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Electrical synapses are a type of cellular membrane junction referred to as gap junctions
(GJs). They provide a direct way to exchange ions between coupled cells and have been
proposed as a structural basis for fast transmission of electrical potentials between neurons
in the brain. For this reason GJs have been regarded as an important component within
the neuronal networks that underlie synchronous neuronal activity and field potential
oscillations. Initially, GJs appeared to play a particularly key role in the generation of high
frequency oscillatory patterns in field potentials. In order to assess the scale of neuronal
GJs contribution to field potential oscillations in the hippocampal formation, in vivo and
in vitro studies are reviewed here. These investigations have shown that blocking the
main neuronal GJs, those containing connexin 36 (Cx36-GJs), or knocking out the Cx36
gene affect field potential oscillatory patterns related to awake active behavior (gamma
and theta rhythm) but have no effect on high frequency oscillations occurring during silent
wake and sleep. Precisely how Cx36-GJs influence population activity of neurons is more
complex than previously thought. Analysis of studies on the properties of transmission
through GJ channels as well as Cx36-GJs functioning in pairs of coupled neurons provides
some explanations of the specific influence of Cx36-GJs on field potential oscillations.
It is proposed here that GJ transmission is strongly modulated by the level of neuronal
network activity and changing behavioral states. Therefore, contribution of GJs to field
potential oscillatory patterns depends on the behavioral state. I propose here a model,
based on large body of experimental data gathered in this field by several authors, in
which Cx36-GJ transmission especially contributes to oscillations related to active behavior,
where it plays a role in filtering and enhancing coherent signals in the network under
high-noise conditions. In contrast, oscillations related to silent wake or sleep, especially
high frequency oscillations, do not require transmission by neuronal GJs. The reliability
of neuronal discharges during those oscillations could be assured by conditions of higher
signal-to-noise ratio and some synaptic changes taking place during active behavior.
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INTRODUCTION
Electrical synapses, from the morphological point of view, belong
to a group of membrane junctions that exist in almost all animal
tissues and are referred to as gap junctions (GJs). A GJ is an area of
close apposition of adjacent cell membranes where an assembly of
channels that pierce both cellular membranes is located, providing
direct contact between the interiors of the cells. The direct trans-
mission of electrical potentials between cells was first discovered
in cardiac ganglion cells and motoneurons in crustacean and fish
(Furshpan and Potter, 1957, 1959; Watanabe, 1958; Bennett et al.,
1959). GJ’s were later identified as the possible structures at the
cellular membrane that establish a path for electrical transmission
(Bennett et al., 1963; Robertson, 1963). Data showed that electrical
coupling in fish motoneurons was a source of simultaneous activ-
ity of a large portion of the effector cells: abdomen flexor muscles
providing movements of the tail in crayfish (Furshpan and Potter,
1957) or mucous glands of the skin (Bennett et al., 1959).

In the 1970s, neuron coupling GJ’s were confirmed in the
mammalian brain (Sloper, 1972; Sotelo and Llinás, 1972). This
discovery raised many fundamental questions, especially regarding
their possible function. At that time the most obvious idea about
the function of GJ’s in the brain was their involvement in neu-
ronal synchronization. It seemed that coherence of synchronous
activity in a portion of neurons could be achieved by the direct
spreading of excitatory potentials between them. Therefore, GJs
became a new player in the mechanisms underlying the generation
of field potential oscillations. Since GJ’s establish direct intercel-
lular connection between neurons, they may provide a rapid way
for transmission of electrical potentials. In that regard they have
been considered especially well suited to participate in the mech-
anism of oscillations in high frequency bands, such as the high
frequency oscillations also referred to as ripples (100–200 Hz)
and gamma rhythm (40–100 Hz). Both of these oscillatory pat-
terns in subsequent years have been recognized as a reference for
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information coding (Buzsáki, 1989; Lisman and Idiart, 1995; Lee
and Wilson, 2002). Another hippocampal field potential oscilla-
tory pattern related to information processing, and the last to be
investigated from the point of view of GJ function was the theta
rhythm (3–10 Hz; Buzsáki, 1989; O’Keefe and Recce, 1993; Skaggs
et al., 1996).

The most pioneering hypothesis on the contribution of GJs
to the mechanism of high frequency oscillation generation in the
CA1 area of the hippocampus was proposed by Draguhn et al.
(1998) and developed by Traub and Bibbig (2000). In their model,
Traub and Bibbig (2000) assumed that GJs involved in high fre-
quency activity should be localized in the neuronal membrane
compartment where active conductance exists. However, direct
potential exchange through GJs in areas of active membrane con-
ductance between high frequency discharging neurons could result
in asynchronous activity. The model therefore postulates that high
frequency oscillations are generated by electrically coupled axons
of pyramidal cells, as they generate action potentials with low fre-
quency. According to the model, each axon should on average
connect to more than one other axon and action potential gen-
erated in one axon could trigger a discharge in axons of coupled
cells. Another possibility is that interneurons, which are in minor-
ity among the neurons of the hippocampal formation (only about
10% of neuron number) but have been shown to shape the activ-
ity of the projecting cells (Buzsáki and Chrobak, 1995; Cobb et al.,
1995; Ylinen et al., 1995; Whittington and Traub, 2003; Le Van
Quyen et al., 2008), could synchronize their own activity by GJs
and provide synchronization of numerous projecting cells. Alter-
natively, direct transmission by GJs could have a minor influence
on field potential oscillations in the hippocampal formation, as
fast transmission in the network of interneurons connected by
chemical synapses has been proposed to be very effective in syn-
chronizing neuronal activity (Wang and Buzsáki, 1996; Szabadics
et al., 2001; Bartos et al., 2002, 2007; Hu et al., 2011). In order to
determine the significance of GJs to particular oscillatory patterns
of the hippocampal field potential, studies using GJ blockers or
genetically modified knock out mice for the Cx36 gene (a gene
that codes protein subunits specific for GJ coupling neurons) have
been undertaken. Concurrently, investigations on the properties of

transmission through GJ channels as well as GJ functioning in pairs
of coupled neurons have been conducted. The results of experi-
ments with field potential recordings under condition of Cx36-GJ
blockade indicate that neuronal GJs contribute to active behavior-
related theta and gamma rhythms, but not to high frequency
oscillations. It is proposed here that data on properties of GJ
transmission between pairs of neurons indicate a possible expla-
nation of specific GJs involvement into distinct field oscillatory
patterns.

GAP JUNCTIONS IN THE MAMMALIAN BRAIN
Gap junction are not homogeneous in their electrical conduc-
tance. The specific features of particular types of GJ depend
on the protein subunits, or connexins (Cxs), from which the
channels are formed (Bevans et al., 1998; Ek-Vitorín and Burt,
2005). Expression of connexins differs among distinct tissues
and cellular populations (Harris and Locke, 2009). In the adult
brain, expression of connexins Cx26, Cx30, Cx32, Cx36, Cx43,
and Cx45 have been documented (see Table 1). Communica-
tion between neurons appears mainly associated with connexin
Cx36, which is called the main neuronal connexin (Rash et al.,
2000, 2001a,b). The Cx36 subunit composes homotypic chan-
nels only, which means that channels contain the same subunit
type (Al-Ubaidi et al., 2000). Other connexins of the brain, such
as Cx26, Cx30, Cx32, Cx43, and Cx45, couple glial cells. Astro-
cytes are coupled by GJs built from connexins Cx26, Cx30, and
Cx43 (Nagy et al., 2001; Rash et al., 2001a; Condorelli et al., 2002).
Astrocytes also establish GJ connection with oligodendrocytes.
These heterogeneous GJ channels are formed by Cx26, Cx30,
or Cx43 subunits at the astrocyte membrane and by Cx32 or
Cx45 at the oligodendrocyte site (Kunzelmann et al., 1997; Rash
et al., 2001a). Sparse coupling between oligodendrocytes may
be supported by connexins Cx32 or Cx45 (Kunzelmann et al.,
1997).

It is well known that GJs couple interneurons in the brain and
that these interneurons mainly belong to the same population
(Sloper and Powell, 1978; Galarreta and Hestrin, 1999; Gibson
et al., 1999; Deans et al., 2001; Rash et al., 2001a,b; Szabadics et al.,
2001; Fukuda and Kosaka, 2003; Hestrin and Galarreta, 2005;

Table 1 | Connexin types in the hippocampal formation.

Connexin

type

Coupled cell types Source

Cx26 Astrocyte–astrocyte Astrocyte–oligodendrocyte (at the astocyte membrane)

Cx30 Astrocyte–astrocyte Astrocyte–oligodendrocyte (at the astocyte membrane) Condorelli et al. (2002) Nagy et al. (2001)

Rash et al. (2001a)

Cx43 Astrocyte–astrocyte Astrocyte–oligodendrocyte (at the astocyte membrane) Theis et al. (2003)

Wallraff et al. (2004)

Cx32 Astrocyte–oligodendrocyte (at the oligodendrocyte membrane) Rash et al. (2001a)

Astrocyte–oligodendrocyte (at the oligodendrocyte membrane) Oligodendrocyte–oligodendrocyte Kunzelmann et al. (1997)

Cx45 Astrocyte–oligodendrocyte (at the oligodendrocyte membrane) Oligodendrocyte–oligodendrocyte Kunzelmann et al. (1997)

Cx36 Interneurons (connections within particular class): basket cells, axoaxonic bistratified cells Baude et al. (2007)

Interneurons (specifically) Kosaka and Hama (1985)
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Baude et al., 2007; Ma et al., 2011). Only a few examples of connec-
tions between heterogeneous neurons have been found (Gibson
et al., 1999, 2005; Venance et al., 2000). As an exception, neu-
rogliaform cells establish GJs with various types of interneurons
(Simon et al., 2005).

The conductance of the Cx36 connexin channel reaches a level
of 10–15 pS (Srinivas et al., 1999). To give a point of reference,
the above values of unitary conductance are the lowest among
all mammalian connexin channels. Most connexin channels have
high unitary conductance of up to 300 pS (Harris, 2001). The
low conductance of neuronal connexin channels is an example
of a particular connexin adjustment to the functional character
of the cell type they are localized in (Cruikshank et al., 2005).
In neuronal tissue, the Cx36 channel unitary conductance is
comparable to that of some low conductance α-amino-3-hydroxy-
5-methyl-4-isoxazolepropionic acid (AMPA)-receptor channels
that amounts to ∼10 pS (Dingledine et al., 1999). Fukuda et al.
(2006) calculated that in normal conditions only 2–5% of chan-
nels in the GJ plaque are open. A number of factors, such
as intracellular pH, phosphorylation, calcium ions concentra-
tion, and metabolic pathway messengers have been shown to
modulate GJ transmission (Spray et al., 2002; Lampe and Lau,
2004; Moreno, 2005; González-Nieto et al., 2008; Zsiros and
Maccaferri, 2008; Pereda et al., 2013). Srinivas et al. (1999)
assumed that the low level of unitary conductance of Cx36
provides precise control of the level of transmission through
GJs. Control of GJ transmission can be performed by modu-
lating the opening and closure of GJ channels in the response
to changes in intracellular environment or to signal molecules.
However, it can also be regulated by way of internalization
of some number of channels from the cellular membrane or
decreasing the number of channels that are incorporated into
the membrane. The process could be relatively fast as con-
nexin channels have very short half-life in the cellular membrane
(∼1.5 h).

TOOLS FOR EXPERIMENTAL MODULATION OF GJ
TRANSMISSION
In the majority of experiments GJ transmission was inhibited
by pharmacological agents, such as carbenoxolone and octanol.
Another compound that was used to block GJs was the anesthetic
agent halothane. These agents have a wide spectrum of actions
and can affect different types of GJs independently of subunit
composition (Spray et al., 2002). This means that in the brain they
affect not only GJs coupling neuronal cells but also those cou-
pling glial cells. Moreover, the most frequently use carbenoxolone,
exerts some non-specific effects. It was shown to alter intrin-
sic membrane properties (Rouach et al., 2003), block long-term
potentiation (LTP; Chepkova et al., 2008), reduce excitatory post-
synaptic currents (EPSCs) mediated by AMPA receptors, reduce
inhibitory postsynaptic currents (IPSCs) mediated by GABAA

receptors (Tovar et al., 2009). Carbenoxolone inhibits activity of
the enzyme 11 beta-hydroxysteroid dehydrogenase, which cat-
alyzes the conversion of corticosterone or cortisol to their inert
form (Rajan et al., 1996). As glucocorticoid receptors exist in the
hippocampus and they have been shown to exert an effect on the
theta rhythm (Rajan et al., 1996; Murphy et al., 1998) that could be

the other possible way carbenoxolone may influence field potential
oscillations.

From the point of view of GJ contribution to the neuronal
synchrony, the most valuable research efforts are those where
coupling between neurons was specifically blocked. Quinine has
been used in a few studies, and was shown to block specifi-
cally those channels built from connexins Cx36 and Cx50 (Gajda
et al., 2005; Nassiri-Asl et al., 2008). As connexin Cx50 is not
expressed in the brain, local injection of quinine into brain struc-
ture blocks Cx36-GJs (Srinivas et al., 2001). A quinine derivative,
mefloquine, also specific for Cx36- and Cx50-GJs, was shown to
be more potent than quinine (Cruikshank et al., 2004; Behrens
et al., 2011). However, application of quinine and mefloquine
is also not free from non-specific effects. Quinine is known as
an inhibitor of potassium channels (Henquin, 1982; Smirnov
et al., 1999; Päsler et al., 2007). After mefloquine administration,
Behrens et al. (2011) observed reduced pyramidal cell firing and
prolongation of the afterhyperpolarization following an action
potential.

Due to the non-specific action of GJ blockers, experiments with
their use need to be carefully controlled and interpreted with cau-
tion. One of the possible solutions is inhibition of the non-specific
targets of GJ blocker action. For example, several studies applied
carbenoxolone concurrently with antagonists of chemical trans-
mission (Schweitzer et al., 2000; Yang and Michelson, 2001; Gigout
et al., 2006; Zsiros et al., 2007; Chapman et al., 2009; Kraglund
et al., 2010).

Another approach to block GJ transmission specifically in neu-
rons and eliminate non-specific effects is the use of Cx36 gene
knockouts (Cx36KO; Hormuzdi et al., 2001; Buhl et al., 2003; Pais
et al., 2003). However, there is a risk that compensatory pro-
cesses may occur in mutants. While there are known examples
of compensation when the lack of certain connexins is geneti-
cally inherited (Hombach et al., 2004), other connexins seem to be
indispensable, even in tissues where many connexins are expressed
in the same cell type (Richard et al., 2002). In order to assess the
possible compensation in Cx36KO mice, measurements of mRNA
for other related proteins (connexins: Cx30.2, Cx37, Cx43, Cx45,
pannexins: PANX1, PANX2, and GABAA receptor α1 subunit)
by quantitative real-time PCR were performed, and no difference
between Cx36KO vs. control group was observed. However, com-
pensation may also be accomplished by functional plasticity (De
Zeeuw et al., 2003; Voss et al., 2010).

GAP JUNCTION TRANSMISSION BETWEEN INTERNEURONS
The rate of transmission through GJs remains under great influ-
ence from the conductance properties of the cell membrane in
which they are localized (Zsiros et al., 2007; Pereda et al., 2013).
The majority of gap junctions exist within the areas of soma and
proximal dendrites within a distance of 50 μm from the soma
(Szabadics et al., 2001; Fukuda and Kosaka, 2003). However, they
have been observed as far as 380 μm from the soma (Fukuda et al.,
2006). Within the parts of the cell membrane with passive conduc-
tance, signals transmitted through GJs are delayed and attenuated.
Efficiency of GJ transmission is measured as the ratio of poten-
tial resulting from GJ transmission in the postsynaptic cell to the
potential generated in the presynaptic cell. This ratio is referred
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to as coupling coefficient. A coupling coefficient at the level of 0.1
was recorded in young brain neocortical neurons (Gibson et al.,
2005). However, the coupling coefficient of GJ-coupled interneu-
rons in the adult brain neocortex or juvenile hippocampus ranges
from 0.035 to 0.05 for slow dynamic signals, e.g., subthreshold
potentials or slow phases of the action potentials (Szabadics et al.,
2001; Galarreta and Hestrin, 2002; Zsiros and Maccaferri, 2005;
Zsiros et al., 2007). Fast potential changes initiated in one cell are
greatly attenuated when passing through gap junction channels:
the coupling coefficient for a spike is approximately 0.005 (Galar-
reta and Hestrin, 2002; Zsiros and Maccaferri, 2005). Signals of
slow dynamics have a higher coupling coefficient because more
ions can flow from cell-to-cell within a longer time under condi-
tions of passive conductance and small throughput of electrical
synapse. As a consequence of their transmission properties and
localization, electrical synapses in the brain promote signal trans-
mission of low frequency and are described as a low pass filter.
Draguhn et al. (1998) proposed that low pass filtering of GJs could
be overcome if they would be localized in domains of the neuronal
membrane where active conductance exists, i.e., the axon. Partic-
ularly, putative axo-axonal GJs were considered to be localized in
excitatory projecting cells (Draguhn et al., 1998; Traub and Bib-
big, 2000). Attempts to verify the existence of electrical synapses
between pyramidal cells were taken up by Mercer et al. (2006) and
Hamzei-Sichani et al. (2007). However, morphological evidence
was only provided for sparse close appositions between pairs of
mossy fibers within the CA3 hippocampal area (Hamzei-Sichani
et al., 2007).

Data indicate that in the hippocampal formation, the interneu-
rons mainly involved in generation of gamma rhythm and ripples
are three types of parvalbumin expressing (PV+) interneurons:
PV+ basket cells (as opposed to basket cells not expressing parval-
bumin), bistratified cells, and axo-axonic cells. Specifically, PV+
basket cells and bistratified cells generate discharges phase-locked
to the oscillation cycle of gamma rhythm and ripples in each
cycle of the oscillations (Hájos et al., 2004; Klausberger et al.,
2004; Gloveli et al., 2005; Tukker et al., 2007; Bartos and Elgueta,
2012). Even more interneuron classes show activity phase-locked
to the field potential theta rhythm. Among them are: PV+ bas-
ket cells, bistratified cells, axo-axonic cells, and oriens-lacunosum
moleculare (O-LM) cells (Klausberger et al., 2003, 2004; Gloveli
et al., 2005). O-LM cells seem to be specifically related to theta
rhythm generation, as they have a strong intrinsic single-cell theta
rhythm (Maccaferri and McBain, 1996). However, data indicate
that connections between O-LM cells are not sufficient to synchro-
nize their network activity (Rotstein et al., 2005). It seems that,
while O-LM cells produce theta rhythmicity, reciprocal connec-
tions between O-LM cells and fast-spiking (FS) cells are required
to synchronize signals produced by O-LM cells into field potential
theta rhythm (Rotstein et al., 2005).

PV+ basket cells, bistratified cells, and axo-axonic cells present
electrophysiological characteristics of FS cells. They have been
shown to establish connections by gap junctions within their
groups. PV+FS cells produce two-phase action potentials which
are composed of a very fast depolarizing phase (spike) and
subsequent long-lasting afterhyperpolarization (Galarreta and
Hestrin, 2002; Pawelzik et al., 2003; Gibson et al., 2005; Papp et al.,

2013). In a pair of FS cells coupled by GJs, two-phase action
potential generated in one neuron results in a biphasic potential in
the coupled cell (Galarreta and Hestrin, 2001; Gibson et al., 2005;
Figure 1). However, due to Cx36-GJ low pass filtering, fast signals
are strongly attenuated and a spike in the presynaptic cell results
in a small amplitude, short depolarization in a postsynaptic cell.
Subsequent slow afterhyperpolarization is less attenuated. There-
fore, in the effect of the presynaptic FS cell discharge, coupled
neurons receive a potential composed mainly of the hyperpolar-
ization beginning with a small depolarizing deflection (Galarreta
and Hestrin, 2001; Gibson et al., 2005; Figure 1).

THE MECHANISM OF SYNCHRONY DETECTION
Galarreta and Hestrin (2001) proposed that transmission through
GJs in PV+FS cell networks could be a part of a synchrony detec-
tion mechanism (Figure 2). This mechanism relies on two kinds
of connections between PV+FS cells: GJs and axonal collaterals
ending with GABAergic synapses (Cobb et al., 1997; Galarreta
and Hestrin, 2001; Bartos et al., 2002; Chamberland and Topol-
nik, 2012). When one FS neuron generates action potential in a
pair of FS cells interconnected by GJs and GABAergic synapses,
the coupled neuron responds with an initial small and short
depolarization, mediated by GJs, and subsequent hyperpolariza-
tion, mediated by both GJs and GABAergic synapses. Such an
interconnected FS cell network is preferential for synchronous
excitatory inputs to FS cells. While synchronous excitatory inputs,
or inputs received within a 1-ms time-window, are enhanced
by the initial depolarizing phase of potential mediated by GJ,
delayed inputs are attenuated by inhibition which is mediated by
both GJs and GABAergic synapses (Galarreta and Hestrin, 2001).
Therefore, discharge probability in FS cells excited after delay
decreases. These data indicate that a primary source of neuronal
synchronization is simultaneous excitation from afferent inputs,
while attenuation of non-coherent signals provided by GJs and
GABAergic connections between FS interneurons is a secondary
contribution.

FIGURE 1 |The transmission of threshold excitation through a GJ

containing Cx36 subunit in a pair of FS interneurons. Image based on
original data from Gibson et al. (2005). In response to action potential
generated in a presynaptic cell (FS 1), a biphasic potential is mediated
through the GJ to a postsynaptic FS cell (FS 2). Due to low-pass filtering of
Cx36-GJs, fast spike is more attenuated than slow afterhyperpolarization.
The biphasic potential in a postsynaptic cell is composed of a small-
amplitude short depolarizing phase and long-lasting hyperpolarization in a
postsynaptic FS cell.
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FIGURE 2 | Mechanism of synchrony detection, as described by

Galarreta and Hestrin (2001). Image based on their original data
(Galarreta and Hestrin, 2001). Schemas (A) and (B) represent two FS cells
(FS 1 and FS 2) connected by electrical (gap junction containing Cx36
subunit, GJ) and a GABAergic synapse (GABA syn). FS 1 and FS 2 receive
afferent threshold input with a delay of 1 ms (A) or 5 ms (B). In response
to the threshold input, FS 1 generates an action potential (FS 1 potential,
FS 1 p). The GJ and GABAergic synapse mediate potentials (GJ p, GABA p)

from FS 1 to FS 2. (A) Afferent threshold inputs to FS 1 and FS 2 succeed
one another by 1 ms. FS 2 generates an action potential (FS 2 potential, FS
2 p) before inhibition mediated by the GJ and GABAergic synapse.
(B) Afferent threshold inputs to FS 1 and FS 2 succeed one another by
5 ms. Excitation in FS 2 is attenuated by hyperpolarization mediated
through the GJ and GABAergic synapse (FS 2 p). Scale bars: 20 mV for FS
cells membrane potential, 1 mV for potentials mediated by electrical and
chemical synapse, 5 ms.

DIFFERENCE IN ELECTRICAL VS. GABAergic SYNAPSE CONTRIBUTION
TO NEURONAL SYNCHRONY
Fast inhibition provided by GABAergic synapses between
interneurons is highly effective in synchronizing PV+FS cell net-
works, in this case meaning the attenuation of non-coherent
signals to FS cells (Wang and Buzsáki, 1996; Szabadics et al., 2001;
Bartos et al., 2002, 2007). This fast inhibition creates a time-frame
for FS cell population activity during oscillations in high fre-
quency bands. Within this time-frame, the time-window when
FS-cells are not inhibited followed by the time-window when FS
cells are inhibited occur repeatedly. Fast dynamics of these alter-
nations (especially fast during high frequency oscillations) and a
very short time-window when FS-cells are not inhibited are the
result of very fast inhibitory postsynaptic potentials (IPSPs) kinet-
ics produced specifically by GABAergic synapses connecting FS
cells. They are faster than those generated by GABAergic synapses
between FS cells and projecting cells (Ali et al., 1999; Bartos et al.,
2002; Galarreta and Hestrin, 2002; Pawelzik et al., 2003). It has
been suggested that GABAergic fast inhibition is entirely suffi-
cient for fast-frequency activity neuronal synchronization (Hu
et al., 2011). Dynamics of inhibition provided by Cx36-GJs is slow.
During a train of discharges in FS cells, the long-lasting hyperpo-
larizing phases of potentials transmitted by GJs undergo temporal
summation, decreasing excitation in the FS cell network (Galarreta
and Hestrin, 2002; see Figure 3).

As was mentioned before, subthreshold excitatory inputs
to FS cells result in the excitatory potential mediated by GJs.
Interestingly, it was shown in the hippocampal formation that
under conditions of moderate level of excitation GABAergic
synapses in PV+FS cells can produce depolarizing currents (Lamsa

and Taira, 2003; Vida et al., 2006; see Figure 3). This effect results
from the high value of the reversal potential for chloride ions in
PV+FS interneurons. The value is −55 mV, and in the case of
PV+FS interneurons it is between the resting and the threshold
potential. Therefore, when one FS cell transmits a subthresh-
old potential through GABAergic synapse to another not very
excited FS cell, outward chloride depolarizing currents arise in
the GABAergic receptor channels (until the membrane potential
will not exceed −55 mV; Lamsa and Taira, 2003; Vida et al., 2006).
These data indicate that the nature of the potential transmitted
through GABAergic synapses depends on the excitation level in the
neuronal network. It seems that GABAergic depolarizing currents
can contribute to the field potential gamma and theta rhythm,
as during this oscillatory pattern neuronal network excitation is
maintained at a moderate level (see Figure 3) and some neurons
receive subthreshold coherent afferent inputs. Therefore, these
subthreshold inputs can be enhanced by GABAergic depolarizing
currents transmitted from other FS cells. However, occurrence
of GABAergic depolarizing currents inversely coincides with the
appearance of high frequency oscillations, which are related to
high probability of discharges in neurons.

POSSIBLE ROLE OF GAP JUNCTIONS IN GENERATION OF
HIGH FREQUENCY OSCILLATIONS IN THE HIPPOCAMPAL
FORMATION
According to the pioneering hypotheses on GJ role in the
brain, it was proposed that GJ transmission underlies high fre-
quency oscillations. In models of the high frequency oscillation
mechanism, an exchange of potentials between excitatory neurons
through axo-axonal GJs was a putative origin of this oscillatory
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FIGURE 3 | Possible contribution of electrical and GABAergic synapses

to FS interneuron and pyramidal cell activity during gamma

oscillations. Diagrams represent connections between FS cells (FS 1, FS
2) and the pyramidal cells (black triangles), and three aspects of the
electrical activity of these cells: local field potential (top), FS cell membrane
potentials, and schemas of pyramidal cell discharges. The top part of the
diagram is identical in (A) and (B): a portion of pyramidal cells provide
coherent threshold input to FS 1. In response to this input, FS 1 generates
rhythmical action potentials imposing a time-frame on pyramidal cell activity.
Within this time-frame, the time-windows when pyramidal cell activity is
not attenuated (white stripes) alters with the time-windows when pyramidal
cell activity is attenuated (gray stripes). (A) FS 1 and FS 2 are not
connected. FS 2 receives subthreshold coherent inputs from a portion of
pyramidal cells and subthreshold non-coherent inputs from the other
portion of pyramidal cells. It therefore generates only postsynaptic
potentials. (B) FS 1 and FS 2 are connected through a gap junction

containing Cx36 subunit (GJ) and a GABAergic synapse (GABA syn). FS 2
receives subthreshold coherent inputs from the same portion of pyramidal
cells as in (A), but it also receives coherent inputs from FS 1 mediated by
the GABAergic synapse and the GJ. Summation of those coherent inputs
results in rhythmical discharges of FS 2. The activity of pyramidal cells
connected with FS 2 receiving non-coherent afferent inputs is attenuated.
Notice the different dynamics of potentials mediated through the GJ and
GABAergic synapse. Hyperpolarizing phases of GJ potential are slow. They
summate, providing a long-lasting decrease in FS 2 membrane excitability
and prevent FS 2 burst firing. Contrarily, inhibition provided by the
GABAergic synapse between FS cells is very fast, and it precisely
harmonizes the activity of FS cells. Alternatively, GABAergic synapses can
transmit depolarizing currents to the FS cell when it is activated only at the
moderate level and does not discharge (so long as its membrane potential
does not achieve −55 mV). The small-amplitude depolarizing phase of
potential mediated by the GJ almost coincides with FS 1 spikes.

pattern. In order to test this hypothesis, Traub et al. (2003) pre-
pared minislices containing the stratum oriens isolated from the
CA1 area, so that pyramidal cell axons were cut off from their
cell bodies and therefore from chemical synaptic inputs to the
pyramidal cells. Indeed, kainate application appeared to induce
high-frequency oscillations in minislices which proved that these
oscillations arise within the axons of pyramidal cells. Gamma-
frequency oscillations were not observed in minislices after kainate

administration. Interestingly, GABA added to a bath solution
in the presence of kainate greatly increased the amplitude and
power of high frequency oscillations, while the GABAA receptor
antagonist bicuculline abolished them. Field oscillations were also
blocked by tetrodoxin and reduced by carbenoxolone. Therefore,
the results of this experiment showed that GABAergic transmis-
sion is required to evoke high frequency oscillations in the plexus
of pyramidal cell axons in vitro. It is difficult to interpret the
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reduction of high frequency oscillations observed in this exper-
iment after carbenoxolone administration, especially considering
that the existence of putative GJs between pyramidal cells in the
hippocampal CA1 area has not been confirmed (Mercer et al.,
2006). Thus, the effect of carbenoxolone could be exerted through
non-specific (non-GJ mediated) action.

Most in vitro experiments showed that high frequency oscilla-
tions in the CA1 and CA3 areas of the hippocampus are sensitive
to carbenoxolone (Draguhn et al., 1998; Pais et al., 2003; Traub
et al., 2003), octanol (Draguhn et al., 1998; Hormuzdi et al., 2001),
or halothane (Draguhn et al., 1998). However, D’Antuono et al.
(2005) observed no effect of carbenoxolone or octanol on high
frequency oscillations in the dentate gyrus. It is worth mentioning
here that local intracortical application of carbenoxolone in anes-
thetized rats only partially affected high-frequency oscillations
(>200 Hz) in the somatosensory cortex (Kamiñski et al., 2011).
Discrepancy in the carbenoxolone effect between these data can
result from differences in the membrane channels that contribute
to the mechanism of high frequency oscillations in particular brain
structures (see Table 2).

Contrary to the above presented experiments, the results of
several studies where GJ coupling between neurons was specifi-
cally blocked altogether indicate that Cx36-GJs are not required
for the neuronal synchronization underlying high frequency oscil-
lations. While Maier et al. (2002) observed that ripple frequency

oscillations occurred less frequently and were slightly slower in
the CA1 area in brain slices from Cx36KO mice, Pais et al. (2003)
noticed ripple-like activity only in the brain slices from Cx36KO
mice, but not in wild-type slices. Hormuzdi et al. (2001) reported
no differences in high frequency oscillations in the CA3 area in
slices from wild-type and Cx36KO mice. Results obtained in vitro
are in accordance with in vivo data. High frequency oscillations
recorded in freely moving Cx36KO mice from the hippocampal
CA1 area during silent wake as well as those recorded during slow
wave sleep were not altered in comparison to wild-type animals
(Buhl et al., 2003; see Table 2).

High frequency oscillations (ripples) coincide with a large
increase in population activity, including pyramidal cells and
interneurons (Csicsvari et al., 1998, 1999; Traub and Bibbig, 2000;
Biró and Nusser, 2005). During high frequency oscillations field
potential oscillatory pattern PV+FS cells can discharge in each
cycle of oscillation, i.e., they discharge with high frequency up
to 200 Hz. As was described before, when FS cells discharge, a
main part of the potential transmitted through GJs to the cou-
pled cells is hyperpolarization. Moreover, temporal summation
of long-lasting hyperpolarization transmitted through GJs could
decrease the excitation level within the FS cell network, thus
decreasing the frequency of PV+FS cell firing. I suggest that the
inhibitory influence of GJ transmission could impair fast firing
of PV+FS cells during high frequency oscillations. Interestingly,

Table 2 | Effect of non-selective and selective (mediated by Cx36 channels) blockade of gap junction transmission.

Oscillation Method of GJ blockade Effect on oscillations Source

High frequency oscillations

In vitro Octanol Abolishment Hormuzdi et al. (2001)

Carbenoxolone, octanol, halothane Abolishment Draguhn et al. (1998)

Carbenoxolone Abolishment Pais et al. (2003)

Carbenoxolone Reduction Traub et al. (2003)

Carbenoxolone, octanol No effect D’Antuono et al. (2005)

Cx36KO Oscillations occurred less frequently and were slightly slower Maier et al. (2002)

No effect Hormuzdi et al. (2001)

Oscillations occured only in slices from Cx36KO mice Pais et al. (2003)

In vivo: during wake

and SWS sleep

Cx36KO No effect Buhl et al. (2003)

Gamma oscillations

In vitro: transient,

persistent

Carbenoxolone Reduction Traub et al. (2001)

Octanol Abolishment Traub et al. (2000)

Cx36KO Decreased power and frequency Hormuzdi et al. (2001),

Pais et al. (2003)

In vivo: during wake Cx36KO Decreased, and modulation of gamma power according to

the theta phase was disruptted

Buhl et al. (2003)

Theta oscillations

In vitro Carbenoxolone Abolishment Konopacki et al. (2004)

In vivo: during wake Cx36KO Larger portion of theta rhythm shifted to lower theta

frequencies

Allen et al. (2011)
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it was demonstrated that changes in cell excitation levels have a
modulatory effect on the synaptic strength of electrical synapses
(Usher et al., 1999; Alvarez et al., 2002; Kothmann et al., 2007, 2012;
Zsiros and Maccaferri, 2008; Vervaeke et al., 2010; Haas et al.,
2011; Otsuka and Kawaguchi, 2013; Pereda et al., 2013). Several
studies suggest that activity-dependent plasticity of GJs may play
a role in shaping behaviorally relevant functional states within
the brain (Usher et al., 1999; Garcia-Rill et al., 2007; Kothmann
et al., 2007, 2012; Vervaeke et al., 2010; Haas et al., 2011; Haas
and Landisman, 2012). In the hippocampal formation, increased
interneuron excitation levels can reduce the synaptic strength of
electrical synapses (Zsiros and Maccaferri, 2008). I would expect
that a lack of the effect of neuronal GJ blockade on high fre-
quency oscillations in vitro (Hormuzdi et al., 2001; Pais et al., 2003;
D’Antuono et al., 2005) and in vivo (Buhl et al., 2003) results from
a natural decrease of the GJ transmission level occurring along-
side an increase of neuronal activity during this rhythmical pattern
(Zsiros and Maccaferri, 2008). These data suggest that fast inhibi-
tion provided by FS interneurons, but not Cx36-GJ transmission,
is of crucial significance for the mechanism of high frequency
oscillations.

POSSIBLE ROLE OF GAP JUNCTIONS IN GENERATION OF
GAMMA AND THETA OSCILLATIONS IN THE HIPPOCAMPAL
FORMATION
In in vitro studies, carbenoxolone disrupted transient gamma-
frequency oscillations (Traub et al., 2001), while persistent
gamma-frequency oscillations were suppressed by octanol (Traub
et al., 2000). Carbenoxolone also abolished theta oscillations in
the hippocampal CA1 area in rat brain slices (Konopacki et al.,
2004; see Table 2). Similar results were obtained in vivo in anes-
thetized rats after local application of carbenoxolone (Bocian et al.,
2009), and during prolonged recordings it was shown there that the
effect of carbenoxolone is reversible after a few hours. Bissiere et al.
(2011) assessed the effect of carbenoxolone-induced GJ inhibition
on behavioral test performance as well as on field theta oscillations
in mice. Carbenoxolone attenuated field theta rhythm power and
disrupted context-dependent fear learning. However, the results
of the experiments with non-specific blockade by carbenoxolone
do not provide exact information whether the observed inhibitory
effect on gamma and theta oscillations was due to blockade of neu-
ronal GJs, glial GJs, or both or even by action on other membrane
channels.

Experiments with selective blockade of Cx36-GJ transmis-
sion provide a more detailed insight into the contribution of
neuronal GJ to neuronal synchronization underlying gamma
and theta rhythms. Persistent gamma rhythm appeared with
decreased power and frequency in brain slices from Cx36KO
mice in comparison to slices from wild-type animals (Hormuzdi
et al., 2001; Pais et al., 2003). Persistent gamma rhythm in vitro
is induced by muscarinic or kainate receptor activation, thus it
resembles wake activity-related gamma rhythm. Therefore, the
results from in vitro experiments seem to be consistent with in
vivo data. In freely moving Cx36KO mice the power of gamma
rhythm recorded during motor activity decreased, and modula-
tion of gamma power according to the theta phase was affected
in comparison to wild-type animals. However, gamma rhythm

occurring during REM sleep was not altered in Cx36KO mice
(Buhl et al., 2003).

In their experiment, Buhl et al. (2003) also analyzed theta
rhythm in freely moving Cx36KO mice. Both types of theta
rhythm, occurring during motor activity and REM phase sleep,
were not altered in Cx36KO mice in comparison to wild-types.
Buhl et al. (2003) recorded the phase relationship of unit dis-
charges to theta rhythm. While some tendency of pyramidal
cells to discharge in a slightly later phase of the theta cycle in
Cx36KO mice was seen, differences between groups were not sig-
nificant. Allen et al. (2011) performed field and unit recordings in
Cx36KO mice that underwent learning training based on tasks
related to neuronal coding of spatial information. While both
Cx36KO and wild-type mice presented prominent theta oscilla-
tions during spatial exploration, a larger portion of theta rhythm
in Cx36KO mice was shifted to lower theta frequencies than in
wild-type controls. Moreover, pyramidal cells identified as place
cells in Cx36KO mice have shown lower spatial selectivity than
in a control group. They responded to a higher number of fields
within the explored spatial area and their receptive fields were
larger than in wild-type mice. Place cells discharged at later phases
of theta cycle in Cx36KO mice than in control mice. The discrep-
ancy between these two in vivo studies (Buhl et al., 2003; Allen
et al., 2011) can be explained on the grounds of the data analysis
method. While Buhl et al. (2003) assessed changes in the oscilla-
tions by theta power, Allen et al. (2011) analyzed peak frequency in
the theta band and the power of this peak frequency in the power
histogram. Therefore, Allen observed that while the theta power
was not changed in Cx36KO vs. wild-type animals, the prominent
oscillation frequency (within the theta frequencies band) was dif-
ferent. In the case of unit discharges, Buhl et al. (2003) combined
neurons recorded during wheel running with those recorded dur-
ing REM phase of sleep, and differences between Cx36KO and
wild-type groups were analyzed on the basis of these combined
data. Therefore, possible differences in theta oscillations and theta
phase-relationship of unit discharges during active behavior elu-
cidated by Allen et al. (2011) could have been missed in the work
of Buhl et al. (2003). The final conclusion is that Cx36-GJs con-
tribute to theta rhythm occurring during active behavior (see
Table 2).

In sum, Cx36-GJs contribute most strongly to active behavior-
related gamma oscillations. While they are also involved in the
active behavior-related theta rhythm to a lesser degree, they are still
required for proper timing of neuronal discharges and reliability
of information coding in the neuronal network. The mechanism
of GJ influence on time order of neuronal discharges is proba-
bly based on their participation in the mechanism of synchrony
detection as they enhance simultaneous inputs, and in coopera-
tion with GABAergic synapses, inhibit delayed ones (Figure 3).
Another important contribution of GJs to neuronal discharge
timing could be the direct exchange of excitatory potentials
between FS interneurons in response to subthreshold excitatory
inputs. As a result, more interneurons may generate rhythmi-
cal activity during oscillations, imposing time order on more
pyramidal cells (Figure 3). The specific action of GJs during
gamma oscillation concerns their modulation of neuronal net-
work excitability, as during train of discharges in FS cells, the
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long-lasting hyperpolarizing phases of potentials transmitted by
GJs undergo temporal summation, decreasing excitation in the
network of FS cells and preventing burst firing in interneurons
(Galarreta and Hestrin, 2002; Figure 3).

While the described way of GJ action may contribute to the
precision of neuronal discharges and seems to be especially impor-
tant during states of active behavior when a lot of noise invade
neuronal networks, it raises the question of why GJ’s should not
be involved in high frequency oscillations, as they are related to
high activation in neuronal networks. In the model I suggest that
inhibition resulting from long-lasting hyperpolarizing phases of
potentials transmitted by GJs, when FS cells generate a train of dis-
charges, could prevent high frequency discharges in FS cells, and
thus high frequency oscillations in the neuronal network. Also,
it is quite probable that the order of neuronal discharges dur-
ing high frequency oscillations, which occur during silent wake
or the SWS phase of sleep (i.e., after active behavior), could be
determined by synaptic changes that the neuronal network has
undergone before, during active behavior (i.e., changes related to
memory trace formation). A similar explanation could be rel-
evant for small GJ contribution to REM sleep-related gamma
and theta rhythm. However, more experiments are required
to answer whether GJs take part in the mechanism of these
oscillations.

POSSIBLE ROLE OF GAP JUNCTIONS IN GENERATION OF
EPILEPTIFORM ACTIVITY IN THE HIPPOCAMPAL FORMATION
An intriguing issue is the role of GJs in epileptiform discharges
when neuronal networks undergo hyperexcitability. For years
GJ transmission was regarded as a source of large neuronal
synchronization during seizure. It seemed that blockage of the
GJ coupling between neurons would have a protective effect
against epileptiform activity. The great majority of research
on the role of GJs in epilepsy, to date, has been performed
using non-specific GJ uncouplers, such as carbenoxolone and
octanol (Perez-Velazquez et al., 1994; Carlen et al., 2000; Ross
et al., 2000; Köhling et al., 2001; Jahromi et al., 2002; Gajda et al.,
2003, 2006; Nilsen et al., 2006; Bostanci and Bağirici, 2007). In
these studies, application of non-specific GJ blockers decreased
the frequency and/or amplitude of epileptiform spikes in the
field potential (Ross et al., 2000; Köhling et al., 2001; Jahromi
et al., 2002; Bostanci and Bağirici, 2007) or decreased the dura-
tion of seizure epochs (Gajda et al., 2003, 2006; Nilsen et al.,
2006). In one in vitro study seizure activity was suppressed in
the field potential after application of octanol (Perez-Velazquez
et al., 1994). While the results of these experiments do not pro-
vide an answer to whether glial and/or neuronal GJs play a role
in epileptiform activity, data from a few studies using selec-
tive blockade of neuronal GJs by quinine or mefloquine showed
that neuronal GJs do not contribute to hyperexcitation underly-
ing epileptiform discharges in the hippocampus and neocortex
(Gajda et al., 2005; Behrens et al., 2011) or in the neocorti-
cal slices (Voss et al., 2009, 2010). Behrens et al. (2011) showed
that mefloquine-induced Cx36 channel blockade did not affect
epileptiform discharges in the hippocampal area CA3 in vitro.
In the in vivo study by Gajda et al. (2005), quinine application
decreased the duration of seizures evoked by 4-aminopyridine

(4-AP), but significantly increased their number in the rat neo-
cortex. Moreover, a new seizure component characterized by the
lowest amplitude but highest frequency appeared during qui-
nine treatment despite 4-AP induced discharge patterns. Another
effect of quinine was the significant amplitude increase of dis-
charges in the 11–12 Hz frequency band. While quinine and
mefloquine have also been shown to act on potassium chan-
nels, decrease the frequency of pyramidal cell firing, and elongate
afterhyperpolarization following action potential (Smirnov et al.,
1999; Päsler et al., 2007; Behrens et al., 2011), it seems that these
effects would rather have an attenuating effect on the epilep-
tiform activity. Therefore, on the basis of these experiments
it could be assumed that Cx36-GJ blockade does not prevent
neuronal networks from synchronization related to epileptiform
discharges.

At least two things need be taken into consideration when
trying to understand the minor effect of Cx36-GJs blockade on
epileptiform activity. First, an increase of intracellular pH occurs
at the onset of epileptiform bursts (Chesler, 2003; Sinning and
Hübner, 2013). As molecular investigations by González-Nieto
et al. (2008) indicate, channels containing Cx36 subunits show
opposite response to changes in the levels of intracellular pH
then other connexin channels. Alkalization reduces conductance
through Cx36 channels (González-Nieto et al., 2008). Second, high
neuronal activity is related to a decrease of Cx36-GJ conductance
(Usher et al., 1999; Alvarez et al., 2002; Kothmann et al., 2007,
2012; Zsiros and Maccaferri, 2008; Vervaeke et al., 2010; Haas
et al., 2011; Otsuka and Kawaguchi, 2013). Therefore, it seems
that neuronal GJs do not play an important role in development
and maintenance of epileptiform activity.

CONCLUSION
Transmission mediated by GJs containing Cx36 subunits appears
particularly important for gamma and theta rhythm generated
in the hippocampal formation during wakefulness. Cx36-GJs,
in cooperation with GABAergic synapses within FS interneu-
ron network, contribute to the time-precision of neuronal
discharges through the mechanism of synchrony detection (Galar-
reta and Hestrin, 2001). Cx36-GJs, in parallel with GABAergic
synapses, enhance simultaneous and attenuate delayed inputs
during oscillatory population activity in gamma and theta fre-
quency bands. In the model proposed here, the specific Cx36-GJ
contribution to gamma rhythm is in preventing FS cells from
burst activity during trains of discharges. Due to the influ-
ence of Cx36-GJs on neuronal discharge timing, their contri-
bution to information processing during wake activity-related
field potential gamma and theta rhythm could be signifi-
cant. Indeed, it was demonstrated that Cx36 subunit knockout
(Allen et al., 2011; Postma et al., 2011; Wang and Belousov,
2011) resulted in learning impairment and affected neuronal
plasticity.

In contrast, Cx36-GJs seem to play minor role in the mechanism
of high frequency oscillations generated during states of silent
wake or slow wave sleep. Data indicate that alongside the increase
of neuronal activity which accompanies field potential high fre-
quency oscillations, the level of transmission through Cx36-GJ
channels decreases. I propose that another function of GJs in
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neurons is to regulate the level of direct intercellular communi-
cation in response to intracellular signals (including those related
to the level of cellular activity), which is a general role of GJs in the
majority of bodily tissues. However, the adjustments of Cx36-GJs
to the specific functional requirements of neuronal networks in the
brain are GJ presence specific for a particular group of interneu-
rons in networks, and low level of the conductance in GJ channels
formed by the Cx36 subunit.
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