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The extracellular matrix (ECM) is a biological substrate composed of collagens,
proteoglycans and glycoproteins that ensures proper cell migration and adhesion
and keeps the cell architecture intact. The regulation of the ECM composition is
a vital process strictly controlled by, among others, proteases, growth factors and
adhesion receptors. As it appears, ECM remodeling is also essential for proper neuronal
and glial development and the establishment of adequate synaptic signaling. Hence,
disturbances in ECM functioning are often present in neurodegenerative diseases like
Alzheimer’s disease. Moreover, mutations in ECM molecules are found in some forms
of epilepsy and malfunctioning of ECM-related genes and pathways can be seen in,
for example, cancer or ischemic injury. Low density lipoprotein receptor-related protein
1 (Lrp1) is a member of the low density lipoprotein receptor family. Lrp1 is involved
not only in ligand uptake, receptor mediated endocytosis and lipoprotein transport—
functions shared by low density lipoprotein receptor family members—but also regulates
cell surface protease activity, controls cellular entry and binding of toxins and viruses,
protects against atherosclerosis and acts on many cell signaling pathways. Given the
plethora of functions, it is not surprising that Lrp1 also impacts the ECM and is involved
in its remodeling. This review focuses on the role of Lrp1 and some of its major ligands
on ECM function. Specifically, interactions with two Lrp1 ligands, integrins and tissue
plasminogen activator are described in more detail.

Keywords: low density receptor-related protein 1, tissue plasminogen activator, integrins, extracellular matrix,
migration, matrix remodeling

INTRODUCTION

Lrp1: A Hidden Multitasker
Low density lipoprotein receptor-related protein-1 (Lrp1), also known as CD91 or α-2-macro-
globulin (α-2-M) receptor, is a member of the low density lipoprotein receptor family and
is expressed in various tissues including liver, adipose tissue, lungs and brain. The receptor,
with a mass of 600 kDa, during its biosynthesis, undergoes a furin-mediated proteolytical
cleavage in the Golgi apparatus. This cleavage results in two, non-covalently bound polypeptide
subunits—an 85 kDa membrane-bound C-terminal fragment (the light β chain) and a 515 kDa
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FIGURE 1 | The structure of Lrp1. Lrp1 is cleaved by furin (red arrow) in the
Golgi complex and afterwards is transported to the cell membrane. The
resulting mature Lrp1 receptor consists of a 515 kDa alpha chain and an
85 kDa beta chain bound to each other non-covalently. The alpha chain
consists of ligand-binding-type repeats forming four clusters (I–IV) that are rich
in cysteine. The clusters contain 2, 8, 10, and 11 repeats, respectively. The
clusters II and IV are responsible for the majority of ligand binding to Lrp1. The
ligand-binding clusters are separated by 1–4 EGF homology domains, with
cysteine-rich EGF repeats. The intracellular beta chain consists of two NPxY
motifs, one YxxL motif and two di-leucine motifs that have been associated
with the endocytotic functions of Lrp1. The beta chain also interacts with
scaffolding proteins like PSD-95, Dab-1, and FE-65. Both the extra- and
intracellular chain can act independently of each other, when the alpha chain
is shed as a soluble Lrp1 and the beta chain translocates to the nucleus and
activates gene transcription and signaling cascades. α-2-M,
α-2-macroglobulin; ApoE, apolipoprotein E; COOH, carboxy terminal; Dab-1,
disabled 1; EGF, epidermal growth factor; NH2, amino terminal; PAI-1,
plasminogen activator inhibitor 1; PSD-95, postsynaptic density protein 95;
tPA, tissue plasminogen activator.

N-terminal fragment located extracellularly (the heavy α chain)—
that form the mature Lrp1 (Figure 1). The Lrp1 α chain contains
4 ligand binding complement-like repeat clusters separated by
epidermal growth factor (EGF) repeats. Clusters II and IV are
considered to be responsible for the majority of ligand binding
(Herz, 2001; Herz and Strickland, 2001; Croy et al., 2003; Meijer
et al., 2007) and have previously been shown to display minor
differences regarding the kinetics of the interactions but to be
also highly similar in their ligand binding properties (duplication
of the domains) (Neels et al., 1999). As suggested by Huang
et al. (1999), each ligand-binding domain of Lrp1 presents
very different charge densities and hydrophobic patches. These
differences in turn lead to varying receptor-ligand interactions
and are responsible for a distinct ligand specificity of each cluster,
despite similar backbone folds. Because Lrp1 interacts with a
wide variety of protein ligands (Table 1), it is necessary to study
each domain individually to elucidate its exact ligand-binding
capacities. Interestingly, receptor-associated protein (RAP) binds
to the ligand-binding clusters and completely blocks interactions
with all known Lrp1 ligands (Bu et al., 1994).

As shown by Li et al. (2000, 2001), the Lrp1 β chain C-terminus
contains motifs, proposed later by Deane et al. (2008) to be

involved in generating the rapid endocytotic rate of Lrp1: two
NPxY motifs, one YxxL motif and two di-leucine motifs. The
C-terminus of Lrp1 interacts with many intracellular ligands
(Betts et al., 2008; Guttman et al., 2009) and binds to endocytic
and scaffold adaptors like disabled-1, FE-65 and postsynaptic
density protein 95 (PSD-95) that link the Lrp1 receptor to
membrane-bound proteins such as amyloid precursor protein
(APP) (Herz and Chen, 2006; Waldron et al., 2008) and are
involved in many cell signaling pathways (Trommsdorff et al.,
1998; Gotthardt et al., 2000; May et al., 2004; Pietrzik et al.,
2004; Herz et al., 2009; Klug et al., 2011). Lrp1 can additionally
undergo an intramembrane proteolysis that results in a shed
extracellular Lrp1 fragment and a γ-secretase cleaved intracellular
Lrp1 domain. Upon cleavage, the intracellular Lrp1 domain
translocates to the cell nucleus and modulates gene expression
(May et al., 2002; Zurhove et al., 2008).

Lrp1 is nowadays considered to be a multifunctional receptor:
it is involved not only in ligand uptake, receptor-mediated
endocytosis, cellular signaling and lipoprotein transport (Herz
and Bock, 2002) but also regulates cell surface protease activity
(Makarova et al., 2003), controls cellular entry and binding
of toxins and viruses (Kounnas et al., 1992b; Hofer et al.,
1994; Liu et al., 2000), participates in dendritic cell efferocytosis
(Subramanian et al., 2014), protects against atherosclerosis
(Boucher and Herz, 2011), is critical for angiogenesis and the
maintenance of the blood–brain barrier (BBB) (Polavarapu et al.,
2007; Pi et al., 2012; Strickland et al., 2014) and acts on
many signaling cascades including the Wnt and Notch pathways
(Zilberberg et al., 2004; Lillis et al., 2008; Meng et al., 2010).

In the central nervous system (CNS), Lrp1 is highly expressed
not only in neurons, astrocytes and microglia (Bu et al., 1994;
Ishiguro et al., 1995; Rebeck et al., 1995; Marzolo et al., 2000;
Makarova et al., 2003; Andersen and Willnow, 2006; Kanekiyo
et al., 2011; Auderset et al., 2016) but also in brain endothelial
cells, vascular smooth muscle cells, pericytes and the choroid
plexus (Herz and Bock, 2002).

In the mouse, the complete knock-out of Lrp1 is lethal for
the embryos (Herz et al., 1992, 1993), making it challenging to
study the role and function of Lrp1 in embryonic as well as adult
brain in vivo. However, various mutant mouse models generated
in the last decades shed more light onto the possible function of
Lrp1 in the CNS.

With their studies, May et al. (2004); Liu et al. (2010)
and Nakajima et al. (2013), highlight and support earlier
findings showing that Lrp1 regulates postsynaptic signaling via
interactions with PSD-95 and N-methyl-D-aspartate receptor
(NMDAR) and is crucial for synaptic transmission (Bacskai et al.,
2000; Qiu et al., 2002). The studies of Liu et al. (2010) and Liu
et al. (2011) additionally provide evidence for the importance of
Lrp1 in maintaining proper brain lipid metabolism and leptin
signaling and define Lrp1 as a major apolipoprotein E (ApoE)
transport receptor, strengthening the role of Lrp1 in Alzheimer’s
disease pathogenesis.

Knock-in mutations in the NPxY2 region lead to a reduced
Lrp1 internalization rate (Roebroek et al., 2006; Reekmans
et al., 2010; Gordts et al., 2012) and interfere with NMDAR
recycling and NMDAR-mediated activation of the ERK1/2
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TABLE 1 | Representative molecules interacting with the Lrp1 receptor.

Molecule and function Reference

α1-antitrypsin (A1AT or A1PI) Member of the serpin superfamily, inhibits various proteases, regulates enzymes
produced by inflammatory cells like neutrophil elastase

Poller et al., 1995

α1-antitrypsin:trypsin complexes Serpin-enzyme complex Kounnas et al., 1996

α-2 macroglobulin (α-2-M) Member of the α-2 globulin family. Protease inhibitor, inhibits a wide range of
proteinases

Ashcom et al., 1990; Strickland
et al., 1990

Amidoglycosides: gentamicin,
polymixcin B

Antibiotics used to treat various bacterial infections Moestrup et al., 1995

Amyloid β peptide Peptide derived from amyloid precursor protein processing. Main component of
amyloid plaques found in Alzheimer’s patients

Kang et al., 2000; Shibata et al.,
2000

Amyloid precursor protein (APP) Integral membrane protein, during its proteolysis the amyloid β peptide is
generated

Kounnas et al., 1995a; Ulery et al.,
2000

Annexin VI Member of the calcium-dependent membrane and phospholipid binding
proteins; co-receptor of Lrp1, involved in endocytosis processes, interacts with
α-2-M

Ling et al., 2004

Apolipoprotein E
(ApoE)/ApoE-containing lipoproteins

Fat-binding protein produced by astrocytes, essential for the catabolism of
lipoproteins and their transport; main cholesterol carrier in the brain

Herz et al., 1988; Beisiegel et al.,
1989; Hayashi et al., 2007

Aprotinin Single-chain globular polypeptide derived from bovine lungs; inhibits serine
proteases

Hussain et al., 1999

Bone morphogenic factor 4 (BMP4)
BMP-binding endothelial cell
precursor-derived regulator

Growth and differentiation factor; important for neurogenesis, bone and
cartilage metabolism

Pi et al., 2012

C1s/C1q Form the complement component C1 complex that initiates the classical
pathway of component activation

Storm et al., 1997

C4b-binding protein (C4BP) Inhibitor in the complement system Spijkers et al., 2008

Calreticulin Calcium-binding chaperone protein, regulates many cellular processes Gardai et al., 2005

Cathepsin D Lysosomal aspartic protease, member of the peptidase A1 family, involved in
protein degradation

Derocq et al., 2012

CCN1, cysteine-rich angiogenic inducer
61 (CYR61)

Secreted, matrix-associated signaling protein involved in apoptosis, adhesion,
migration and vascular integrity

Juric et al., 2012

Chylomicron remnants Lipoprotein particles comprising triglycerides, phospholipids, cholesterol, and
proteins involved in lipid transport

Rohlmann et al., 1998; Kowal
et al., 1989

Coagulation factor VIII Blood-clotting protein, participates in blood coagulation Lenting et al., 1999; Saenko et al.,
1999

Coagulation factor Xa: tissue factor
pathway inhibitor (TFPI) complexes

Coagulation factor X is a serine protease that in its active form (Xa) converts
prothrombin into thrombin and plays a role in blood coagulation; TFPI reversibly
inhibits factor Xa

Ho et al., 1996

Coagulation factor XIa:nexin complexes Coagulation factor XI is a serine protease that in its active form (XIa) initiates the
intrinsic pathway of blood coagulation by activating factor IX; complexes with
nexin-1 inhibit its function

Knauer et al., 2000

Complement component 3 Plays a role in the activation of the classical and alternative complement
activation pathways

Meilinger et al., 1999

Connective tissue growth factor (CTGF;
CCN2)

Matricellular protein of the extracellular matrix-associated heparin-binding
protein family, involved in cell adhesion, migration, and angiogenesis

Segarini et al., 2001; Gao and
Brigstock, 2003

Decorin (Dcn) Member of the small leucine-rich proteoglycan family that impacts the activities
of growth factors, regulates extracellular matrix assembly and cell adhesion

Brandan et al., 2006

Disabled 1 (Dab1) Adaptor protein known to activate Src Trommsdorff et al., 1998;
Gotthardt et al., 2000

FE-65 Adaptor protein involved in APP processing Trommsdorff et al., 1998;
Gotthardt et al., 2000

Fibronectin Glycoprotein of the extracellular matrix vital for cell differentiation, migration and
adhesion

Salicioni et al., 2002

Frizzled-1 G-coupled receptor protein involved in the Wnt pathway Zilberberg et al., 2004

Glypican-3:Hedgehog complexes Glypican-3 is a heparan sulfate proteoglycan that impacts embryonic growth by
inhibiting the hedgehog signaling pathway

Capurro et al., 2012

Heat shock protein 90, 96, 70 Intracellular chaperon proteins assisting in protein folding Basu et al., 2001; Tsen et al., 2013

Heparan sulfate proteoglycans (HSPGs) Glycoproteins containing one or more covalently attached heparan sulfate
chains; present at the cell surface and in the extracellular matrix; endocytic and
adhesion receptors, regulate cell migration

Wilsie and Orlando, 2003

(Continued)
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TABLE 1 | Continued

Molecule and function Reference

Hepatic lipase Lipase involved in lipoprotein metabolism and transport Kounnas et al., 1995b

HIV-Tat protein Transactivator of viral genes in cells infected with HIV Liu et al., 2000

Insulin Peptide hormone produced by the pancreas that regulates the metabolism
of carbohydrates, fats and proteins

Bilodeau et al., 2010

Insulin-like growth factor-binding protein
3 (IGFBP-3)

Protein produced and secreted by the liver, carrier of insulin-like growth
factors

Huang et al., 2003

Lactoferrin Multifunctional protein of the transferrin family with an antibacterial function Willnow et al., 1992; Meilinger
et al., 1995

Leptin Hormone produced by adipose cells involved in energy balance and
neuronal functioning

Liu et al., 2011

Lipoprotein lipase (LPL) Lipase involved in lipoprotein metabolism and transport Beisiegel et al., 1991; Chappell
et al., 1992

Malaria circumsporozoite protein (CSP) Secreted protein of the sporozoite stage of the malaria parasite Shakibaei and Frevert, 1996

Matrix metalloproteinase 2 (MMP-2) Proteinase involved in the degradation of the extracellular matrix, metastasis Yang et al., 2001

Matrix metalloproteinase 9 (MMP-9) Proteinase involved in the degradation of the extracellular matrix,
angiogenesis, metastasis

Hahn-Dantona et al., 2001

Matrix metalloproteinase 13
(collagenase-3) (MMP-13)

Proteinase involved in the degradation of the extracellular matrix,
angiogenesis, metastasis

Barmina et al., 1999

Metallothionein II Cysteine-rich low molecular weight metallothionein family member involved
in protection against oxidative stress and chemotactic signal transduction

Landowski et al., 2016

Midkine (MDK) Heparin-binding growth factor induced during mid-gestation involved in cell
migration, survival and angiogenesis

Muramatsu et al., 2000; Lee
et al., 2012

Minor-group human rhinovirus (HRV2) Minor group rhinovirus Hofer et al., 1994

Myelin-associated glycoprotein (MAG) Cell membrane glycoprotein involved in myelination Stiles et al., 2013

Myelin basic protein (MBP) Major protein forming the myelin sheath of oligodendrocytes and Schwann
cells

Gaultier et al., 2009

Nexin-1 Member of the serine protease inhibitor (Serpin) superfamily Crisp et al., 2000; Vaillant et al.,
2007

Plasminogen activator inhibitor (PAI-1) Serpin, Regulator of tPA/uPA activity Stefansson et al., 1998

Platelet-derived growth factor
(PDGF)-BB PDGF receptor (PDGFR) β

PDGF-BB is a dimeric glycoprotein composed of two B subunits and a
major growth factor that binds with high affinity to the cell surface receptor
PDGFR β

Boucher et al., 2002; Loukinova
et al., 2002; Takayama et al.,
2005; Zhou et al., 2009

Postsynaptic density protein 95
(PSD-95)

Adaptor protein crucial for synapse stability and coupling to NMDA
receptors

Gotthardt et al., 2000; May
et al., 2004

Prion protein (PrP) Cell-surface glycoprotein that upon conversion can cause prion diseases Sunyach et al., 2003; Taylor
and Hooper, 2007

Pregnancy zone protein (PZP):protease
complexes

PZP is a member of the α-2 globulin family; protease inhibitor and
extracellular chaperone; role in immune regulation during pregnancy

Moestrup et al., 1987; Sanchez
et al., 2001

Pro-urokinase Serine protease, urokinase-type plasminogen activator single-chain
zymogen with little intrinsic enzymatic activity

Kounnas et al., 1993

Pseudomonas exotoxin A Toxin from Pseudomonas aeruginosa Kounnas et al., 1992b

Receptor-associated protein (RAP) Endoplasmic reticulum resident chaperone glycoprotein, inhibits binding of
ligands to low density lipoprotein receptor family members

Herz et al., 1991; Kounnas
et al., 1992a

Ricin A Ribosome-inactivating protein found in the seeds of Ricinus communis;
potent toxin

Cavallaro et al., 1995

Saporin Ribosome-inactivating protein found in the seeds of Saponaria officinalis;
potent toxin

Cavallaro et al., 1993a,b, 1995

Saposin (SAP) precursor Glycoprotein precursor of saposins (sphingolipid activator proteins) involved
in glycosphingolipid catabolism

Hiesberger et al., 1998

Shc Adaptor protein that becomes phosphorylated on tyrosine residues in
response to extracellular stimuli

Barnes et al., 2001

Trigliceride-rich lipoproteins (TLRs) Main carriers of triglycerides in the blood; involved in lipoprotein metabolism
and transport

Mahley and Huang, 2007; Foley
et al., 2013

Tissue inhibitors of matrix
metalloproteases (TIMPs)

Protease inhibitors of matrix metalloproteinases Scilabra et al., 2013; Thevenard
et al., 2014

Tissue factor pathway inhibitor (TFPI) Single-chain polypeptide that reversibly inhibits coagulation factor Xa,
thereby regulating blood clotting

Warshawsky et al., 1994

TpeL Clostridium perfringens toxin Schorch et al., 2014

(Continued)
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TABLE 1 | Continued

Molecule and function Reference

Transforming growth factor-β 1 (TGF-β 1) Multifunctional growth factor, involved in interactions with extracellular proteins,
cell growth, differentiation and vascular remodeling

Huang et al., 2003

Transforming growth factor-β 2 (TGF-β 2) Multifunctional growth factor, involved in interactions with extracellular proteins,
cell growth, differentiation and vascular remodeling

Muratoglu et al., 2011

Thrombospondin 1 Extracellular matrix glycoprotein, member of the thrombospondin family, vital for
cell-cell and cell-matrix interactions

Godyna et al., 1995;
Mikhailenko et al., 1995

Thrombospondin 2 Extracellular matrix glycoprotein, member of the thrombospondin family, vital for
cell-cell and cell-matrix interactions

Meng et al., 2010

Tissue-type plasminogen activator (tPA) Serine protease mediating the conversion of plasminogen to plasmin and cell
signaling

Bu et al., 1992; Zhuo
et al., 2000

tPA:PAI-1 complexes Serine protease–protease inhibitor complex Orth et al., 1992

tPA:neuroserpin complexes Serine protease–protease inhibitor complex Makarova et al., 2003

Thrombin:protein inhibitor C complexes Serine protease–protease inhibitor complex Kasza et al., 1997

Thrombin:nexin-1 complexes Serine protease–protease inhibitor complex Knauer et al., 1997

Thrombin:antithrombin III complexes Serine protease–protease inhibitor complex Kounnas et al., 1996

Thrombin:heparin cofactor II complexes Serine protease–protease inhibitor complex Kounnas et al., 1996

Thrombin:PAI-1 complexes Serine protease–protease inhibitor complex Stefansson et al., 1996

Trichosanthin Ribosome-inactivating protein derived from Trichosanthes kirilowii Chan et al., 2000

Urokinase-type plasminogen activator (uPA) Serine protease, involved in tissue remodeling, wound healing, cell migration Kounnas et al., 1993

uPA:PAI-1 complexes Serine protease–protease inhibitor complex Herz et al., 1992;
Nykjaer et al., 1992

uPA:PAI-2 complexes Serine protease–protease inhibitor complex Croucher et al., 2006

uPA:C inhibitor complexes Serine protease–protease inhibitor complex Kasza et al., 1997

uPA:Nexin-1 complexes Serine protease–protease inhibitor complex Conese et al., 1994

Von Willebrand factor (vWF) Adhesive, glycoprotein involved in blood coagulation and wound healing Rastegarlari et al., 2012

pathway (Martin et al., 2008; Reekmans et al., 2010). Alterations
in NMDAR subunits on the cell surface can lead to alterations
and deficits in memory processes. Animals harboring the
knock-in mutation in the NPxY2 motif display hyperactivity,
impaired learning as well as deficits in spatial and reversal
learning, similarly to animals with impaired NMDAR signaling
(Bannerman et al., 1995; Sakimura et al., 1995).

A recent study from our laboratory discovered that Lrp1
is a novel carrier protein for Lewis X glycans expressed by
mouse radial glial cells [neural stem precursor cells (NSPCs)]
in the developing and adult CNS (Hennen et al., 2013). With
this and a follow-up study we showed that Lrp1 plays a role
in the differentiation of NSPCs (Hennen et al., 2013; Safina
et al., 2016). The impaired differentiation of Lrp1-lacking NSPCs
toward oligodendrocytes is supported by the work of Lin
et al. (2017) where deficits in myelination and oligodendrocyte
precursor differentiation were observed upon Lrp1 deletion
specifically from the oligodendrocyte lineage. According to this
study, these impairments are a combined result of altered AKT,
sterol regulatory element-binding protein 2 and peroxisome
proliferation-associated receptor γ pathways in oligodendrocytes.

The Extracellular Matrix
The extracellular matrix (ECM) is a biological substrate that is
composed of collagens, proteoglycans and glycoproteins. The
highly organized honeycomb-like structures of the ECM were
first described by Camillo Golgi over a century ago and, since
then, the ECM has been found to be essential not only for

cell migration, adhesion and structural support but also for
proper neuronal and glial development, BBB maturation and
function, synaptogenesis and synaptic signaling in the CNS
(Faissner et al., 2010; Menezes et al., 2014; Song and Dityatev,
2018). The composition of the ECM is heterogeneous and tissue-
specific. In the CNS, the ECM is formed by proteoglycans
like heparan sulfate proteoglycans (HSPGs), chondroitin sulfate
proteoglycans and glycoproteins including tenascins, laminins,
and thrombospondins. During embryonic and early postnatal
development, the ECM provides an environment supporting cell
migration, differentiation and synapse formation. Here, the ECM
forms a loose structure consisting of neuronal neurocan and
matures simultaneously with synapses (Pyka et al., 2011). In adult
mice, neurocan expression becomes decreased while brevican,
aggrecan, and tenascin R become upregulated.

Both ECM components released by neurons and astrocytes
are essential for ECM generation (Geissler et al., 2013). Such
molecules tend to accumulate especially in ECM structures
termed perineuronal nets (PNNs). These consist of chondroitin
sulfate proteoglycans, tenascin-R, hyaluronic acid and link
proteins. PNNs are found predominantly on the soma and
dendrites of parvalbumin-expressing GABAergic neurons
(Hartig et al., 1992), however, excitatory pyramidal neurons
have also been shown to bear PNNs (Carstens et al., 2016;
Lensjø et al., 2017; Morikawa et al., 2017). Both PNN and ECM
formation impairments are associated with neurodegenerative
and psychiatric disorders including epilepsy, Alzheimer’s disease
and schizophrenia (Heck et al., 2004; Pitkänen et al., 2014;
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Dzyubenko et al., 2016; Song and Dityatev, 2018). Hence, it is of
importance to study not only how factors released by cells impact
the ECM, but also how molecules and receptors located at the
plasma membrane, Lrp1 included, interact with the ECM and
modify its composition.

Lrp1 AND LIPID RAFTS

Lipid rafts are regions of the plasma membrane enriched in
cholesterol and sphingolipids that are involved in assembling
protein complexes for cell signaling events (Brown and London,
1998, 2000; Simons and Toomre, 2000). In the CNS, lipid rafts
are essential for synaptic integrity and they are implicated in the
pathogenesis of neurodegenerative diseases (Hicks et al., 2012;
Rushworth et al., 2013). Although Lrp1 has been firstly found to
localize nearly exclusively to coated pits in, for example, vascular
smooth muscle cells (Weaver et al., 1996), Lrp1 localization
to caveolae, a specialized type of lipid rafts, was later shown
by Boucher et al. (2002) on the example of human fibroblasts.
In neurons and neuronal-like PC12 and N2a cells, Lrp1 localizes,
at least partially, to lipid rafts (Laudati et al., 2016). Upon the
disruption of lipid rafts by methyl-β-cyclodextrin, Lrp1-mediated
signaling is impaired, while ligand binding and endocytosis
capacities remain intact (Laudati et al., 2016). The authors
suggest that the presence of Lrp1 in lipid rafts in neuronal
cells is due to the scaffolding activity of PSD-95. PSD-95 is a
constituent protein of the post-synaptic complex in excitatory
synapses (El-Husseini et al., 2000) and functions in stabilization
of dendritic spines (Ehrlich et al., 2007). Lrp1, similarly, is present
at the synapse and is known to interact with PSD-95 and to
affect NMDAR functioning, long-term potentiation (LTP) and
synaptic signaling (May et al., 2004; Liu et al., 2010; Nakajima
et al., 2013). A decrease in PSD-95 levels upon Lrp1 deletion
has been previously reported for the hippocampi of the α

CAMKII-Cre-Lrp1 KO mice (Liu et al., 2010). Simultaneous
application of methyl-β-cyclodextrin with either enzymatically
inactive tissue plasminogen activator (tPA) or active α-2-M to
both PC12 cells and cultured cerebellar granule neurons, blocks
neurite outgrowth, as does RAP application (Laudati et al.,
2016). The mechanism behind this effect has been traced to the
fact that, in PC12 and N2a cells, upon treatment with these
ligands, Lrp1 forms a complex with PSD-95 and NMDARs
that activates tyrosine receptor kinase receptors, stimulates
ERK1/2 activity and leads to various cellular responses, including
neurite outgrowth (Bacskai et al., 2000; Mantuano et al., 2013).
Interestingly, upon Lrp1 loss or blockage, a reduction in the
formation, length, branching and outgrowth of neurites is found
(Qiu et al., 2004; Nakajima et al., 2013; Safina et al., 2016). Lrp1
is found essential also for neurite growth inhibition mediated
by myelin associated-glycoprotein and CNS myelin (Stiles et al.,
2013) and has been found to mediate myelin phagocytosis itself
(Gaultier et al., 2009).

By a comparison of various cell types, Wu and Gonias (2005)
proposed that the presence of Lrp1 in different plasma membrane
compartments depends on the cell type analyzed, as does Lrp1-
mediated signaling. For example, although in neuronal and

FIGURE 2 | Lrp1 interacts with ligands located in lipid rafts and
clathrin-coated pits. Lrp1 distribution in the cell membrane is dynamic: Lrp1
can be found in both lipid raft-containing and lipid raft-free membrane
compartments (1). Lrp1-mediated endocytosis requires clathrin and is
restricted to lipid raft-free regions (2). Lrp1 can interact with lipid
raft-associated receptors and proteins, translocate back to lipid raft-free
compartments and mediate the endocytosis of the bound ligand (3). The
ligand undergoes either lysosomal or proteasomal degradation (4) while Lrp1
is recycled back to the membrane (5).

neuronal-like cells Lrp1 is found both in lipid rafts and lipid
raft-free membrane compartments, in vascular smooth muscle
cells and CHO-K1 cells Lrp1 is present mostly in lipid raft-
free membrane compartments (Wu and Gonias, 2005). Lrp1
distribution in the cell membrane remains nevertheless dynamic,
as the receptor can translocate from lipid-rafts to clathrin-coated
pits where it undergoes endocytosis (Boucher et al., 2002; Wu and
Gonias, 2005) (Figure 2). The capacity of Lrp1 to shift between
membrane compartments is influenced by plasma membrane
microdomains and depends on available extracellular ligands.
For example, insulin promotes Lrp1 localization to caveolae in
mouse fibroblasts and adipocytes while platelet-derived growth
factor (PDGF)-BB decreases it (Zhang et al., 2004). As shown
in the example of cultured hepatic cells and mouse embryonic
fibroblasts (MEFs), endocytosis of Lrp1 can also occur in lipid
rafts. In this case, the kinesin-3 family motor protein, KIF3B,
promotes caveolin-dependent endocytosis of Lrp1 by forming
a complex with Lrp1 and utrophin, a cytoskeleton protein
vital for adequate muscle functioning (Zhang et al., 2004;
Kanai et al., 2014).

In the CNS, the localization of Lrp1 to both lipid rafts
and clathrin-coated pits has been proposed to be one of
the mechanisms enabling a separation of Lrp1 endocytic and
signaling activities and their independent regulation (Laudati
et al., 2016). For example, PDGF-BB via the PDGF receptor
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(PDGFR) β and the Src is required for mediating the
phosphorylation of tyrosine residues in the cytoplasmic tail
of Lrp1 (Boucher et al., 2002; Loukinova et al., 2002). This
interaction occurs only when Lrp1 is located to lipid rafts and
therefore modulates Lrp1-dependent cell signaling in specific cell
compartments (Boucher et al., 2002).

Taken together, interactions between Lrp1, the plasma
membrane and ECM molecules highlight the presence of a
heterogeneous modulation of Lrp1-dependent cell signaling in
specific cell compartments and cell types.

Lrp1 INTERACTIONS WITH ECM
MOLECULES

Given the multitude of Lrp1 ligands, it is not surprising that
ECM molecules also interact with Lrp1. Lrp1 is primarily
responsible for the endocytosis and subsequent transport of
extracellular proteins to lysosomes (Herz and Strickland, 2001).
Although Lrp1-mediated endocytosis occurs in non-lipid raft
areas via clathrin-coated pits, due to the receptors’ mobility, GPI
proteins like the prion protein and other proteins associated
with lipid rafts can also undergo Lrp1-clathrin-dependent
endocytosis (Czekay et al., 2001; Wu and Gonias, 2005; Taylor
and Hooper, 2007; Jen et al., 2010). Protein complexes and
membrane-associated receptors are also Lrp1 ligands. With their
endocytosis, Lrp1 further impacts on the protein composition
of the plasma membrane and the ECM (Strickland et al., 2002;
Gonias et al., 2004).

Although Lrp1’s main function remains the endocytosis
of extracellular ligands, it regulates the composition of the
ECM also by controlling messenger ribonucleic acid (mRNA)
expression and stability (Gaultier et al., 2006). In this way
Lrp1 balances the protein levels of, for example, type III
collagen, pigment epithelium-derived factor and urokinase-type
plasminogen activator (uPA) receptor (uPAR)/Endo-180 in MEFs
(Gaultier et al., 2006).

Lrp1 and HSPGs
Heparan sulfate proteoglycans are core constituents of the ECM
implemented in ECM integrity and in facilitating the entry of
molecules including morphogens, growth factors and viruses.
Some protein ligands of Lrp1 are shown to bind with low
affinity to glycosaminoglycan chains of surface HSPGs that in
turn facilitate binding to and Lrp1-mediated endocytosis of these
proteins (Wilsie and Orlando, 2003; Kanekiyo et al., 2011).
Consistent with such a mechanism, the endocytosis of such
proteins is blocked by heparin and heparitinase and does not
occur in cells lacking HSPGs (Kanekiyo et al., 2011). HSPGs can
be cleaved by heparanase-1, an enzyme that requires a proteolytic
cleavage to become active. This process is partly dependent on
Lrp1-mediated internalization of the inactive pro-enzyme (Vreys
et al., 2005). Interestingly, both Lrp1 and HSPGs are required for
the endocytosis of mature heparanase-1 (Vreys and David, 2007).

A summary of Lrp1 interactions with the HSPGs described in
this section is presented in Figures 3, 4.

In the liver, Lrp1 was previously shown to clear trigliceride-
rich lipoproteins either independently or as a coreceptor with
HSPGs (Mahley and Huang, 2007). A recent study questioned
this idea and suggested instead that Lrp1 and HSPGs are rather
responsible for independent clearing of distinct trigliceride-rich
lipoproteins (Foley et al., 2013).

Lrp1 has been proposed to regulate the availability of
lipoprotein binding sites by associating with HSPGs. Upon Lrp1
dissociation from HSPGs, more lipoprotein binding sites are
revealed, and lipoprotein particle clearance becomes enhanced
(Wilsie and Orlando, 2003). These findings were among the first
to imply a role for Lrp1 firstly as a mediator of various signaling
pathways, independent of its endocytic function and secondly
as a regulator of HSPG function. HSPGs were also proposed
by the same study to play an active role in lipoprotein uptake
(Wilsie and Orlando, 2003). So far, Lrp1 and HSPGs have been
shown to mediate the uptake of a complement inhibitor, the
C4b-binding protein (Spijkers et al., 2008), the coagulation factor
VIII (Sarafanov et al., 2001), cellular prion protein (Sunyach
et al., 2003; Taylor and Hooper, 2007), connective tissue growth
factor (CTGF) (Gao and Brigstock, 2003) and thrombospondin
(Mikhailenko et al., 1995). HSPGs are furthermore found
essential for the binding of protease Nexin-1 to Lrp1 (Li X.
et al., 2006). Although the internalization of complexed (e.g.,
with tPA and uPA) and free Nexin-1 is mediated by Lrp1
(Knauer et al., 1997; Crisp et al., 2000), it can be partially
substituted by an Lrp1-independent pathway. In Lrp1 deficient
cells, the HSPG syndecan-1 takes over the internalization of free
Nexin-1 and results in the activation of the Ras-ERK pathway
instead of the PKA pathway that becomes active upon Lrp1-
mediated internalization (Li X. et al., 2006). Given that Nexin-1 is
involved in the regulation of extracellular proteolytic activity, the
efficiency of its uptake and cellular responses triggered upon its
internalization are crucial, especially for tumor cell invasiveness
studies (Li X. et al., 2006).

Another HSPG member involved in Lrp1-mediated
endocytosis is glypican-3. Glypican-3 has been shown to
regulate embryonic growth by inhibiting the Hedgehog signaling
pathway (Capurro et al., 2008). The binding of Hedgehog to
glypican-3 triggers Hedgehog:glypican-3 complex endocytosis
and degradation, impacting Hedgehog availability for binding
with Patched (Capurro et al., 2008). Mechanistically, although
glypican-3 and Sonic Hedgehog can directly bind to Lrp1,
endocytosis is suggested to occur only upon simultaneous
glypican-3 and Sonic Hedgehog interaction with Lrp1 (Capurro
et al., 2012). This mechanism is found in MEFs and breast cancer
cells, indicating a general role for Lrp1 and HSPGs in Hedgehog
signaling (Capurro et al., 2012).

Lrp1 and Amyloid β
In neuronal cells, APP processing pathways are heterogeneous.
In the non-amyloidogenic pathway, APP undergoes an α-and
γ-secretase-mediated cleavage that leads to the generation of the
soluble α APP fragment and APP C-terminal fragments. When
APP is processed in this way, no amyloid β is generated. In
contrast, in the amyloidogenic pathway, upon APP cleavage by
the β-secretase BACE1 and γ-secretases, amyloid β is produced
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FIGURE 3 | Lrp1 interacts with heparan sulfate proteoglycans. (A) Lrp1 and heparan sulfate proteoglycans (HSPGs) are responsible for the independent endocytosis
of distinct trigliceride-rich lipoproteins (TRLs) in the liver. (B) Lrp1 association with HSPGs determines the availability of lipoprotein binding sites, such that upon the
dissociation of Lrp1 from HSPGs, more binding sites appear.

together with the soluble β APP and APP C-terminal fragments
(Chow et al., 2010). Depending on the position of the cleavage,
two principal forms of amyloid β can be generated: amyloid β

with 40 amino acid residues and amyloid β with 42 amino acid
residues. Both forms of amyloid β are released outside the cell in
response to normal synaptic signaling and are incorporated into
the ECM (Kamenetz et al., 2003; Cirrito et al., 2005). The majority
of produced amyloid β is the shorter form. If the longer amyloid
β form is produced, it exhibits a higher tendency to form fibrils
and later on amyloid plaques that fail to be cleared and therefore
accumulate in the brain parenchyma. Amyloid β overproduction,
increased processing, aggregation and deposition in the form
of plaques leads to neurotoxicity and neurodegeneration and
is considered central for Alzheimer’s disease development. It
should be noted that, together with amyloid β, various ECM
proteins are found in plaques and neurofibrillary tangles, for
example ECM-located and cell-surface HSPGs (van Horssen
et al., 2003). In this respect, ECM molecules have been analyzed
and grouped with regard to the amyloid β form they interact
with by Salza et al. (2017). The proteins investigated in this
study included reelin, integrins, laminins and collagens. These
authors and others showed that fibrillar and oligomeric forms
of amyloid β can diversely interact with ECM and membrane
proteins, influencing cell homeostasis (Genedani et al., 2010;
de Jager et al., 2013; Salza et al., 2017).

For the CNS, the importance of amyloid β generation and
its multiplex interactions with the ECM are highlighted by

studies showing that the ECM regulates APP levels in fibroblasts
and neuronal cells (Bronfman et al., 1996), amyloid β induces
ECM degradation in rat astrocytes (Deb et al., 2003) and that
both fibrillar and oligomeric forms of amyloid β associate with
proteins present at synapses, a characteristic closely related to
synapse loss and neurodegeneration observed in Alzheimer’s
disease (Selkoe, 2000; Spires-Jones and Hyman, 2014).

In the CNS, Lrp1 interacts with soluble and transmembrane
forms of APP and impacts their internalization, processing and
transactivation (Kounnas et al., 1995a; Knauer et al., 1996;
Pietrzik et al., 2002) (Figure 5). Upon Lrp1 loss in fibroblasts and
CHO cells, APP degradation and trafficking is impaired (Pietrzik
et al., 2002). An introduction of a truncated, intracellular domain
of Lrp1 to these cells is sufficient to restore APP processing and
amyloid β production (Pietrzik et al., 2002). Furthermore, the
presence of a functional Lrp1 on the cell surface was shown
to reduce the amount of soluble α APP produced and to favor
amyloidogenic processing of APP (Ulery et al., 2000).

As Lrp1 and APP are both substrates for γ- and β-secretases,
Lrp1 not only stimulates but also interferes with the processing
of APP (May et al., 2002; Lleo et al., 2005; von Arnim et al.,
2005). APP cleavage is favored when both Lrp1 and APP are
present; however, upon Lrp1 overexpression, the cleavage of APP
becomes impaired because Lrp1 competes with APP for binding
to BACE1 (Lleo et al., 2005; von Arnim et al., 2005; von Einem
et al., 2010). Upon γ-secretase-mediated cleavage of Lrp1 (May
et al., 2002), the intracellular domain translocates to the nucleus
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FIGURE 4 | Heparan sulfate proteoglycans act as bridging molecules. Various ligands, including connective tissue growth factor (CTGF) and the prion protein, have
been shown to bind to heparan sulfate proteoglycans (HSPGs) (1). After association with HSPGs, the binding of the ligand to Lrp1 is facilitated and Lrp1-mediated
endocytosis is triggered (2). Upon endocytosis, the molecules are transported to lysosomes/proteasomes for degradation (3) and Lrp1 is recycled back to the
membrane (4). The depicted processes are inhibited both by blockage of Lrp1 and HSPGs.

and impacts APP-mediated signaling by interacting with the
transcriptional modulator, Tip60 (May et al., 2002; Kinoshita
et al., 2003). Lrp1 expression is regulated by APP itself as the
APP:FE-65:Tip60 complex is able to suppress the transcription
of the Lrp1 promoter (Liu et al., 2007). As a consequence, in
fibroblasts of APP knock-out mice Lrp1 expression is increased
(Liu et al., 2007). Interestingly, increased levels of APP can lead
to a decreased production of shed Lrp1, impairing amyloid β

clearance (von Einem et al., 2010).
Fibrils of amyloid β do not accumulate in excessive amounts in

healthy individuals due to several efficient clearance mechanisms:
extracellular proteolysis, BBB transport, efflux of soluble amyloid
β to the peripheral circulation and receptor-mediated endocytosis
(Deane et al., 2009; Ramanathan et al., 2015). Lrp1 is vital for
the production, internalization and catabolism of amyloid β

(Kounnas et al., 1995a; Knauer et al., 1996; Pietrzik et al., 2002;
Deane et al., 2004, 2008; Lillis et al., 2008) (Figures 5, 6), and
in the brains of Alzheimer’s disease patients, according to some
studies, Lrp1 levels are significantly reduced (Kang et al., 1997,
2000; Jaeger and Pietrzik, 2008; Shinohara et al., 2017).

Amyloid β has so far been shown to form complexes with
ApoE, lactoferrin, prion protein and activated α-2-M that
undergo Lrp1-mediated endocytosis (Qiu et al., 1999; Yang
et al., 1999; Kang et al., 2000; Laurén et al., 2009; Rushworth
et al., 2013). Monomeric forms of amyloid β can also bind
directly to the extracellular ligand-binding domains of Lrp1 and
undergo endocytosis (Deane et al., 2004). Microglia were shown
to migrate to plaques and engulf amyloid β predominantly via
micropinocytosis (Frackowiak et al., 1992; Mandrekar et al.,
2009; Lee and Landreth, 2010). Lrp1-mediated amyloid β
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FIGURE 5 | Lrp1 is crucial for the uptake and processing of amyloid precursor protein. The cytoplasmic tail of Lrp1 interacts with the cytoplasmic tail of amyloid
precursor protein (APP) via the bridging molecule FE-65. This results in the endocytosis of the Lrp1:APP:FE-65 complex (1) and subsequent proteolysis of APP by
the enzyme BACE1 and proteinase presenilin-1 (PS1), which is part of the γ-secretase complex (2). The proteolysis results in the generation of soluble β APP and
amyloid β peptides that are released outside the cell in recycling vesicles, like Lrp1 (3). The cytoplasmic tail of APP, after γ-secretase cleavage, forms a complex with
FE-65 that interacts with the transcriptional modulator Tip60 (4). This complex translocates to the nucleus where it suppresses the transcription of the Lrp1
promoter, influencing Lrp1-mediated processes (5). Upon γ-secretase-mediated cleavage of Lrp1 (6), its cytoplasmic tail can influence APP processing by
competing with the intracellular domain of APP complexed with FE-65 for binding with Tip60 in the nucleus (7). After β-secretase cleavage, the shed extracellular
domain of Lrp1 can bind to amyloid β peptides and enhance their clearance (8).

clearance in pericytes helps prevent amyloid β deposition in the
cerebrovasculature (Sagare et al., 2013). Lrp1 expressed on the
surface of endothelial cells at the BBB mediates rapid clearance
of amyloid β from the brain parenchyma via transcytosis and
degradation (Nazer et al., 2008; Yamada et al., 2008; Pflanzner
et al., 2011). In the periphery, β-secretase cleaved, shed, soluble
Lrp1 can bind amyloid β, further enhancing its clearance from

the brain (Sagare et al., 2007). Supporting amyloid β removal
via Lrp1 from the system are the liver, spleen, and kidney
(Ramanathan et al., 2015). Lrp1 impacts amyloid β metabolism
also by activating signaling pathways. By modulating RhoA
signaling in Schwann cells, Lrp1 influences cell adhesion and
migration (Mantuano et al., 2010). RhoA has been shown to
facilitate dynamin-dependent amyloid β endocytosis in neuronal
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FIGURE 6 | Lrp1 is a receptor mediating amyloid β uptake. Lrp1 can regulate the internalization of amyloid β in several ways. Amyloid β can directly interact with
ligand-binding domains of Lrp1 (1). Amyloid β can interact with several molecules including α-2-macroglobulin (α-2-M), apolipoprotein E (ApoE) and heparan sulfate
proteoglycans (HSPGs), which bridge it to Lrp1 and facilitate its endocytosis (2). Upon endocytosis, amyloid β can either undergo degradation (3) or, to a smaller
extent, be recycled back to the extracellular space (4). Lrp1 can also influence signaling pathways, especially the RhoA pathway that can facilitate amyloid β

clearance by stimulating actin polymerization (5). The shed extracellular domain of Lrp1 additionally sequesters soluble amyloid β present at the blood-brain barrier
and in the circulation (6).

cells (Yu et al., 2010). It is thereby proposed that Lrp1 could
activate RhoA and facilitate RhoA-dependent endocytosis of
amyloid β (Kanekiyo and Bu, 2014). HSPGs have been identified
to be required for the binding of amyloid β and act as a coreceptor
for Lrp1 in the process of neuronal amyloid β uptake (Kanekiyo
et al., 2011, 2013; Kanekiyo and Bu, 2014). Astrocytic Lrp1 has
also been shown to be essential for the uptake and degradation
of amyloid β (Kanekiyo and Bu, 2014; Liu et al., 2017). Whether
Lrp1 requires HSPGs for amyloid β uptake also in this cell
type remains to be elucidated, however, it is suggested that
astrocytic Lrp1 affects the degradation of amyloid β in the ECM
by modulating the levels of matrix metalloprotease (MMP)-2 and
MMP-9 (Yin et al., 2006; Liu et al., 2017).

In summary, although the involvement of Lrp1 in APP and
amyloid β processing and Alzheimer’s disease pathogenesis is
undeniable, given the complexity of interactions, their true nature
may be hidden by the variability in cell lines and the systems used,
and is still yet to be fully unraveled.

Impact of Lrp1 on Cell Adhesion,
Migration and Cell Signaling
The ECM is vital for many cellular processes including cell
proliferation, survival, differentiation and migration. In order for
the cell to migrate, the ECM surrounding it needs to be degraded.
This is performed by a variety of proteases including MMPs and
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serine proteases and tightly controlled by their inhibitors. Both
uPA and tPA proteases mediate for example the activation of
plasminogen to plasmin that leads to the digestion of the ECM
and MMP activation (Werb et al., 1977; Mignatti and Rifkin,
1993; Sappino et al., 1993). One of the first reports showing
Lrp1 involvement in ECM turnover and cell migration was
published by Okada et al. (1996). Here, by using a Transwell
filter migration assay, the authors discovered that the presence
of Lrp1 facilitates the migration of smooth muscle cells on
fibronectin-coated filters. These observations were reproduced by
Wijnberg et al. (1997). The stimulating effect of Lrp1 was not
apparent when smooth muscle cells were tested on a collagen gel
invasion assay, indicating that the effects of Lrp1 depend on the
composition of the matrix (Okada et al., 1996). The addition of
uPA, tPA or α -2-M—potent Lrp1 ligands—to the cells is found
to be stimulatory for cell migration, neurite outgrowth and axon
elongation (Friedman and Seeds, 1995; Holtzman et al., 1995;
Okada et al., 1996; Seeds et al., 1996, 1999; Qiu et al., 2004;
Lillis et al., 2005).

Lrp1 directly interacts with uPA and the plasminogen activator
inhibitor-1 (PAI-1). As the binding affinity of PAI-1 and uPA
alone is lower than when in a complex with the uPAR, Lrp1-
mediated endocytosis occurs only after PAI-1 binds to the
uPA:uPAR complex (Herz et al., 1992; Nykjaer et al., 1994;
Nykjaer et al., 1997; Czekay et al., 2001). By the binding and
subsequent endocytosis of such complexes, Lrp1 reduces uPAR
levels on the cell surface. In this manner, Lrp1 regulates uPAR-
mediated proteolysis of the ECM (Conese et al., 1995; Weaver
et al., 1996; Nykjaer et al., 1997; Degryse et al., 2001) and
impacts plasminogen conversion to plasmin (Weaver et al.,
1997). By regulating uPAR levels on the cell surface and
decreasing uPA-mediated plasminogen activation, Lrp1 inhibits
fibronectin remodeling (Gaultier et al., 2010). By regulating
uPAR levels, Lrp1 also influences plasmin-mediated cleavage of
ECM glycoproteins lacking collagen in their composition, as well
as plasmin-dependent activation of MMP-2 and MMP-9 that
degrade the ECM by cleaving collagens (Mignatti and Rifkin,
1993; Brinckerhoff and Matrisian, 2002).

Upon Lrp1 silencing from MEFs, collagen remodeling is
increased (Gaultier et al., 2010). This occurs independently of
the membrane type-1 matrix metalloprotease (MT1-MMP), a
metalloprotease previously shown to impact collagen remodeling
and Lrp1 cleavage in malignant cells (Rozanov et al., 2004; Sabeh
et al., 2004; Lehti et al., 2009; Sabeh et al., 2009). As upon
treatment of MT1-MMP-deficient and wild type skin fibroblasts
with RAP collagen remodeling becomes enhanced in both cell
types, it hints at the presence of an MT1-MMP-independent
pathway that becomes active upon Lrp1 signal blockade.

PAI-1 facilitated migration in rat smooth muscle cells is Lrp1-
dependent (Degryse et al., 2004). Interaction of the extracellular
heat shock protein 90 with Lrp1 activates Akt 1/2 kinases that
facilitate the migration of skin cells to the wound and promote
its closure (Tsen et al., 2013). Lrp1 was shown to interact with
PDGFR β and regulate PDGFR β cell surface levels and PDGFR β

signaling which is of importance, among others, for the integrity
of vascular walls and cell chemotaxis (Boucher et al., 2002, 2003;
May et al., 2005; Craig et al., 2013; Strickland et al., 2014).

Actin organization and cell migration in smooth muscle cells
are, for example, controlled by PDGFR β phosphatidylinositol
3-kinase (PI3K) activation that is Lrp1-dependent (Zhou et al.,
2009). The interaction of PDGF β with Lrp1 can also result
in the activation of the mitogen-activated protein kinase
(MAPK) signaling cascade—a major player in cell survival and
proliferation (Takayama et al., 2005).

Mouse embryonic fibroblasts respond with migratory
behavior on fibronectin and vitronectin matrixes upon
interaction of thrombospondin 1 and the calreticulin:Lrp1
complex (Orr et al., 2003a). The impaired cell migration
observed upon Lrp1 loss in MEFs was suggested by Orr et al.
(2003a) to be a result of improper lamellipodia generation in
Lrp1-deficient cells.

Cell migration is also regulated by Lrp1 via blockage of
the effect of stimulatory ligands. This is the case for ApoE,
which has been shown to inhibit PDGF-B-dependent smooth
muscle cell migration by binding to Lrp1 (Swertfeger et al.,
2002). This interaction results in the activation of protein kinase
A and increase in intracellular cAMP levels (Swertfeger et al.,
2002; Zhu and Hui, 2003) and is of particular importance for
protection against vascular disease. ApoE-deficient mice exhibit
atherosclerosis (Plump et al., 1992; Zhang et al., 1994), while Lrp1
loss from smooth muscle cells enhances vascular cell activation
and also leads to atherosclerosis (Boucher et al., 2003).

Weaver et al. (1997) detected moreover that MEFs that
lacked Lrp1 and were plated on serum-, vitronectin-, and
fibronectin-coated plates migrated faster than wild type MEFs
upon subjection to a scratch assay in the presence of PDGF-BB.
This effect was not detectable on Matrigel- and type I collagen-
plated cells, highlighting the varying effects of Lrp1 in different
matrices. The increased migration capacities of MEFs lacking
Lrp1 were suggested by the study to be a result of increased
surface levels of the uPAR in these cells (Weaver et al., 1997).
As mentioned earlier, Lrp1 can bind PAI-1:uPA:uPAR complexes
and facilitate their endocytosis (Nykjaer et al., 1997). This in turn
leads to altered levels of the uPAR on the cell surface (Weaver
et al., 1997). When cultured under high serum conditions,
fibroblasts lacking Lrp1 show increased levels of Rac, a GTPase
vital for lamellipodia formation and cell spreading (Ma et al.,
2002). In the Lrp1-deficient MEFs, analyzed in the study of
Weaver et al. (1997), elevated migration is proposed to be a
result of persistent Rac activity and/or increased proteolysis.
This reasoning is in agreement with studies showing that, by
interacting with proteases, Lrp1 protects ECM proteins from
degradation (Herz and Strickland, 2001; Strickland et al., 2002).

A requirement enabling the cell to migrate is the restructuring
or disassembly of integrin-linked focal adhesion complexes.
Focal adhesion disassembly is mediated by ECM proteins
including thrombospondin 1 and 2. Thrombospondins are
large oligomeric ECM proteins that participate in cell-cell and
cell-matrix interactions by binding to other ECM molecules,
cytokines and cell surface receptors. Thrombospondins are
considered vital for the development of the CNS, as a lack of
thrombospondins 1/2 impairs astrocyte-mediated synaptogenesis
and a lack of thrombospondin 1 impairs neural progenitor
proliferation and neuronal differentiation in vivo and in vitro
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(Christopherson et al., 2005; Lu and Kipnis, 2010). Thrombos-
pondin 1 has been shown to interact with Lrp1, HSPGs,
calreticulin and integrins in various cell types (McKeown-Longo
et al., 1984; Mikhailenko et al., 1995, 1997; Merle et al., 1997;
Li S. S. et al., 2006; Staniszewska et al., 2007).

Thrombospondins favor cell migration by disassembling and
detaching focal adhesions from the ECM—processes dependent
on calreticulin and Lrp1 and requiring intact lipid rafts (Orr et al.,
2003a,b; Barker et al., 2004; Talme et al., 2013). Both the intact
thrombospondin 1 and its cleaved N-terminal domain mediate
focal adhesion disassembly (Murphy-Ullrich et al., 1993). The
sequence responsible for this effect and binding to calreticulin
is located in the N-terminal domain of thrombospondin 1, and
a peptide mimetic termed hep I was developed to specifically
study interactions of this thrombospondin 1 domain (Murphy-
Ullrich et al., 1993). The signaling mediated by thrombospondin
1 via the calreticulin-Lrp1 complex is a process independent
of Lrp1-mediated thrombospondin 1 endocytosis (Mikhailenko
et al., 1995, 1997) (Figure 7A). Although the sequence
responsible for the binding of thrombospondin 1 to Lrp1
and subsequent endocytosis is also located to the N-terminal
domain, it does not include the sequence mimicked by hep I,
as hep I lacks Lrp1 binding capacity (Orr et al., 2003b; Wang
et al., 2004). Interactions of the calreticulin:Lrp1 complex with
thrombospondin 1 have been evidenced to result in a temporary
association of the G protein α i-2 subunit with Lrp1. This
interaction results in FAK and Src phosphorylation (Thy-1-
dependent) and activation of ERK, PI3K, and RhoA inactivation
and favors cell migration. These events do not occur upon either
loss of calreticulin or Lrp1 (Orr et al., 2002, 2003a,b, 2004;
Barker et al., 2004).

Thrombospondins also function as bridging molecules
between Lrp1 and its extracellular ligands that facilitate their
clearance (Figure 7B). Thrombospondin 1 was found to
participate in the clearance of vascular endothelial growth factor
via Lrp1 in the ovary (Greenaway et al., 2007).

Notch signaling is crucial for proper development, hair
pigmentation and homeostasis, and mediates short-range,
direct communications between neighboring cells (Schouwey
et al., 2007). Lrp1 facilitates Notch 3 trans-endocytosis and
thrombospondin 2-mediated potentiation of Notch 3 signaling
(Meng et al., 2009, 2010), highlighting that the ECM is
involved in the modulation of Notch function, and Lrp1 and
thrombospondins support non-cell autonomous short-range
signaling (Meng et al., 2010).

The activity of MMPs, adamalysin-like metalloproteinases
with thrombospondin domains and membrane-anchored
adamalysins, is tightly regulated by four members of the
tissue inhibitors of the MMPs (TIMPs) family. In the TIMP
family, TIMP3 is unique as it controls the activity of all three
metalloproteinase classes. The lack of TIMP3 leads to excessive
ECM turnover caused by uncontrolled proteinase activity.
TIMP3 extracellular levels are regulated by Lrp1-mediated
endocytosis (Scilabra et al., 2013; Thevenard et al., 2014). The
shed, soluble Lrp1 competes with cell-surface Lrp1 for TIMP
binding and results in increased extracellular levels of TIMP,
promoting its inhibitory action (Scilabra et al., 2013, 2017).

In addition, Lrp1 mediates the endocytosis of MMP-2,
MMP-9, and MMP-13 and adamalysin-like metalloproteinases
with thrombospondin domains 4 and 5, preventing their
proteolytic and signaling functions (Emonard et al., 2005;
Yamamoto et al., 2014). Thrombospondin 1/2 was also evidenced
to interact with MMP-2 and MMP-9 (Bein and Simons,
2000). Upon binding of pro-MMP-2 to thrombospondin 2,
the complex associates with Lrp1 and undergoes endocytosis,
which can be blocked by an anti-thrombospondin 1 antibody
(Yang et al., 2001; Emonard et al., 2004).

MMP-2 activity favors angiogenesis and endothelial cell
invasion in malignant gliomas. In thrombospondin 2 knock-out
mice, microvessel density is enhanced and MMP-2 levels are
significantly upregulated (Fears et al., 2005). MMP-2 levels and
invasion capabilities of microvessel endothelial cells in these mice
are reduced upon addition of thrombospondin 2. This effect is
blocked by downregulating Lrp1. Curiously, the endocytosis of
pro-MMP-2 can also take place by formation of complexes with
TIMP-2 and is Lrp1-dependent. This interaction, however, does
not require thrombospondin (Emonard et al., 2004).

Vital for the normal function of elastic arteries are collagens
and elastins, prominent members of the ECM. It is appreciated
that excess protease activity can contribute to the elastic fiber
degradation in these vessels. Smooth muscle cells are essential
for establishment of proper vessel diameter, correct deposition
of the ECM and assembly of elastic fibers. The deletion of
Lrp1 from the embryo proper results in severe impairments
in investment of vessels with pericytes and vascular smooth
muscle cells. The deletion of Lrp1 from vascular smooth muscle
cells leads to increased proliferation and aneurysms (Boucher
et al., 2003; Nakajima et al., 2014). The deletion of Lrp1 from
smooth muscle cells also impacts the integrity of the vasculature
by altering PDGFR β signaling and levels of various ECM
molecules pivotal for proper vessel development, contributing
to the development of hypertension, atherosclerosis and other
cardiovascular diseases (Zhou et al., 2009; Strickland et al.,
2014). Alongside a lack of Lrp1 in smooth muscle cells, matrix
decomposition becomes dysregulated due to CTGF protein
level upregulation (Muratoglu et al., 2013). CTGF accumulation
is traced to the missing Lrp1-mediated clearance of CTGF
(Segarini et al., 2001). Lrp1-mediated endocytosis of CTGF
occurs tissue-independently as it has also been shown to
take place in the liver (Gao and Brigstock, 2003; Gerritsen
et al., 2016). The disrupted elastin fiber architecture and ECM
disorganization upon Lrp1 deletion from smooth muscle cells
was found by Muratoglu et al. (2013) to increase protein levels
of MMP-2, MMP-9, MT1-MMP, and serine protease high-
temperature requirement factor A1 (HtrA1). HtrA1 is abundant
in smooth muscle cells, degrades many ECM proteins including
aggrecan, fibulin-5 and collagens and has been previously
associated with disorganized elastic fibers (Hadfield et al.,
2008; Vierkotten et al., 2011). Lrp1 was found by Muratoglu
et al. (2013) to regulate the levels of HtrA1 in the vessel
wall by rapid endocytosis of this protease, thereby impacting
vessel wall integrity.

In conclusion, the presence of different tissue-dependent
Lrp1-mediated mechanisms for serine protease and MMP
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FIGURE 7 | Lrp1 interacts with thrombospondins. (A) Upon binding of thrombospondin 1 to calreticulin, its binding to Lrp1 is facilitated. The Lrp1:calreticulin
complex leads to the association of the G protein αi2 that in turn phosphorylates FAK and Src. Required for the effect of thrombospondin on Src activation is
additionally the GPI-linked protein Thy-1. The activation of Src and FAK further activates the ERK and phosphatidylinositol 3-kinase (PI3K) pathways and leads to the
downregulation of RhoA, focal adhesion disassembly and cell migration. (B) Thrombospondins can function as bridging molecules, enabling Lrp1-mediated
endocytosis of various molecules, including Notch, vascular endothelial growth factor (VEGF) and matrix metalloproteinases (MMPs).

clearance highlights that Lrp1-mediated uptake and degradation
provides a vital mechanism for limiting excessive extracellular
proteolytic activity (Yang et al., 2001). By eliciting control
over MMP extracellular levels, Lrp1 additionally modifies cell
adhesion and migration capabilities that are crucial not only
for processes like wound healing and angiogenesis but also
for tumor growth (Fears et al., 2005; Van Gool et al., 2015).
For example, EGF-mediated downregulation of Lrp1 activity in

astrocytic tumors impacts ECM composition and may contribute
to tumor invasiveness (Hussaini et al., 1999).

Lrp1 Binding to and Regulation of
Integrins
Integrins are transmembrane glycoprotein receptors consisting
of α and β heterodimers. Integrins have been implemented in
molecular adhesion, cell survival and migration (Pan et al., 2016).
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The process of binding of integrins to the ECM provokes
a change in conformation of integrins that connects the ECM
with the cell and leads to adhesion. An integrin that is
especially crucial for triggering the cell-matrix interactions is
β1 integrin. β1 integrin outside-in signaling leads to integrin
recruitment and clustering, phosphorylation of focal adhesion
kinase and the assembly of focal adhesions, promoting cell
spreading and adhesion.

Fibronectin is a ubiquitous and multifunctional ECM protein
vital for cell adhesion, migration and differentiation. Lrp1
participates in the catabolism of fibronectin by mediating
fibronectin endocytosis (Salicioni et al., 2002). In particular, Lrp1
prevents fibronectin upregulation on the cell surface and in the
cell-secreted medium, as shown for MEFs and Chinese Hamster
ovary cells (Salicioni et al., 2002).

Tissue transglutaminase is a ubiquitously expressed Ca2+-
dependent protein crosslinking enzyme present in the cytoplasm,
at the cell surface and in the ECM. Fibronectin and β integrins
are major interaction partners of tissue transglutaminase that
impact on cell adhesion and migration (Turner and Lorand,
1989; Akimov et al., 2000) (Figure 8). Fibronectin, aside from
being internalized in an Lrp1-dependent manner, also acts as
a bridging molecule and enhances Lrp1-mediated surface tissue
transglutaminase endocytosis (Zemskov et al., 2007).

Interaction of tissue transglutaminase with β integrins results
in the formation of fibronectin-tissue transglutaminase-integrin
complexes that stabilize the interactions of fibronectin with
integrins (Akimov et al., 2000). The interaction of tissue
transglutaminase with integrins facilitates their clustering and
activates RhoA (Janiak et al., 2006).

Surface tissue transglutaminase has been recently shown
to associate with Lrp1 and promote the formation of β1
integrin-Lrp1 complexes (Zemskov et al., 2007). As tissue
transglutaminase associates with integrins, they are internalized
by Lrp1 as a complex, resulting in a modification of cell-
matrix interactions. Upon Lrp1 loss, transglutaminase activity of
surface tissue transglutaminase is upregulated and cell adhesion
enhanced (Zemskov et al., 2007).

Fibulin-5 is an ECM integrin-binding protein that is involved
in elastic fiber formation (Yanagisawa et al., 2002). The binding
of fibulin-5 to uPA stimulates plasminogen activation. This leads
to the proteolysis of fibulin-5, its dissociation from integrins
and stimulation of β1 integrin-mediated migration of MEFs,
independently of the uPAR (Kapustin et al., 2012). Czekay et al.
(2003) found, however, that if uPARs are associated with integrins
and the uPA:PAI-1 complex binds to such an uPAR, integrins are
internalized by Lrp1 together with the uPA:PAI-1:uPAR complex,
influencing integrin functioning.

Lrp1 promotes β1 integrin activation via kindlin 2 and is
considered to be a driver for the trafficking and proteasomal and
lysosomal degradation of endocytosed activated β1 integrin via
the protein kinase C (Wujak et al., 2017) (Figure 9A). Knock-
in mutations in the intracellular NPxY2 motif of Lrp1, similarly
to the knock-out of Lrp1, lead to elevated levels of immature β1
integrin on the cell surface, disrupting β1 integrin functionality
(Salicioni et al., 2004; Rabiej et al., 2015; Wujak et al., 2017).
Immature β1 integrin lacks the full glycosylation pattern that is

acquired in the endoplasmic apparatus and the Golgi complex.
Changes in glycosylation patterns are known to disturb transit
through the Golgi apparatus, formation of complexes with α

integrin subunits and ligand-binding affinities (Bellis, 2004).
Knock-in mutations in the intracellular NPxY2 motif of Lrp1 lead
moreover to reduced β1 integrin recycling and cause increased
cell adhesion to collagen and fibronectin matrices and reduced
cell migration of MEFs (Rabiej et al., 2015). This effect is due to
the fact that the impaired Lrp1 endocytosis of β1 integrin leads
to increased numbers of focal adhesions, increased focal adhesion
kinase phosphorylation status and decreased MMP-2 and MMP-9
activity in MEFs and neurons (Rabiej et al., 2015) (Figure 9B).

Interactions of Lrp1 with β1 integrin are proposed to be
similar to Lrp1 interactions with APP. The knock-in mutation
in the intracellular NPxY2 motif of Lrp1 leads to surface
accumulation of not only β1 integrin but also APP (Pietrzik
et al., 2002; Rabiej et al., 2015). β1 integrin and APP are also
endocytosed together by Lrp1 upon complex formation with
the scaffolding protein Ran-binding protein 9, an interaction of
importance for Alzheimer’s disease pathogenesis and synaptic
plasticity (Woo et al., 2012a,b).

In the CNS, β1 integrin is known for participating in neuronal
migration and neurite outgrowth (Belvindrah et al., 2007b;
Ribeiro et al., 2013; Rabiej et al., 2015), however, its function
is not limited to cell adhesion and migration. β1 integrin is
expressed by NSPCs and is vital for the formation of cell layers
in the cerebral cortex (Belvindrah et al., 2007a). An in vivo
conditional deletion of β1 integrin in radial glia cells leads to
spontaneous seizures and reactive astrogliosis (Robel et al., 2009,
2015). β1 integrin presence is put forward as being inhibitory
for astrocyte differentiation in adult hippocampal neural stem
cells as well as in embryonic neural stem cells (Pan et al., 2014;
Brooker et al., 2016). This inhibitory effect is mediated via the
integrin-linked kinase (Pan et al., 2014; Brooker et al., 2016)
and appears to be more prominent in female mice, as shown by
Brooker et al. (2016). Interestingly, integrin-linked kinase, as a
major downstream effector kinase of β1 integrin signaling, is vital
for ECM deposition and controls its expression.

In a different β1 integrin mutant, β1 integrin loss restricted
to astrocytes has been found to impact endothelial cell number
at the neurovascular unit, blood vessel branching and aquaporin
4 levels (Venkatesan et al., 2015). Given that Lrp1 is found on
astrocytes and contributes to vessel development as well as BBB
integrity (Boucher et al., 2003; Nakajima et al., 2014; Fredriksson
et al., 2015; Auderset et al., 2016) it is of interest for future studies
to elucidate to what extent Lrp1 participates in β1 integrin-
mediated effects in the developing CNS.

As Lrp1 was recently identified as a receptor for β1 integrins
also in thyroid cancer cells (Theret et al., 2017), Lrp1 and
integrins emerge as potential candidate genes for preventing
cancer invasiveness.

Lrp1 has also been shown to bind β2 integrins located
on leukocytes and monocytes (Spijkers et al., 2005; Cao
et al., 2006). The interactions of Lrp1 with β2 integrins are
suggested to modulate cell adhesion and migration by regulating
integrin recycling, as shown in the example of macrophages
(Cao et al., 2006). Hypercholesterolemia is proposed to induce
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FIGURE 8 | Lrp1 is vital for integrin signaling and function. Integrins are formed by α and β heterodimers. Fibronectin and integrins can interact with tissue
transglutaminase (tTG) and impact on cell migration and adhesion. Upon fibronectin binding, surface tTG is endocytosed by Lrp1 (1). tTG mediates the formation of
Lrp1:integrin complexes that facilitate integrin endocytosis and cell migration (2). Interaction of tTG with integrins stabilizes fibronectin:integrin complexes and
stimulates RhoA activation and cell adhesion (3).

hematopoietic stem/progenitor cell (HSPC) proliferation and
their migration into lesioned sites, where they are suggested
to undergo differentiation into leukocytes and form plaques
found in arteriosclerosis patients (Wang et al., 2014). Vital for
HSPC adhesion, migration and homing is β2 integrin (Wang
et al., 2014). Loss of Lrp1 does not influence expression levels
of β2 integrin, but leads to inhibition of HSPC adhesion,
suggesting Lrp1 in this context impacts β2 integrin functioning
(Wang et al., 2014).

Lrp1 Interactions With tPA
Tissue plasminogen activator is a serine protease that belongs to
the chymotrypsin family, mostly known for its role in degrading
the extracellular matrix components via activating plasmin. This
glycoprotein is built up from the heavy A-chain and the light

B-chain (Figure 10). The heavy A-chain is composed of the
finger domain, EGF-like domain and Kringle 1 and 2 domains.
The finger domain is responsible for binding to fibrin and the
membrane receptors Annexin II and Lrp1 (Kagitani et al., 1985;
Bu et al., 1992; Hajjar et al., 1994). The EGF-like domain is crucial
for binding to the EGF receptor (Correa et al., 2011). The Kringle
1 domain is involved in the uptake of tPA in the liver and the
Kringle 2 domain is vital for interactions with NMDARs and
PDGFs (Kuiper et al., 1988; Fredriksson et al., 2004; Lesept et al.,
2016). The light B-chain comprises the serine protease domain
with the catalytic triad (His322, Asp371, and Ser478), responsible
for the proteolytic activity of tPA.

Unlike other members of the chymotrypsin family, tPA is
secreted as a proteolytically active single chain form that can
be subsequently processed into the equally proteolytically active
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FIGURE 9 | Lrp1 mediates β1 integrin endocytosis. (A) The NPxY2 motif located in the cytoplasmic domain of Lrp1 is responsible for the endocytosis of β1 integrins
via kindlin 2 that enhances cell migration. (B) Upon mutations in the NPxY2 motif of Lrp1, interactions with kindlin 2 do not occur, resulting in reduced β1 integrin
recycling and facilitation of cell adhesion.

two-chain tPA by plasmin or kallikrein. Given its prominent
matrix degradation capacities, tPA levels and activity must be
strictly regulated. In the CNS, Lrp1 together with protease
inhibitors PAI-1 and neuroserpin is especially crucial for
controlling the effect of tPA on ECM remodeling (Orth et al.,
1992; Makarova et al., 2003; Yepes and Lawrence, 2004; Czekay
et al., 2011; Hébert et al., 2015).

For many years, tPA has been mostly appreciated for its
fibrinolytic activity, however, it possesses a plethora of other
functions vital for CNS homeostasis, some of which are
summarized in Figure 11 (Sappino et al., 1993; Briens et al., 2017;
Hébert et al., 2015).

TPA, alike Lrp1, is implicated in the pathology of
neurodegenerative diseases, including Alzheimer’s disease,
psychotic disorders like schizophrenia (Fabbro and Seeds, 2009;
Hoirisch-Clapauch and Nardi, 2015) and is recognized for
supporting BBB integrity (Polavarapu et al., 2007; Fredriksson
et al., 2015; Stefanitsch et al., 2015).

The tPA has been found to facilitate neurite outgrowth
by promoting local proteolysis (Seeds et al., 1996) and to
favor neuronal (synaptic) maturation after differentiation from
cortical neural progenitor cells (Lee et al., 2014). TPA is highly
expressed in brain regions undergoing cellular migration. TPA
gene expression is found most prominently in the cerebellum
in the period of neuronal migration and is induced in granule
neurons leaving the external granule layer of the cerebellum
(Friedman and Seeds, 1995). Mice that lack tPA show an
increased amount of granule neurons migrating in the molecular
layer of the cerebellum (Seeds et al., 1999). The mechanism
behind enhanced tPA expression in granule cells is suggested to
be related to NMDAR signaling as these receptors are crucial for
granule cell migration (Komuro and Rakic, 1992, 1993; Friedman
and Seeds, 1995). TPA-mediated signaling is also supportive for
Schwann cell migration via direct interaction with NMDARs
and is present even upon blockage of Lrp1 (Mantuano et al.,
2015). Recently, tPA has been implicated in the control of proper
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FIGURE 10 | The structure of tissue plasminogen activator. Tissue plasminogen activator (tPA), like all serine proteases, exists in two forms: the single-chain and the
two-chain form. The conformation of tPA is maintained by 17 disulfide bridges (green double lines). The structure of both tPA forms consists of two chains: the
A-chain and the B-chain. The A-chain consists of four domains that are color-coded on the scheme. The finger domain (red) is responsible for interacting with Lrp1,
fibrin and annexin II. The EGF-like domain (blue) binds the EGF receptor. The kringle 1 domain (green) mediates tPA uptake in the liver. The kringle 2 domain (violet) is
vital for interactions with NMDARs and PDGFs. The B-chain (black) consists of the catalytic triad that mediates the proteolytic activity of tPA. The single-chain form of
tPA is catalytically active and can be further cleaved by kallikrein and plasmin (red double lines), resulting in the two-chain form of tPA. The two-chain tPA is also
catalytically active.

radial glial cell organization and differentiation. The interaction
between neuronal tPA and NMDAR on radial glia cells was
found to be crucial for proper cortical migration and maturation
(Pasquet et al., 2018). In a mouse model of Fragile X syndrome,
a stimulating effect of tPA on Fmr1-deficient cells migrating out
of neurospheres was also apparent (Achuta et al., 2014).

TPA and plasmin have been shown to regulate mossy
fiber outgrowth in the hippocampus via the proteolysis of the
proteoglycan DSD-1/phosphacan (Wu et al., 2000).

In murine renal and non-renal myofibroblasts, tPA promotes
transforming growth factor (TGF)-β1-mediated activation and
ECM production which is independent of its proteolytic
activity. TPA exerts this action by directly activating Lrp1 by a
phosphorylation of tyrosine residues located in the C-terminus
of Lrp1. This process results in Lrp1-mediated β1 integrin
recruitment and integrin-linked kinase signaling (Hu et al., 2007).
Upon Lrp1 loss, tPA fails to induce myofibroblast activation and
ECM overproduction as evidenced by type I collagen expression
(Hu et al., 2007). TGF-β1 fibrogenic activity is not disturbed
in Lrp1-deficient cells, suggesting Lrp1 loss affects only tPA-
mediated signaling (Hu et al., 2007). In other cell types, however,
Lrp1 was shown to impact TGF-β expression and signaling, for
example during vessel wall remodeling (Muratoglu et al., 2011).

TPA is not only supportive of cell migration, but, under certain
conditions, it also favors cell adhesion. This effect is reversed
upon binding of tPA to PAI-1, which induces an Lrp1-mediated
internalization of the adhesion complex and cell detachment
(Cao et al., 2006; Kozlova et al., 2015).

Extracellular matrix remodeling by tPA and other proteases
is not only involved in axonal growth and cell migration but
also activates cellular signaling cascades. For example, degraded
fibronectin particles interact with integrin receptors and trigger
cell signaling that further remodels the ECM by regulating
mRNA levels of metalloproteases and other factors (Werb et al.,
1989). TPA also acts as a cytokine by upregulating MMP-9
gene expression in an Lrp1-dependent manner (Wang et al.,
2003; Yepes et al., 2003; Hu et al., 2006). Lrp1 expression is
increased upon ischemic stroke, and treatment with RAP or
antibodies against Lrp1 decreases the degree of tissue edema
after middle cerebral artery occlusion (Polavarapu et al., 2007).
Vasocontraction of smooth muscle cells is facilitated by tPA and
requires a functional interaction between Lrp1 and α and β

integrins (Akkawi et al., 2006). Astrocytic Lrp1 and tPA have
been directly shown to regulate BBB permeability (Polavarapu
et al., 2007; Su et al., 2008; Niego et al., 2012). Improper tPA-
Lrp1 and tPA-Mac-1-Lrp1-PDGFR α interactions at the BBB are
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FIGURE 11 | Representative functions of tissue plasminogen activator in the CNS. (A) At the synapse, upon binding of tissue plasminogen activator (tPA), Lrp1
recruits postsynaptic density protein 95 (PSD-95). PSD-95 bridges the NPxY2 motif of Lrp1 and N-methyl-D-aspartate receptor (NMDAR). NMDAR allows Ca2+

influx, leading to an activation of signaling cascades (1). TPA can directly interact with the NMDAR, enhancing its extrasynaptic surface diffusion and resulting in
excitotoxicity (2). Interactions of low levels of single-chain tPA (sc-tPA) and two-chain tPA (tc-tPA) with epidermal growth factor receptor (EGFR) result in
neuroprotection and inhibition of NMDAR neurotoxicity (3). Interactions of tPA with synaptic GluN2A-NMDARs are neuroprotective, while with extrasynaptic
GluN2D-NMDARs, neurotoxic (4). (B) During corticogenesis, tPA released by migrating neuroblasts clusters NMDARs on radial glia cells and ensures proper cortical
migration and maturation of neurons. (C) TPA enhances blood-brain barrier permeability by interacting with astrocytic Lrp1 and platelet-derived growth factor
(PDGF)-CC. (D) Both sc-tPA and tc-tPA are proteolytically active and convert plasminogen to plasmin. Plasmin digests fibrin, a process especially vital for renewing
blood flow after ischemia (1). Plasmin cleaves GluN2A and GluN2B-containing NMDARs, impacting NMDAR functionality (2).

known to influence the permeability of the neurovascular unit
in relation to seizures and ischemia (Polavarapu et al., 2007;
Zhang et al., 2007, 2009; Su et al., 2008; Nakajima et al., 2014;
Fredriksson et al., 2015).

In the CNS, tPA is synthesized and released by various cell
types including neurons and astrocytes (Hébert et al., 2015).
The majority of neuronal tPA is present in dendrites and axons
and is released following depolarization of presynaptic terminals.
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FIGURE 12 | Lrp1 impact on the ECM is complex. Lrp1 can undergo β- and γ-secretase-mediated cleavages that result in two functional receptor domains that
exhibit different properties (1). The shed extracellular domain of Lrp1 can interact with ligands located in the matrix and in the circulation (2). The intracellular Lrp1
domain can translocate to the nucleus and regulate the expression of many genes (3). Lrp1 has been reported to interact with more than 40 different molecules,
among them matrix metalloproteinases (MMPs) and protease inhibitors, thrombospondins, N-methyl-D-aspartate receptors (NMDAR) and integrins (4). Mirroring this
multitude, the binding of ligands to Lrp1 can lead to various effects. Ligands can directly bind to the extracellular domain of Lrp1, undergo endocytosis (5) and be
transported to lysosomes/proteasomes for degradation (7) while Lrp1 is recycled back to the membrane (6). Some ligands require bridging molecules like
thrombospondins or heparan sulfate proteoglycans (HSPGs) to undergo efficient uptake (5). Upon ligand binding to the extracellular and/or cytoplasmic domains of
Lrp1, the receptor can become phosphorylated (8), result in the activation of signaling cascades (9) and/or regulate gene transcription (10). Given the above, Lrp1
impacts the ECM either directly or indirectly and influences its remodeling. Lrp1 signaling alters not only the composition of the ECM but also other homeostatic
processes like synaptic signaling and angiogenesis, which impact brain functioning.

tPA liberation impacts the release of glutamate, thereby exerting
a modulatory function on synaptic activity (Wu et al., 2015;
Yepes et al., 2016). Simultaneously, tPA release is proposed
to exhibit an independent, homeostatic effect on the cortical
glutamatergic postsynapse, which is dependent on the degree
of neuronal activation and extracellular Ca2+ concentrations
(Jeanneret et al., 2016).

The tPA interacts with proteins and receptors located at the
synapse, among them Lrp1 and NMDAR (Nicole et al., 2001;
Pawlak et al., 2005; Benchenane et al., 2007; Macrez et al.,
2010; Jullienne et al., 2011; Ng et al., 2012; Obiang et al.,
2012; Parcq et al., 2012; Mantuano et al., 2013; Lesept et al.,
2016). Both single- and two-chain tPA at low concentrations
can activate neuronal EGF receptors, which decrease NMDAR
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signaling and result in neurotrophic effects. High concentrations
of single-chain tPA lead to neurotoxic effects by activating
NMDAR signaling (Bertrand et al., 2015; Chevilley et al., 2015).
Neuronal survival is enhanced via astrocytic TGF-α induction
of PAI-1. PAI-1 inhibits tPA and thereby prevents NMDAR-
mediated neurotoxicity (Gabriel et al., 2002). Additionally, tPA
exerts neuroprotective effects by activating the annexin II and
mTOR pathways (Chevilley et al., 2015; Grummisch et al., 2016;
Lemarchand et al., 2016).

The interaction of tPA with Lrp1 is vital for the generation of
hippocampal late LTP and enhancement of PKA activity (Zhuo
et al., 2000; Makarova et al., 2003).

The tPA is tightly connected with LTP induction and synaptic
signaling also by its ability to degrade the ECM (Qian et al.,
1993; Huang et al., 1996; Baranes et al., 1998; Madani et al.,
1999; Trotter et al., 2014). TPA-mediated proteolytic cleavage of
plasminogen results in the generation of plasmin that enhances
the NMDAR-mediated increase in Ca2+ influx upon glutamate
application to cultured hippocampal neurons (Inoue et al.,
1994). TPA and plasmin have also been shown to convert
pro brain-derived neurotrophic factor to mature brain-derived
neurotrophic factor, a protein critical for LTP generation (Pang
and Lu, 2004; Pang et al., 2004).

Healthy astrocytes possess the ability to uptake tPA, via Lrp1,
from the synaptic cleft and modulate the efficacy of synaptic
responses (Makarova et al., 2003; Fernández-Monreal et al.,
2004; Cassé et al., 2012). Meanwhile, in vitro cultured astrocytes
with reduced Lrp1 levels do not uptake neuron-derived tPA
efficiently and as a result cause elevated levels of tPA in the
synaptic cleft (Cassé et al., 2012). Astrocytic Lrp1 uptake of tPA
is thereby crucial in preventing surplus tPA-mediated activation
of NMDARs and neuronal cell death (Cassé et al., 2012) and is a
promising target for epilepsy research.

The tPA is an immediate early gene expressed not only upon
LTP but also early after seizures (Qian et al., 1993; Carroll
et al., 1994). The exact impact of tPA on seizure generation
and epilepsy progression is, however, complex (Tan et al.,
2012). TPA-deficient mice are resistant to excitotoxin-induced
neuronal death, but mice overexpressing tPA in adult neurons
do not show neurodegeneration, only a selective enhancement
of hippocampal LTP and memory (Tsirka et al., 1997; Madani
et al., 1999). Involvement of tPA in activity-dependent synaptic
plasticity has also been hypothesized to occur in the cerebellum
upon motor learning. Here, tPA secreted at either Purkinje cell
dendrites or granule neurons and parallel fibers, could eliminate
synapses by degrading cell surface receptors and adhesion
molecules, or facilitate new synapse formation by degrading the
ECM (Seeds et al., 1995, 1996).

Lrp1 and the extracellular protease tPA impact cell migration,
adhesion and NMDAR-mediated signaling. TPA exerts its effects
not only via its proteolytic activity but also via activating signaling
cascades (Nicole et al., 2001; Yuan et al., 2009; Parcq et al., 2012;
Chevilley et al., 2015). Interactions of Lrp1 with tPA have been
shown so far to depend on the animal age, the cell type, the exact
co-factors available, the extracellular/intracellular tPA ratio and
the form of tPA. These myriad parameters need consideration
when studying the intriguing relationship between Lrp1 and tPA

and partially explains contradictory findings in the literature
regarding the function of this ECM protein (Nicole et al., 2001;
Fernández-Monreal et al., 2004; Benchenane et al., 2007; Jullienne
et al., 2011; Robinson et al., 2015).

CONCLUSION

Lrp1 is a potent modulator of ECM function in the CNS and
beyond. Lrp1 can impact on the composition of the cell plasma
membrane, and thereby the ECM, by the endocytosis of a wide
range of ECM proteins and protein complexes. ECM molecules
themselves can facilitate Lrp1-mediated endocytosis by acting as
bridging and docking molecules, as do surface-bound HSPGs.
By mediating the endocytosis of a wide range of proteases and
protease inhibitors, Lrp1 directly impacts ECM composition. By
associating with scaffolding and adaptor proteins and forming
co-receptor complexes, Lrp1 appears vital for cell signaling
events and activation of many downstream signaling cascades
that lead to, among others, ECM remodeling. In this context,
the interactions of Lrp1 with its ligands, especially tPA and
integrins, have proven critical for normal development, synaptic
signaling, cell adhesion and migration. Therefore, it is not
surprising that changes in Lrp1 expression and phosphorylation
status are associated with neurodegenerative and cardiovascular
diseases and cancer.

A general overview of how Lrp1 can interact with the ECM is
depicted in Figure 12.

In summary, as the impact of Lrp1 on the ECM is complex and
both cell type- and cofactor-dependent, an integrative approach
for deciphering Lrp1 function should be implemented for each
studied interaction and system.
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