and adaptive immune system during C. neoformans infection. In addition to their role as a
physical barrier, epithelial and endothelial cells also act as effector cells during C. neoformans infection.
Epithelial cells produce cytokines in response to C. neoformans [17], while endothelial cells augment
the anti-cryptococcal activity of polymorphonuclear leukocytes [18].

1.2. Dendritic Cells Are the Primary Antigen Presenting Cells during Cryptococcal Infection

The respiratory tract contains a dense network of DCs with antigen uptake and presentation
as their primary function [19,20]. Mature DCs migrate to T-cell-rich areas of secondary lymphoid
organs, and present antigens to naïve T cells [20,21]. In addition to presenting antigens to naïve T
cells, DCs also produce cytokines that regulate the adaptive immune response [21]. The expression
of major histocompatibility complex class II molecules on DCs is sufficient to stimulate naïve T
cells [20], and mice lacking DCs fail to generate cytotoxic T lymphocyte responses to intracellular
pathogens [22]. Depending on the type of co-stimulatory molecules expressed on DCs, they can induce
differential helper T cell responses. Helper T lymphocytes (Th cells) that respond to fungal pathogens
can be divided into three main groups; (a) helper T cell type 1 (Th1) that produce pro-inflammatory
responses to kill intracellular pathogens, (b) helper T cell type 2 (Th2) associated with the promotion
of antibody, eosinophilic, and anti-inflammatory immune responses, and (c) helper T cell type 17
(Th17) cells associated with mucosal immunity and autoimmune diseases [23–25]. Dendritic cells
matured in the presence of IFNγ induce the formation of IL-12 producing Th1 cells, and IL-12
secreted by DCs promotes the formation of IFNγ-producing cells [26,27]. On the other hand, DCs
expressing costimulatory molecules CD86 and OX40L induce the development of Th2 cells that produce
IL-4, IL-5 and IL-13 cytokines [26,28,29]. This Th2 immune response leads to eosinophilic airway
inflammation [30]. Confirming these observations, blocking CD86 decreased Th2 immune responses,
demonstrated by low IL-4 and IL-5 cytokines as well as low airway eosinophilia [31]. The formation of
IL-17-producing Th17 cells requires the costimulatory molecules CD28 and ICOS [32]. In the absence
of IL-4 and IFNγ cytokines, IL-23 induce naïve cells to differentiate into Th17 cells, and the presence
of IL-4 and IFNγ blocks this differentiation [32,33]. Th17 immunity has been associated with both
protective and non-protective roles during fungal infections [34–39]. During C. neoformans infection,
Th1 immune responses are beneficial and support pathogen clearance, whereas Th2 immunity enhances
disease, and Th17 cells have been associated with both protection and increased disease, depending
upon the model used [39–48].

In a mouse model of C. neoformans infection, lung DCs internalize cryptococcal cells within 2 h
post-infection, and following this internalization, lung DCs express the maturation markers CD80,
CD86 and major histocompatibility class II [14]. The stimulated DCs induce production of high levels
of IL-2 cytokine in vitro when co-incubated with C. neoformans antigen-specific T cells compared to
naïve T cells, demonstrating C. neoformans antigen presentation and T cell activation [14]. Myeloid DCs
and Langerhans cells, but not lymphoid DCs, are the antigen presenting cells needed to induce a
protective immune response during C. neoformans infection [49]. A subset of lung resident DCs,
CD11+ conventional DCs, mediates the accumulation of pathological Th2 cells following pulmonary
C. neoformans infection, and lymphoid priming is not required for pulmonary Th2 cell accumulation [47].
These data demonstrate that the type of antigen-presenting DCs is important in the polarization of
Th-mediated adaptive immune responses.
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2. Cell-Mediated Immunity: T Cells

2.1. Importance of T Cells during Cryptococcal Infections

C. neoformans cause infections in immunocompromised patients, mainly individuals with
HIV-AIDS. In non-HIV individuals, most patients who present with cryptococcosis have other
underlying diseases or immunosuppression. These include patients receiving immunosuppressive
medication before organ transplantation, patients on glucocorticosteroid therapy, patients with chronic
hepatic, renal and lung diseases, and patients with idiopathic CD4 lymphocytopenia [3,4,50–52].
C. neoformans also infects patients suffering from X-linked hyper IgM syndrome with defects in their
circulating T cells [53–55]. These observations clearly demonstrate that CD4 T cell-mediated immunity
plays a critical role in controlling human cryptococcal infections.

In vitro and animal studies complement observations from human infections, and allow further
identification of the role of T cells in immunity against C. neoformans. Different T cell subsets
are involved in the immune response to C. neoformans infection. Both CD4 and CD8 T cells
can inhibit the growth of C. neoformans cells by either direct killing [56,57], or production of
pro-inflammatory cytokines that recruit and activate other phagocytes to kill C. neoformans cells [58–62].
Regulatory T cells promote protection against Cryptococcus infection by suppressing detrimental Th2
immune responses [63–65]. Other T cell subsets such as Natural Killer (NK), Natural Killer T (NKT)
and gamma delta T (γδ T) cells are also involved in the development of a protective immune response
against Cryptococcus infection [66–71]. However, γδ T cells can also downregulate the protective Th1
immune response [72].

2.2. Cryptococcal Antigens Activate T Cell Maturation and Proliferation

Whole C. neoformans cells or cell extracts (membrane, cell walls and proteins) induce the
proliferation of human naïve T cells [73,74]. Phagocytosis and protein processing by accessory cells are
necessary for the presentation of C. neoformans antigen to T lymphocytes [75]. Previous studies
demonstrated that both CD4 and CD8 T cells proliferate in response to various C. neoformans
antigens [59,60], and that immunity to C. neoformans infection requires both CD4 and CD8 T cells [76].
In addition, both CD4 and CD8 T cells directly inhibit the growth of cryptococcal cells in vitro [77,78],
and both types of cells can use granulysin to kill C. neoformans [56,57]. A number of studies
found divergent observations in addressing whether CD8 T cell responses depend upon CD4 T
cells. Studies in mice found that neither CD8 T cell expansion and recruitment, nor their ability to
produce IFNγ cytokine required CD4 T cells [58,61]. However, the loss of CD4 T cells resulted in
a hyperexpansion of CD8 T cells [59]. On the other hand, studies using human cells showed that
(a) proliferation of CD8 T cells requires CD4 T cells [60], and (b) the ability of CD8 T cells to kill
C. neoformans through granulysin requires CD4 T cells, accessory cells and IL-15 [56]. These conflicting
observations suggest that either the activity of CD4 and CD8 T cells in response to C. neoformans is
different between humans and mice, or that the recruitment/expansion and function of CD8 T cells are
regulated differently with CD4 T cells regulating the ability of CD8 T cells to kill C. neoformans through
granulysin, but having no effect on how CD8 T cells develop and are recruited.

During cryptococcal infection, stimulated lung-infiltrating T lymphocytes secrete both Th1 (IFNγ,
IL-2) and Th2 (IL-4, IL-5, IL-10) cytokines [61]. The absence of CD4 T cells is accompanied by the loss
of T cells secreting IL-4, IL-5 and IL-10, but residual CD8 still produces IFNγ and IL-2 cytokines [61].
On the other hand, T cells from CD8 deficient mice produced similar IL-4, IL-5 and IL-10 levels as
the control mice, but secreted lower levels of IFNγ [61]. Both CD4 and CD8 T cells produce IFNγ

and TNFα cytokines in the lungs of infected mice [59]. These data suggest that both CD4 and CD8 T
cells produce Th1 cytokines; however, CD4 T cells are the main or sole source of Th2 cytokines during
C. neoformans infection.
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2.3. Regulatory T Cells (Tregs)

Tregs are a subset of CD4 T cells that suppress immune responses [79,80]. Tregs have been found
to play both beneficial and harmful roles during most common fungal infections. In Histoplasma and
Candida albicans infections, reduced Tregs were associated with increased pro-inflammatory cytokines
that promoted fungal clearance [81,82]. However, another study found that Tregs enhance Th17
responses and clearance of C. albicans cells [83]. In addition, Tregs were found to suppress Th2 immune
responses in the lungs of mice infected with Pneumocystis [84].

Similar to their role during Pneumocystis infection, recent studies showed that Treg cells suppress
harmful Th2 immune responses during murine C. neoformans infection [47,63–65]. Treg-depleted mice
showed increased mucus production, eosinophilia, IgE production, Th2 cytokines (IL-4, IL-5, IL-13),
as well as increased fungal burden [63]. Confirming these observations, increasing Tregs during
pulmonary cryptococcal infection resulted in reduced IgE production, decreased mucus production
and Th2 cytokines [64]. The C-C chemokine receptor type 5 (CCR5) and IFN regulatory factor 4 (IRF4)
are required for the localization of Tregs to infected lungs and subsequent suppression of Th2 effector
cells [65].

2.4. Natural Killer T(NKT) Cells

NKT cells play an important role in inducing protective Th1 immune responses during
C. neoformans infection. C. neoformans infection is followed by an accumulation of NKT cells in the
lungs and MCP-1 chemokine contributes to this NKT cell induction, especially Vα14+ NKT cells [66].
The activation of NKT cells is thought to be through the presentation of cryptococcal lipid antigens
by DCs [68]. NKT cells induce delayed type hypersensitivity after immunization with cryptococcal
culture filtrate antigen [69], and play an important role in the development of protective Th1 immune
responses following C. neoformans infection [66–68]. In addition, activation of Vα14+ NKT cells with
α-galactosylceramide resulted in Th1 immune responses, shown by increased IFNγ production, and
enhanced local resistance to C. neoformans infection [67].

2.5. Gamma Delta (γδ) T Cells

During pulmonary C. neoformans infection, γδ T cells accumulate in the lungs, a process that does
not involve MCP-1 chemokine [72]. Deficiency in γδ T cells was followed by an increase in IFNγ

production, suggesting that they downregulate protective Th1 immune responses [72]. In addition, the
absence of both Th cells and CD8 T cells leads to γδ T cell overproduction associated with neutrophilia
and enhanced disease [39]. However, in the absence of neutrophils, γδ T cells produce IL-17A
cytokine associated with protective immune responses in mice immunized with an IFNγ-producing
C. neoformans strain [71]. The discrepancies in the roles of γδ T cells during C. neoformans infection
observed in the above studies [39,71,72] might be due to the use of different C. neoformans and
mouse strains.

2.6. Memory T Cells

Defects in CARD9 are accompanied by impaired accumulation of Natural Killer (NK) and memory
T cells in the lungs and increased susceptibility to C. neoformans infection, suggesting that both NK and
memory T cells contribute to the protective immune response against C. neoformans [70].

3. Antibody-Mediated Immunity against Cryptococcal Infections

The fact that both humans and rodents produce antibody responses reactive with cryptococcal
proteins [85] suggests that antibody-mediated immunity might play an important role against
C. neoformans infection. Naïve laboratory mice and rats have no serum antibodies reactive with
cryptococcal proteins, but produce antibody responses after C. neoformans infection [85]. Interestingly,
adult human sera contain antibodies to cryptococcal proteins and GXM regardless of the person’s
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HIV status, previous history of C. neoformans infection, or whether the sera came from individuals
with or without potential exposure to C. neoformans [85,86]. In addition, by the age of 5, sera from
immunocompetent children also contain antibodies reactive with various cryptococcal proteins [87],
suggesting that exposure to C. neoformans and subsequent development of antibody responses occurs
early in life.

3.1. B Cells and Antibody-Mediated Immune Responses in Human Cryptococcal Infections

Previous studies reported conflicting observations about the role of antibody-mediated immune
responses in controlling cryptococcal infections. Deficiency in B cells and antibody immune responses
have been associated with a greater risk for developing cryptococcal infections both in HIV and
non-HIV patients [5,88,89]. In HIV-patients, decrease in B cells expressing IgM is associated with
cryptococcal infections [88]. In addition, lower IgG counts are associated with cryptococcal meningitis
in non-HIV patients with normal T cell counts and ratios [5,89]. Cryptococcal meningitis also occurs in
patients with X-linked hyper IgM syndrome, characterized by lower IgG, IgA and IgE [53,54,90–92].
X-linked hyper IgM syndrome is a genetic defect in the gene encoding CD40 ligands on activated
CD4 T cells, and is required for normal B cells activation [90,91,93]. C. neoformans infections are
also linked to a total absence of B cells, such as in Burton’s agammaglobulinaemia in non-HIV
patients [94,95]. These examples show that B cells and antibodies play an important role in controlling
cryptococcal infection.

Yet, antibody responses can also enhance cryptococcal disease in humans. Autoantibodies, such
as anti-IFNγ and anti-GM-CSF, are associated with infections in non-HIV patients with normal CD4
counts [96]. Specifically, anti-GM-CSF autoantibodies were associated with cryptococcal meningitis in
one patient [96].

3.2. B Cells and Antibody-Mediated Immune Responses in Non-Human Cryptococcal Infections

Early mouse studies concluded that antibodies were not involved in protection against
C. neoformans because B cell deficient mice had no differences in mortality or organ CFUs when
compared to wild-type mice [97]. However, subsequent studies demonstrated that B cells and
antibodies can play a role in either resistance or susceptibility to cryptococcal infection. Deficiency
in B cells and IgM antibodies has been associated with increased lung fungal burden and enhanced
susceptibility to C. neoformans infection [98–100]. In addition, IgG antibodies enhance the ability of
murine splenic NK cells to kill C. neoformans [101]. Another study showed that although B cells are
dispensable for the development of acquired resistance to C. neoformans, they play an important role
in protection against systemic infection when T cell immunity is impaired [102]. Divergence in the
observed role of B cells and antibodies during C. neoformans infection might be due to the use of different
C. neoformans and mouse strains. For example, studies showing that B cells and antibodies have a
protective role against C. neoformans used C57BL/6J, BALB/c and CBA/J mouse strains [98–100], while
the study that showed that antibody responses are dispensable during C. neoformans infection uses
Swiss albino mice [97], and the C. neoformans strains used in these studies were also different [97–100].

Antibodies can also act as opsonins to enhance phagocytosis of Cryptococcus cells [103–110].
Anti-β-glucan monoclonal antibody with the ability to bind C. neoformans cell wall inhibits cryptococcal
growth and increases in vitro killing by human and murine peritoneal macrophages [111]. In addition,
administration of this anti-β-glucan antibody to infected mice reduces fungal burden in the brain and
liver [111], showing that passive administration of anti-Cryptococcus antibodies can protect against
C. neoformans infection. The efficacy of passive administration of anti-Cryptococcus antibodies depends
on the antibody dose and mouse strain. In BALB/c mice, the efficacy of passive antibody decreases
with higher doses, while in CBA/J mice protection against C. neoformans infection is only observed at
high antibody doses [100]. In addition to antibody dose and host genetics, the type of antibody also
affects the ability to confer protection against C. neoformans infection. Antibodies such as IgG, IgM
and IgA have been associated with protection against C. neoformans infection [100,101,103,108–110],
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while increased IgE is associated with a Th2 immune response that exacerbates disease [100,112–114].
The above observations show that antibody-mediated immunity against Cryptococcus infection is a
complex process where protective or non-protective roles of antibodies against C. neoformans depend
on the type of C. neoformans strain, host genetics, and immunoglobulin class.

4. Cytokine Responses during C. neoformans Infections

Cytokines are small secreted proteins that mediate the interaction and communication between
different immune cell types. Different cell types can secrete the same cytokines and similar functions
can be induced by different types of cytokines. In addition, a single cytokine can act on many cell
types, thus deciphering the impact of a specific cytokine can be challenging. A wide range of cytokines
and chemokines (cytokines with chemotactic activities) play a crucial role in protecting mice against
cryptococcal infection. A common feature of these protective cytokines and chemokines is that they
either induce the Th1 immune response, enhance the activity of other Th1-inducing cytokines, and/or
suppressing Th2 immune responses (Table 1). Th2 cytokines mainly induce non-protective immune
responses that enhance cryptococcal disease, whereas Th17 cells are associated with both protection
and disease enhancement during C. neoformans infection (Table 1).

4.1. Protective Cytokines

The main protective cytokines produced during cryptococcal infections include IFNγ, IL-12
and IL-2. These cytokines have been associated with protection both in humans and mouse models
of C. neoformans infection. In mice, the absence or reduction of IFNγ, IL-12 and IL-2 correlated
with increased lung and brain fungal burden, increased lung eosinophilia, reduced numbers of
macrophages expressing inducible nitric oxide synthase, increased fungal dissemination to the brain
and overall increased susceptibility to infection [40,42,44,115–118]. Treating mice with anti-CD40
and IL-2 increases protection from disseminated C. neoformans infection through IFNγ activation of
microglial cells [119,120], and IL-2 activated T and NK cells directly inhibit the growth of C. neoformans
in vitro [77]. In addition, the absence of IL-12 induces a switch from protective Th1 to non-protective
Th2 cytokines [40,44]. Human studies validate the role of IFNγ, IL-12 and IL-2 cytokines in protecting
the host against Cryptococcus infection. Recombinant IFNγ and IL-2 were used as adjunct therapy to
successfully treat cryptococcal meningitis (CM) patients [43,121–123]. Similar to observations in mice,
adjunct IFNγ therapy was associated with an improved rate of fungal clearance in the CSF of HIV-CM
patients with a trend towards improved mycological and clinical outcome [43,122], and restoration of
immunological parameters and a sustained clinical recovery [121]. The importance of IL-12 in human
CM was shown by (a) a correlation between higher CSF levels of IL-12 cytokine and increased survival
in AIDS patients with CM, and (b) an increased ability to produce IFNγ when human PBMCs were
treated with IL-12 [124]. All three cytokines are known to play a major role in the induction of Th1
immune responses. IFNγ and IL-12 cytokines from innate immune cells stimulate the differentiation
of helper T cells into Th1 cells, while IL-2 induces proliferation of T cells [125,126].

In addition to these three major protective cytokines, there is another group of cytokines that
we classified as supportive cytokines because they induce or promote the three major protective
cytokines (IFNγ, IL-12 and IL-2) or their protective role has been shown in either human or animal
models of cryptococcosis, but not in both. These supportive cytokines include TNFα, IL-6, IL-8,
IL-18, IL-23 and IP10. The ability to produce TNFα, IL-8, IL-6 and IP10 cytokines was associated
with improved outcome in AIDS patients with CM [124,127–131]. In addition, IL-6 and IL-1β are the
main cytokines involved in anti-cryptococcal resistance in the brain of infected mice [132]. IL-23 and
IL-18 cytokines were shown to play a protective role in mice against cryptococcal infection [133–135];
however, their role in human infection has yet to be determined. In mice, the absence of IL-23 was
followed by impaired recruitment of inflammatory cells and cytokine responses [133], while defects in
IL-18 correlated with increased lung fungal burden and reduced IFNγ and IL-12 cytokines [134,135].



J. Fungi 2017, 3, 64 7 of 20

Table 1. Schematic representation of cytokine function based on tissue analyzed.

Human Mice References

Classification Cytokines/
Chemokines

Blood/
Plasma/
Serum

CSF Lungs Spleen Brain

Protective
cytokines

IFNγ [40,118,121,122,127,128,130,136]
IL-12 [40,100,116,124]
IL-2 NA NA [119,120,123]

Protection
support

cytokines

IL-6 NA NA [100,117,128–130]
IL-18 NA NA NA [134,135]
IL-23 NA NA NA [133]
IP10 NA [127,130,136,137]

G-CSF NA NA [71,128,130,138,139]
GM-CSF NA NA NA [128,131,138]

TNFα NA [41,121,128,130,136,138]
Non-protective

cytokines
IL-5 NA NA [47,112,136,140]

IL-13 NA NA [42,47,112,115,141]

Cytokines/
chemokines

with varying
roles

IL-1β NA NA [136,142,143]
IL-4 [42,112,115,117,124,131,136,138,144,145]
IL-8 NA NA NA [124,128–130,146]

IL-10 NA [47,100,117,124,127,129,131,142,146]
IL-17 NA [39,45,112,124,131,138]

MCP-1 NA NA [131,136,147,148]
MIP-1α NA NA NA [40,131,136,148]

RANTES NA NA NA [47,136]

Blue (protective), yellow (neutral), red (non-protective), NA: not available.

4.2. Non-Protective Cytokines

In general, Th2 cytokines such as IL-5 and IL-13 promote cryptococcal disease. In mice, both
IL-5 and IL-13 are associated with increased lung fungal burden, pulmonary eosinophilia, and overall
increased sensitivity to C. neoformans infection [42,47,112,115,136,140,149]. In addition, the absence of
IL-13 correlated with an increase in production of IFNγ and IL-17, cytokines known to be protective
against C. neoformans infection [112]. Confirming observations in mice, high IL-13 levels in the CSF
are associated with increased mortality in HIV-infected patients with CM [141]. IL-5 has not yet been
associated with human C. neoformans infection.

Cytokines Associated with IRIS

Immune reconstitution inflammatory syndrome (IRIS) is characterized by pathological excessive
inflammatory responses that result from a rapid recovery of immune responses in HIV-CM patients
after antiretroviral therapy (ART) initiation [150]. Two different types of cryptococcal IRIS have
been recognized; “paradoxical” and “unmasking” IRIS. Paradoxical IRIS presents as a worsening
of disease or recurrent disease despite microbiological evidence of effective antifungal treatment
(negative cultures) [151–153]. Unmasking IRIS is characterized by the development of Cryptococcus
disease after ART initiation emerging from previous asymptomatic sub-clinical infection during
immune reconstitution [150,154,155]. Various cytokines have been associated with cryptococcal IRIS.
The absence/reduction of serum pro-inflammatory cytokines such as TNFα, G-CSF, GM-CSF and
VEGF (vascular-endothelial growth factor), and increase in serum IL-17 and IL-4, predispose AIDS
patient with CM to developing subsequent CM-IRIS [138]. Increased risk of CM-IRIS is also associated
with low CSF inflammation at the time of diagnosis [130]. However, at the time of CM-IRIS, there are
significant increases in CSF levels of IFNγ, TNFα, G-CSF, VEGF and eotaxin compared to baseline
levels within AIDS patients [130]. These observations demonstrate that the types of sample (serum vs.
CSF) and the time of analysis (diagnosis, during or after treatment) play an important role in relating
cytokine responses to either a protective or non-protective role during Cryptococcus infection.
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4.3. Cytokines/Chemokines with Varying/Conflicting Roles

Cytokines/chemokines, such as IL-4, IL-8, IL-10, IL-1β, MCP-1 (monocyte chemoattract protein 1),
MIP-1α (macrophage inflammatory protein form 1 alpha) and RANTES (CCL5) have been associated
with both protection and disease exacerbation during Cryptococcus infection.

4.3.1. Cytokines/Chemokines with Beneficial Role in Mice, but Detrimental in Humans

Decreased levels of MCP-1 in the lungs of infected mice correlated with impaired macrophages
and CD4 T cell recruitment, reduced TNFα and IL-6 production, and inhibition of fungal clearance [147],
and early expression of MCP-1 is associated with protection against C. neoformans infection [136,148].
Similarly, mice defective in MIP-1α production showed eosinophilic pneumonia, high levels of Th2
cytokines (IL-4, IL-13), and a reduction in protective cytokines IFNγ and IL-12 [40,136,148]. In contrast,
human studies show that high MIP-1α and MCP-1 are associated with less peripheral CD4, lower
CSF lymphocytes number, high risk for developing IRIS and increased mortality within AIDS patients
with CM [131,141]. Observations from these studies suggest that MCP-1 and MIP-1α play antagonistic
roles in inducing a protective immune response against C. neoformans infection in humans and mice.
An alternative explanation could be that these chemokines play different roles at different sites
of infection. This alternative explanation is supported by the fact that cytokines and chemokines
were measured in CSF and/or serum in humans [131,141], but in lung and brain tissues in infected
mice [40,136,147,148].

4.3.2. Cytokines with Contradictory Roles in Both Mouse and Human C. neoformans Infections

Three cytokines IL-4, IL-10 and IL-17 have been reported to be protective against C. neoformans
infection, detrimental or not having any effect on the course of disease progression. Increased levels
of IL-4 are associated with slower clearance of C. neoformans cells and increased death of infected
mice [115,144], and IL-4 was absent in the brain of immune (protected) mice [136]. Similarly, high levels
of serum IL-4 correlated with development of IRIS and subsequent death in AIDS-CM patients from
Brazil and Uganda [124,138]. In contrast, high CSF IL-4 levels have been associated with a protective
immune response in AIDS-CM patients from South Africa [131]. In addition to this, several other
studies reported that IL-4 cytokine has no effect on C. neoformans disease whether in mice [42,117]
or humans [145]. Similar observations have been made for IL-10. IL-10 has been associated with (a)
enhanced disease in both mice [100,117,136] and humans [124,142], (b) protection against C. neoformans
disease in humans [129,131], and (c) having no effect on C. neoformans disease in human patients [146].
Reduced IL-17 levels correlated with increased susceptibility in mice [112], and high IL-17 levels in
the CSF of AIDS patients with CM correlated with better fungal clearance and improved clinical
outcome [124,131]. In addition, IL-17 activates anticryptococcal macrophage functions [45]. In contrast,
high serum IL-17 levels, in the absence of pro-inflammatory cytokines, predispose AIDS patients
with CM to subsequent IRIS and death [138]. These observations suggest that for IL-4, IL-10 and
IL-17, the type of host (human or mouse) and/or site of infection (lungs, blood, CSF) are important
in determining whether these cytokines play a protective or non-protective role during Cryptococcus
infection. In addition, the above human studies were done in different countries and continents,
suggesting that different patient populations respond differently to C. neoformans infections.

4.3.3. Cytokines with Contradictory Roles in Only One System

IL-8 and RANTES have been associated with Cryptococcus disease only in human patients and
infected mice respectively. High CSF IL-8 levels are associated with increased survival among AIDS
patients with CM in several studies [124,128,129]; however, similar plasma IL-8 levels were observed
between AIDS patients with CM and control individuals in another study [146]. Similarly, increased
expression of RANTES in the brain is associated with protection against CM in mice [136], but high
levels of RANTES in the lungs correlated with increased Th2 immune responses and enhanced disease
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in another study [47]. These observations again suggest a differential role of cytokines/chemokines at
different sites during Cryptococcus infection.

5. Current Model of the Adaptive Immune Response to Cryptococcus Infection

A summary of our current understanding of the initiation, development, and function of adaptive
immunity during Cryptococcus infection is presented in Figure 1. The model is based on information
derived from C. neoformans experiments in mice (Figure 1A) as many aspects of the model are yet to
be explored in humans (Figure 1B). Following infection, innate immune cells, mainly macrophages
and DCs, recognize and phagocytose C. neoformans cells. Cryptococcal antigens are processed and
presented to naïve T cells by antigen presenting cells (APCs). Naïve T cells will then differentiate
into mature helper T cells. The type of cryptococcal antigens, co-stimulatory molecules on antigen
presenting cells and presence of cytokines produced by innate cells determine whether naïve T cells
differentiate into Th1, Th2 or Th17 cells. The presence of IFNγ and IL-12 induces the differentiation of
naïve CD4 T cells into Th1 cells, while the presence of IL-4 and expression of costimulatory molecules
CD86 and OX40L on APCs induce the formation of Th2 cells. In the absence of IFNγ and IL-4 cytokines,
IL-23 induces the formation of Th17 cells, and these IL-17 producing T cells typically enhance protection
in a healthy host. However, the Th17 cells exacerbate cryptococcal disease when both CD4 and CD8
T cells are lacking, such as in individuals with HIV/AIDS. IL-17 cytokine has also been associated
with increased risk of developing CM-IRIS in HIV infected patients. Cytokines produced by Th1
and Th2 cells can in turn activate and enhance macrophage function. The presence of IFNγ induces
the development of classically activated macrophages (M1), while IL-4 and IL-13 direct macrophage
polarization into alternatively activated macrophages (M2) [112,114,137,156]. M1 macrophages are
associated with protection against C. neoformans infection, whereas M2 macrophages enhance disease
by increasing intracellular cryptococcal proliferation. In addition to Th cells, increased Tregs in the
lungs of infected mice promote protection against C. neoformans infection by blocking detrimental Th2
immune responses [63–65].
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(A) or in humans (B). (1) C. neoformans pathogen-associated molecule patterns (PAMPS) are recognized
by innate immune cells (macrophages and DCs). This recognition triggers phagocytosis, antigen
processing and presentation of C. neoformans antigens to naïve T cells by antigen presenting cells.
(2) Antigen presentation induces activation and differentiation of naïve T cells into Th1, Th2, Tregs and
Th17 cells. (3) The presence of IFNγ and IL-12 promotes Th1 differentiation, while the presence of IL-4,
as well as expression of costimulatory molecules CD86 and OX40L induces Th2 differentiation. IL-23
induces Th17 differentiation in the absence of IFNγ and IL-4. (4) Th1 cells promote cryptococcal killing
either by direct contact, or by producing the Th1 cytokines IFNγ, IL-12 and IL-2 that stimulate phagocyte
recruitment and polarization to classically activated macrophages that eliminate C. neoformans cells.
In contrast, Th2 immune responses mediated by IL-4, IL-5 and IL-13 result in increased eosinophilia
and polarization of alternatively activated macrophages, and ultimately lead to the dissemination
of C. neoformans cells and disease exacerbation. These Th2 immune responses can be blocked by
the action of Tregs. In the absence of Th cells, IL-17 production intensifies cryptococcal disease
through neutrophilia. Green arrows denote beneficial immune responses, whereas red arrows
denote detrimental immune responses. CM (Cryptococcus meningitis), DCs (dendritic cells), IFNγ

(interferon gamma), IL- (interleukin, IL-12: interleukin-12), IRF4 (IFN regulatory factor 4), IRIS (immune
reconstitution inflammatory syndrome), Th (helper T cell), Tregs (regulatory T cells), Ø (macrophage),
M1Ø (classically activated macrophage), M2Ø (alternatively activated macrophage), CD4 (helper T
cell), CD8 (cytotoxic T cell), CD86 (costimulatory molecule 86), OX40L (costimulatory molecule OX40L,
ligand of OX40 receptor on T cells).

6. Concluding Remarks

Current understanding of adaptive immunity against Cryptococcus mainly comes from studies
that used mouse models of disease. The availability of a wide range of genetically defined (knockout
and transgenic) mouse strains makes mice an invaluable tool to study different aspects of the
interaction between the host immune system and the pathogen. However, observations in mice
do not always translate to human infection. For example, Th2 immune responses correlate with
increased C. neoformans disease in mice [47,112,136,140,157], but various studies in humans do not
associate a Th2 immune response to enhanced disease [131,145,158]. One reason for this difference
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could be the different types of samples collected in humans (blood and CSF) and mice (predominantly
lungs). In addition, we do not know the protective immune response in healthy humans because the
only human studies to date focus on patients with C. neoformans infection.

Human studies focused on infection of the central nervous system because the majority of patients
present to hospitals with CM. However, the recognition and immune responses to C. neoformans in
human lungs is not known, although the lungs are the initial site of cryptococcal infection. Studies
in mice show that change in C. neoformans morphologies such as titan cell formation in the lungs
of infected mice affect C. neoformans virulence [159–163]. Specifically, increases in cell wall chitin
content are associated with detrimental Th2 immune responses in the lungs that worsen cryptococcal
disease [47]. It is not known whether changes in cell surface components affect human immune
responses to Cryptococcus. Extensive work has been done in understanding the role and origin of
various cytokines in anti-cryptococcal immunity in the mouse model of infection. However, the role
and origin (immune cell subsets) of cytokines during human Cryptococcus infection are not well known.
Although various cytokines have been associated with either improved patient survival or worsening
of disease, their specific role in immunity against Cryptococcus is not well understood. It is also not
known whether these cytokines are produced by innate or adaptive immune cells. Additionally,
different subsets of immune cells play different roles during Cryptococcus infection in mice (Figure 1A).
However, it is not known whether similar mechanisms occur in human patients. Further studies are
needed to identify mechanisms underlying protective immune responses in humans and address
unanswered questions.

It is important to note that the majority of immunological studies have focused on C. neoformans
infections because they are the most prevalent. Yet recent studies suggest that C. gattii infections
in both mouse models and humans do not behave the same as C. neoformans [143,164–167]. This is
not surprising, based on the observation that C. gattii often causes disease in immunocompetent
individuals. Thus, additional studies on immune responses during C. gattii infection are desperately
needed to better understand the similarities and differences between the Cryptococcus species and how
they cause diseases.
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