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Abstract: Obstructive sleep apnea (OSA) is a fatal respiratory disease occurring in sleep. OSA can
induce declined heart rate variability (HRV) and was reported to have autonomic nerve system (ANS)
dysfunction. Variance delay fuzzy approximate entropy (VD_fApEn) was proposed as a nonlinear
index to study the fluctuation change of ANS in OSA patients. Sixty electrocardiogram (ECG)
recordings of the PhysioNet database (20 normal, 14 mild-moderate OSA, and 26 severe OSA) were
intercepted for 6 h and divided into 5-min segments. HRV analysis were adopted in traditional
frequency domain, and nonlinear HRV indices were also calculated. Among these indices, VD_fApEn
could significantly differentiate among the three groups (p < 0.05) compared with the ratio of low
frequency power and high frequency power (LF/HF ratio) and fuzzy approximate entropy (fApEn).
Moreover, the VD_fApEn (90%) reached a higher OSA screening accuracy compared with LF/HF
ratio (80%) and fApEn (78.3%). Therefore, VD_fApEn provides a potential clinical method for ANS
fluctuation analysis in OSA patients and OSA severity analysis.

Keywords: obstructive sleep apnea (OSA); autonomic nerve system (ANS) fluctuation;
OSA severity analysis; heart rate variability (HRV); variance delay fuzzy approximate entropy
(VD_fApEn)

1. Introduction

Obstructive sleep apnea (OSA) has been widely reported as a potentially fatal respiratory disease
that occurs in sleep. It is characterized by recurrent disorder of upper respiratory tract, with clinical
manifestations of daytime sleepiness, snoring, and decreased sleep quality [1]. OSA was reported to
have autonomic nerve system (ANS) dysfunction, and can lead to a range of complications, such as
respiratory system disease, cerebrovascular disease, and even sudden death [2,3]. Therefore, in practice,
ANS evaluation of OSA patients is considered essential [4].

Heart rate variability (HRV) is a kind of noninvasive method which can effectively evaluate
ANS function in OSA patients [5–7]. The classical HRV analysis methods include time and frequency
domain HRV analysis. HRV frequency domain analysis can better evaluate the relationship between
HRV and ANS system [8,9]. HRV time/frequency domain analysis method is based on the assumption
that signal is linear, while biological processes in human body are nonlinear processes [10]. Nonlinear
analysis methods have received extensive attention in recent years. Complexity of human physiological
system can be quantitatively analyzed by nonlinear methods, such as Princare graph [11], correlation
dimension [12], and complexity analysis [13]. HRV nonlinear analysis can be used to evaluate the
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disturbance degree of ANS. Especially, the entropy methods are considered as reliable methods
to estimate the complexity of ANS [14].

In frequency domain analysis, low frequency power (LF) and high frequency power (HF) index
can indicate the balance controlling of ANS. Song et al. found that the LF/HF index displayed the best
statistical significance in HRV indices (p < 0.05) [15]. Urbanik et al. reported significant differences
between groups in the LF/HF values, which were larger in OSA subjects compared with in normal
subjects (p < 0.05) [16]. Park et al. reported a significant positive correlation between LF/HF and
Apnea Hypopnea Index (AHI) (r = 0.610, p < 0.001), and LF/HF was regarded as the most useful index
to evaluate the AHI degree of OSA patients [17]. It can be observed that the LF/HF performed better
in HRV analysis, but LF/HF only reflects the ANS balance as a whole in a certain period of time.

Entropy methods can be used to estimate the complexity of HRV. In general, normal systems have
inherent complexity, while the complexity of system in most patients has downward trends [18–20].
Haitham et al. applied sample entropy method to study HRV of OSA subjects, and results revealed that
HRV pattern of OSA patient was less complex than that of normal subject [21]. Pan et al. reported that
multiscale entropy could successfully distinguish normal subjects from OSA patients (p < 0.05) [22].
As a method suitable for complexity analysis of time series in biological systems, permutation entropy
directly reflects the time information contained in time series. Ravelo et al. found that adding
permutation entropy can improve the classifier performance of OSA detection [23]. These findings
supported that complexity of the original RR sequence can be used for analysis of HRV pattern changes
in OSA patients.

However, the changes of ANS in OSA patients are also affected by daily activities and individual
differences [24]. The short-term fluctuation of ANS can reflect the changes caused by OSA and reduce
the interference of individual differences and self-changes to a certain extent. Research revealed that
most studies focused on the overall complexity evaluation of the HRV, ignoring the short-term dynamic
change of HRV. Considering that the fluctuations of respiratory and cardiovascular may lead to HRV
disturbance, short-term dynamic changes of ANS in OSA patients may reflect important pathological
information [25]. In previous studies, we proposed sliding trend fuzzy apnea entropy based on
empirical mode decomposition to reflect the complexity of short-term sympathetic changes [26].
But, as a whole, sympathetic and parasympathetic nerves of the ANS antagonize and coordinate the
physiological activities of the human body. The complexity of short-term ANS changes in OSA patients
should be further explored.

Therefore, the variance delay fuzzy approximate entropy (VD_fApEn) was proposed in this paper.
It is a nonlinear HRV analysis method which can be used for further dynamic analysis of the ANS in
OSA patients. First, the small-scale variance of successive RR sequences was firstly extracted to reflect
the tension of ANS. Then, by applying fuzzy entropy (fApEn) combined with delay method, VD_fApEn
was calculated reflecting the disorders of short-term fluctuations in ANS. Finally, the VD_fApEn was
used for OSA screening and analysis of OSA severity. Further details will be given later in this article.

2. Methods

2.1. Data

The database used in this paper for OSA analysis was downloaded from www.physionet.org,
which provides the Apnea-ECG data on obstructive sleep apnea. This database contains 70 single-lead
ECG signals with 100 Hz sampling frequency, and the lengths varying between 401 and 587 min. Each
recording includes minute-by-minute annotations to indicate the presence or absence of apnea during
that minute, which were made by human experts.

According to the number of minutes with apnea, the recordings in the PhysioNet database were
classified into three categories: A, B, and C. Recordings having fewer than 5 min of disordered breathing
were defined as class C (control group, total 6 males and 5 females, aged from 27–42 years). Recordings
containing at least 1 h with an apnea index of 10 or more and at least 100 min of apnea were classified
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as class A (apnea group, total 15 males and 1 female, aged from 29–63 years). Between these two
groups, recordings containing at least 1 h with an apnea index of 5 or more and between 5 and 99 min
with apnea during the recording were defined as class B (borderline apnea group, 10 recordings, total
4 males and 1 female, aged from 39–53 years).

According to these criteria, 70 recordings of 32 subjects were classified as follows:
40 class A recordings, 10 class B recordings, and 20 class C recordings. In this study, 10 borderline
recordings of class B were excluded, and a total of 60 recordings from class A (20 recordings) and class C
(40 recordings) were used. Apnea-hypopnea index (AHI) is an indicator of the severity of OSA, defined
as the number of apneas and hypopnea events per hour during sleep. The 60 recordings were further
divided as following groups according to AHI as follows: normal group (20 recordings; AHI < 5),
mild-moderate OSA group (14 recordings; 5 ≤ AHI < 30), and severe OSA group (26 recordings;
AHI ≥ 30).

2.2. HRV Analysis Method

Figure 1 shows a flow chart of the HRV analysis method in this paper. First, RR intervals were
extracted and corrected. Then, frequency domain indices and complexity indices were calculated for
short-term HRV measurements. Finally, these indicators were verified by significance analysis.

Entropy 2020, 22, x 3 of 13 

 

were classified as class A (apnea group, total 15 males and 1 female, aged from 29–63 years). Between 
these two groups, recordings containing at least 1 h with an apnea index of 5 or more and between 5 
and 99 min with apnea during the recording were defined as class B (borderline apnea group, 10 
recordings, total 4 males and 1 female, aged from 39–53 years).  

According to these criteria, 70 recordings of 32 subjects were classified as follows: 40 class A 
recordings, 10 class B recordings, and 20 class C recordings. In this study, 10 borderline recordings 
of class B were excluded, and a total of 60 recordings from class A (20 recordings) and class C (40 
recordings) were used. Apnea-hypopnea index (AHI) is an indicator of the severity of OSA, defined 
as the number of apneas and hypopnea events per hour during sleep. The 60 recordings were further 
divided as following groups according to AHI as follows: normal group (20 recordings; AHI < 5), 
mild-moderate OSA group (14 recordings; 5 ≤ AHI < 30), and severe OSA group (26 recordings; AHI 
≥ 30). 

2.2. HRV Analysis Method  

Figure 1 shows a flow chart of the HRV analysis method in this paper. First, RR intervals were 
extracted and corrected. Then, frequency domain indices and complexity indices were calculated for 
short-term HRV measurements. Finally, these indicators were verified by significance analysis. 

 
Figure 1. The flow chart of heart rate variability (HRV) analysis in this study. 

2.2.1. Preprocess 

First, the 60 full-night ECG recordings were intercepted in 6 h for the regularization of data. 
Then, RR segments (RRs) were extracted from the ECG signals with the algorithm proposed by Pan 
and Tompkins [27], and the physiologically uninterpretable points were eliminated with the median 
filter that proposed by Chen et al. [28]. It was reported that 5 min was an appropriate length of time 
for HRV analysis [26]. The sampling frequency of 5-min RR segments was inverted to 2 Hz via cubic 
spline interpolation. Each 6-h ECG recording includes 72 RR sequences, with each sequence lasting 5 
min. The 5-min HRV indices were calculated, and 72 groups of HRV indices were obtained from each 
recording. Finally, a set of HRV indices for each recording were obtained by calculating the average 
value of each HRV indicator of 72 groups. 

2.2.2. Frequency Domain Analysis 

Low frequency power (LF, 0.04–0.15 Hz), high frequency power (HF, 0.15–0.4 HZ), and the ratio 
of LF power and HF power (LF/HF) were computed as HRV frequency indices. These indices are 
obtained with the fast Fourier transform method to calculate the power spectral density of these RRs. 

2.2.3. Complexity Analysis 

Fuzzy Approximate Entropy (fApEn): The fApEn is an effective and robust algorithm for 
measuring the complexity of a discrete sequence, used for assessing the complexity of physiological 
signals [5]. The detailed calculation steps of fuzzy approximate entropy are as follows: 

a) Given an  samples discrete series ( ), = 1,2, ⋯ , , then construct m dimensional vector 
sequences , = 1,2, ⋯ , − + 1  as follows:  
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2.2.1. Preprocess

First, the 60 full-night ECG recordings were intercepted in 6 h for the regularization of data. Then,
RR segments (RRs) were extracted from the ECG signals with the algorithm proposed by Pan and
Tompkins [27], and the physiologically uninterpretable points were eliminated with the median filter
that proposed by Chen et al. [28]. It was reported that 5 min was an appropriate length of time for HRV
analysis [26]. The sampling frequency of 5-min RR segments was inverted to 2 Hz via cubic spline
interpolation. Each 6-h ECG recording includes 72 RR sequences, with each sequence lasting 5 min.
The 5-min HRV indices were calculated, and 72 groups of HRV indices were obtained from each
recording. Finally, a set of HRV indices for each recording were obtained by calculating the average
value of each HRV indicator of 72 groups.

2.2.2. Frequency Domain Analysis

Low frequency power (LF, 0.04–0.15 Hz), high frequency power (HF, 0.15–0.4 HZ), and the ratio
of LF power and HF power (LF/HF) were computed as HRV frequency indices. These indices are
obtained with the fast Fourier transform method to calculate the power spectral density of these RRs.

2.2.3. Complexity Analysis

Fuzzy Approximate Entropy (fApEn): The fApEn is an effective and robust algorithm for
measuring the complexity of a discrete sequence, used for assessing the complexity of physiological
signals [5]. The detailed calculation steps of fuzzy approximate entropy are as follows:
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(a) Given an N samples discrete series
{
s(l), l = 1, 2, · · · , N

}
, then construct m dimensional vector

sequences
{
Xm

l , l = 1, 2, · · · , N −m + 1
}

as follows:

Xm
l =

{
s(l), s(l + 1), · · · , s(l + m− 1)

}
− s0(l), l = 1, 2, · · ·N −m + 1. (1)

s(l) represents mean value of the m consecutive values.

s0(l) =
1
m

∑m−1

i=0
s(l + i). (2)

(b) The maximum absolute distance dm
ij between Xm

i and Xm
j is calculated according to:

dm
ij = d

[
Xm

i , Xm
j

]
= max

pε(0,m−1)

{∣∣∣(s(i + p) − s0(i)) − (s( j + p) − s0( j))
∣∣∣} i, j

= 1, 2, · · · , N −m; i , j
(3)

(c) Define the similarity degree Dm
ij (n, r) between Xm

i and Xm
j through an exponential fuzzy

function ϕ
(
dm

ij , n, r
)
. r is width of the border; n determine gradient of the boundary.

Dm
ij (n, r) = ϕ

(
dm

ij , n, r
)
= exp

(
−

(
dm

ij

)n
/r

)
(4)

(d) Then, calculate the average similarity from each vector to another as follows:

∅m(n, r) =
1

N −m

∑N−m

i=1

( 1
N −m− 1

∑N−m

j=1, j,i
Dm

ij

)
. (5)

(e) Construct m + 1 dimensional vector sequences
{
Xm+1

k , k = 1, 2, · · · , N −m
}

and repeat (3)–(5),
∅m+1(n, r) as follows:

∅m+1(n, r) =
1

N −m

∑N−m

i=1

( 1
N −m− 1

∑N−m

j=1, j,i
Dm+1

i j

)
. (6)

(f) Finally, the fApEn is defined as:

FuzzyEn(m, n, r) = lim
N→∞

[
ln∅m(n, r) − ln∅m+1(n, r)

]
(7)

For a finite discrete series, fApEn can be calculated as:

f ApEn(m, n, r) = ln∅m(n, r) − ln∅m+1(n, r) (8)

Varience Delay Fuzzy Approximate Entropy (VD_fApEn): First, the variance of RR sequence
in small scale was calculated to reflect the fluctuation change of HRV. As shown in Figure 2, there
was a significant difference in the complexity of RR sequence variance (red line) between OSA patient
and normal subject. Thus, we attempted to quantitatively evaluate the complexity of RR sequence
variance. Secondly, delay method can weaken the strong correlation between continuous heartbeats,
and fApEn method was an improved evaluation of signal complexity [5,29]. Therefore, we applied
the fApEn method combined with delay method to calculate the complexity of RR sequence variance.
The detailed calculation are as follows:
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(a) Given an N samples discrete series V
{
v(l), l = 1, 2, · · · , N

}
, zero-mean normalization of the

sequence was performed to obtain a new sequence W
{
w(l), l = 1, 2, · · · , N

}
as follows:

w(l) =
(v(l) − v0)

vσ
, 1 ≤ l ≤ N (9)

where v0 and vσ is the mean value and the standard deviation of the series V, respectively.
(b) Coarse-grain W: The original RR series are divided into a series of non-overlapping segments.

τ was defined as scale of RR interval, and the variance of each segments was calculated to get a new
sequence

{
s(l), l = 1, 2, · · · ,

⌊
N
τ

⌋}
.

s(l) =
1
τ

∑lτ

i=(l−1)τ+1
(w(i) −wl)

2 , 1 ≤ l ≤
⌊N
τ

⌋
= C, (10)

wl =
1
τ

∑lτ

i=(l−1)τ+1
w(i). (11)

(c) To embed the delay method into the fApEn method, we constructed m dimensional vector
sequences

{
Xm

l (δ), l = 1, 2, · · · , N −m + 1
}

with a time delay δ as:

Xm
l (δ) =

{
s(l), s(l + δ), · · · , s(l + (m− 1)δ)

}
, l = 1, 2, · · · , C− (m− 1)δ (12)

The following steps are the same as the fApEn calculation steps (2)–(7).

2.3. Simulation Test

Considering that the ANS is highly nonlinear and complex, a nonlinear signal system model
was constructed to verify the feasibility of VD_fApEn for ANS analysis. In addition, it is necessary
to choose appropriate N and r for entropy indices of the HRV signal. Therefore, the performances
of fApEn and VD_fApEn with changes of parameters were compared using simulated signals in this
study. Three kinds of nonlinear signals with different complexity are generated as MIX (0.1, 0.5, 0.9),
which are defined as follows:

MIX(p)i = (1−Zi)Xi + ZiYi (13)
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Xi = 2sin(2πi/12) (14)

where Yi is a random variable uniformly distributed between −
√

3 and
√

3, Zi is random variables, and
the probability of Zi = 1 is p, while the probability of Zi = 0 is 1− p. i is the number of MIX(p)i, which
was set as 1000. By increasing the value of p, the randomness and complexity of MIX(p) are increased,
making the complexity of generating signals increase.

In the calculation of entropy, three parameters, m, N, and r, should be focused. m is the dimension
of vector sequences and was proved to be suitable set as 2 [26,30]. To find the most appropriate
N and r settings in the complexity measure, we compared the variation of fApEn and VD_fApEn with
N and r. For the selection of parameter N, MIX(p) was divided into sequences of 100 to 1000 points,
and the r was fixed into value 0.2. For the selection of parameter r, MIX(p) was fixed into 500 points,
and r ranged from 0.1 to 1.

2.4. Indices Validation

HRV indices were calculated using MATLAB (R2014b, Mathworks, Natick, MA, USA).
All statistical analyses were adopted using SPSS (version 22.0.0.0 SPSS, Inc., Chicago, IL, USA).
The HRV indices data calculated in this study were analyzed in SPSS, and results showed that the
data conforms to normal distribution. HRV indices were evaluated by one-way ANOVA followed
by post hoc analysis with the least significant difference (LSD) test for analysis among the control
group, mild-moderate OSA group, and severe OSA group. p < 0.05 represents statistically significant,
and the statistical results of indices are showed as mean ± SD. For OSA screening, Fisher’s discriminant
function of SPSS was used, and the overall accuracy, sensitivity, and specificity of HRV indices were
presented [31].

3. Results

3.1. Simulation Results Comparisons of Indices

Monotonicity, consistency, and continuity are important references used in complexity analysis to
reflect the performance of entropy indices. Monotonicity refers to the monotonic tendency of parameter
variation; consistency means that if a sequence is more complex, all values of entropy for testing should
be larger; continuity means that there should be no mutation when the parameters change slightly [32].

Figure 3 presents the results of parameters selection and comparison of ApEn and VD_fApEn.
From Figure 3a–c, as complexity of the signal (the blue line) increased, complexity of the signal’s
short-term variance (the red line) also increased gradually. As shown in Figure 3d–f, when the n value
is greater than 200, both fApEn and VD_fApEn reached relatively stable. VD_fApEn made a better
distinction among Mix (0.1, 0.5, 0.9) signals. As shown in Figure 3e,g, there was a more pronounced
monotonic downward trend with increasing r in VD_fApEn. Moreover, there were no crossover of
VD_fApEn, whereas crossovers were found in fApEn. Among simulated signals, index VD_fApEn
showed better monotonicity, consistency and continuity.
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Figure 3. One hundred-point segments are randomly selected from 1000 simulated (a) MIX (0.1),
(b) MIX (0.5), and (c) MIX (0.9) signals; red lines are obtained by calculating the variance of the signal
at 5 points; when N increases from 200 to 1000 at each increase of 50 (r = 0.20), there is a change of
(d) fuzzy approximate entropy (fApEn) and (f) variance delay (VD)_fApEn; when r increases from 0.1
to 1 at each increase of 0.05, there is a change of (e) fApEn and (g) VD_fApEn.

3.2. Disease Severity Analisis of OSA

The results of frequency domain and nonlinear indices for the normal, mild-moderate OSA and
severe OSA group are shown in Table 1. There were no significant differences in LF and HF among
these three groups. As shown in Figure 4a,b, LF/HF and fApEn could significantly distinguish between
normal group and mild-moderate OSA group, and between normal group and severe OSA group. In
Figure 4a, LF/HF values showed an increased trend from normal to mild-moderate OSA to severe OSA
group. Figure 4c shows a down trend VD_fApEn values from normal to mild-moderate OSA to severe
OSA group. In addition, the differences of VD_fApEn in any two of the three groups were statistically
significant. Therefore, VD_fApEn can be used for OSA disease severity analysis.
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Table 1. Frequency domain indices and nonlinear indices of HRV for disease severity analysis.

Indices N M S
p

N&M N&S M&S

Frequency
domain
indices

LF 0.004 ± 0.005 0.001 ± 0.0004 0.011 ± 0.025 0.638 0.190 0.097
HF 0.004 ± 0.005 0.0004 ± 0.0003 0.009 ± 0.028 0.642 0.315 0.166

LF/HF 1.862 ± 0.576 4.325 ± 2.238 4.893 ± 2.279 0 *** 0 *** 0.367

Nonlinear
indices

fApEn 0.181 ± 0.077 0.100 ± 0.03 0.11 ± 0.054 0 *** 0.001 ** 0.407
VD_fApEn 1.204 ± 0.172 0.917 ± 0.283 0.659 ± 0.179 0 *** 0 *** 0 ***

N: normal group; M: mild-moderate OSA group; S: severe OSA group; *, **, *** represent p < 0.05, p < 0.01,
and p < 0.001, respectively.
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3.3. OSA Screening

As shown in Table 2, the OSA screening results were also calculated for each individual using SPSS.
LF/HF (80.0% and 70.0%) had a higher accuracy and sensitivity compared with fApEn (78.3% and 82.5%),
while VD_fApEn reached the highest accuracy and sensitivity for 90.0% and 87.5%.

Table 2. Performance of indices for OSA screening.

TP TN FP FN Accuracy Sensitivity Specificity

LF/HF 28 20 0 12 80 70 100
fApEn 33 14 6 7 78.3 82.5 70

VD_fApEn 35 19 1 5 90 87.5 95

TP: true positive; TN: true negative; FP: false positive; FN: false negative.

Figure 5 shows the result of each OSA recording screening with these three indices. In Figure 5a,
there were 12 misclassifications (6 normal, 6 OSA) for fApEn, 5 misclassifications (1 normal, 4 OSA)
for the VD_fApEn, and 1 misclassification (1 OSA) of both indicators. In Figure 5b, there were
8 misclassifications (OSA) for LF/HF, 2 misclassifications (1 normal, 1 OSA) for the VD_fApEn,
and 4 misclassifications (4 OSA) of both indicators. Moreover, Figure 5a,b show that the red and
blue symbols in the left and right direction are easier to separate, indicating the screening ability of
VD_fApEn is better.
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3.4. Analysis of Different Scales for RR Intervals

In calculation of the VD_fApEn, variance of RR sequence in small scale was calculated to reflect
the fluctuation change of HRV. In this study, the results of VD_fApEn applied to OSA disease severities
analysis, and the results of OSA disease screening were analyzed, as RR scale ranged from 2 to 9.

Figure 6 shows the result of relationship between performance of VD_fApEn and different RR
intervals scales. In Figure 6a, the values of VD_fApEn for normal, mild-moderate OSA and severe
OSA group had an upward trend with increase of scales. VD_fApEn can significantly distinguish any
two of the three groups when scales of RR intervals was limited as 2 to 6.
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In Figure 6b, when the sequence scale rose from scale 2 to 5, the OSA screening accuracy of the
VD_fApEn reached its maximum and decreased when the sequence scale rose from 5 to 9. In conclusion,
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VD_fApEn analysis of OSA is considered to be effective, and OSA patients with different severities
could be distinguished when RR interval was 5.

4. Discussion

4.1. Comparison and Summary

This paper verified the performance of HRV frequency domain indices by comparing with
previous studies. LF/HF can reflect the status of autonomic nerve control and is regarded as a reliable
indicator providing valuable information in apnea events discrimination [32]. Results revealed that the
LF/HF could significantly distinguished between the normal group and OSA group (mild-moderate
and severe OSA group) (Table 1, Figure 4). We compared our work with previous studies and validated
the performance of the LF/HF. Results in this study are consistent with the findings of previous relative
studies [15,17,26], and we selected LF/HF for comparison with nonlinear HRV indices. However,
as in most studies, LF/HF was unable to distinguish among different severities of OSA [7,22,33].

In this study, VD_fApEn could significantly differentiate between any two groups among normal,
mild-moderate OSA and severe OSA group compared with LF/HF and fApEn (Table 1, Figure 4).
We also analyzed the correlation between the HRV indices (VD_fApEn and LF/HF) and the AHI.
Results showed that the index VD_fApEn and AHI were significantly negative correlated (r = −0.7430,
p < 0.001), while the index LF/HF and AHI were positively correlated (r = 0.6504, p < 0.001). It can
be observed that there is a better correlation between VD_fApEn and AHI. In addition, HRV indices
have been used for OSA screening in previous studies. Haitham et al. reported that sample entropy of
OSA patients had less complex HRV pattern, and the accuracy of sample entropy for OSA screening
reached 70.3% [21]. The sliding trend fuzzy approximate entropy (SlTr-fApEn), which is based on the
empirical mode decomposition method, was proposed in our previous study to reflect the complexity
of short-term sympathetic changes. The result for OSA screening showed an improved accuracy
(85.0%) [26]. In this study, VD_fApEn had a higher accuracy (90.0%) compared with the LF/HF (80.0%)
or compared with fApEn (78.3%) (Table 2). Briefly, VD_fApEn was seen as an effective indicator for
OSA screening and disease severity analysis.

4.2. Method Proposed and Parameter Selection

HRV analysis is widely adopted in ANS function evaluation, but the instantaneous change of
ANS was ignored. Considering that HRV is the result of many nonlinearly interacting processes,
nonlinear HRV methods are suitable for HRV analysis. As shown in Figure 2, two typical examples
of 5-min RR sequences in normal subject and OSA patient were displayed. Results showed that the
complexity difference of small-scale variance for these two RR sequences is significant. In addition,
three nonlinear signals with different complexities were simulated in Figure 3, and results showed that
the short-term variance complexity analysis was more suitable for nonlinear and nonstationary system.
Therefore, we attempted to calculate the complexity of short-term RR sequence variance to analyze
the instantaneous change of ANS in OSA patients.

In this study, the small-scale variances of successive RR sequences were extracted to reflect the
instantaneous tension of ANS, and fApEn combined with delay method was adopted to reflect the
complexity of ANS tension. Studies have shown that the strong correlation between continuous
heartbeat may mask the non-linear measurement, and the occurrence of apnea events may have
a delayed effect on ANS [29]. Thus, delay algorithm may better evaluate the effect of apnea events on
ANS. Moreover, as a nonlinear method, entropy method has been widely concerned for the complexity
measurement of HRV [6,30,34]. The fApEn method has been proven to improve the evaluation of signal
complexity [5,35]. Therefore, delay algorithm was embedded into fApEn method for complexity
calculation of ANS tension.

Parameters of VD_fApEn were also analyzed in this study. The scale of RR sequences for calculating
variance was analyzed, and it could be inferred from the results that the ability of VD_fApEn to
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distinguish OSA disease severity increased with scale decreased. When the scale reduced to 5, the
OSA screening accuracy of VD_fApEn reached its maximum (90%) (Figure 6). Therefore, 5 consecutive
heartbeats may be suitable for instantaneous change assessment of ANS, and 5 points was adopted
as the scale of variance in VD_fApEn. In addition, the parameters of entropy m and r were set as
2 and 0.25, respectively, which were consistent with other findings [30,36].

4.3. Physiological Significance

OSA is a common respiratory cardiovascular syndrome during sleep. It has been extensively
studied that abnormality of ANS existed in OSA patients, and HRV analysis was reported to be an
effective method to evaluate the function of ANS [37]. Considering that maintaining normal HRV is
associated with autonomic regulation of the ANS, reduced HRV in OSA patients may reflect disorders
of ANS function. The classical HRV index LF/HF is related to the overall balance of autonomic nerves.
In this study, increased LF/HF value can be observed in OSA patients (Table 1, Figure 4). This result
indicated that the ANS imbalance was significantly increased in OSA patients, which is caused by
increased sympathetic activity.

Research showed that the fluctuation of respiratory and cardiovascular may lead to disorder of
HRV, and OSA was related to the activity and short-term state changes of the ANS [38]. It can be
inferred that the short-term changes in ANS of OSA patients may reflect more physiological information.
Because the variance in small scale can reflect fluctuation change of short-term series, and fApEn
embedded with delay method can evaluate the complexity of sequences. VD-fApEn can reveal the
complexity of fluctuations within the ANS, and it also provides a new perspective for ANS analysis
of OSA patients. Results indicate that VD-fApEn value decreased with the increase of OSA disease
severity, reflecting that the complexity of fluctuations in ANS decreased significantly when the severity
of OSA increased (Table 1, Figure 4). This may due to decreased tension and activity of the ANS in
OSA patients, resulting in decreased ability of the ANS to adapt to external changes.

Present study still has some limitations for further improvement. First, personal factors of subjects
may have impact on the results (such as age and body mass index, etc.). Second, our algorithm
should be improved in many ways, the proposed index also needs further verification. Finally, the
existence of underlying cardiovascular disease and sleep related factors may have a certain impact on
the HRV analysis of OSA patients, which was not considered. In future study, we will adopt a larger
amount of data and further verify the reliability of the index proposed in this paper by combining
polysomnography (PSG) indicators.

5. Conclusions

In this study, variance delay fuzzy approximate entropy (VD_fApEn) was proposed as a nonlinear
index to study the fluctuation change of ANS in OSA patients. When used for disease severity
analysis of OSA, results showed that VD_fApEn could significantly differentiate between any two
groups among the normal, mild-moderate OSA, and severe OSA group. The complexity of autonomic
fluctuations decreased significantly with increased severity of OSA. When used for OSA screening,
VD_fApEn had a higher accuracy compared with the traditional HRV indices. Therefore, VD_fApEn
provides a potential clinical method for analysis of ANS alterations in OSA patients and severity of
OSA disease.
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