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The Miscellaneous Crenarchaeota group (MCG) Archaea is one of the predominant archaeal groups
in anoxic environments and may have significant roles in the global biogeochemical cycles.
However, no isolate of MCG has been cultivated or characterized to date. In this study, we
investigated the genetic organization, ecophysiological properties and evolutionary relationships of
MCG archaea with other archaeal members using metagenome information and the result of gene
expression experiments. A comparison of the gene organizations and similarities around the 16S
rRNA genes from all available MCG fosmid and cosmid clones revealed no significant synteny
among genomic fragments, demonstrating that there are large genetic variations within members of
the MCG. Phylogenetic analyses of large-subunitþ small-subunit rRNA, concatenated ribosomal
protein genes and topoisomerases IB gene (TopoIB) all demonstrate that MCG constituted a sister
lineage to the newly proposed archaeal phylum Aigarchaeota and Thaumarchaeota. Genes involved
in protocatechuate degradation and chemotaxis were found in a MCG fosmid 75G8 genome
fragment, suggesting that this MCG member may have a role in the degradation of aromatic
compounds. Moreover, the expression of a putative 4-carboxymuconolactone decarboxylase was
observed when the sediment was supplemented with protocatechuate, further supporting the
hypothesis that this MCG member degrades aromatic compounds.
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Introduction

The study of the ecophysiology of archaea is currently
one of the most exciting research areas in the field of
environmental microbiology. Many uncultivated
archaeal groups have been discovered as microbial
diversity surveys have expanded and improved, but
the physiological properties of most of these unculti-
vated archaea remain to be determined. For instance,
uncultivated archaeal lineages such as Marine
benthic group B (also known as deep-sea archaeal
group), Miscellaneous Crenarchaeota group (MCG) or
South African gold mine Euryarchaeota group were
found widespread in marine sediments (Teske and
Sørensen, 2008); however, the functions of these
archaea in the environments are still unknown.

MCG archaea live in diverse habitats, including
terrestrial and marine, hot and cold, surface and

subsurface environments (Biddle et al., 2006; Teske,
2006; Kubo et al., 2012). The label ‘miscellaneous’
appears to represent the difficulty in categorizing
the wide terrestrial and marine habitat range of this
group (Inagaki et al., 2003). Sørensen and Teske
(2006) divided hundreds of MCG clones into smaller
and more manageable subgroups—MCG-1 to MCG-4.
Jiang and Li, (2011) performed a comprehensive
phylogenetic analysis and divided MCG archaea
into seven subgroups (MCG-A to MCG-G), whereas
Kubo et al. (2012) divided MCG archaea into 17
subgroups. In addition to its cosmopolitan distribu-
tion, the MCG group of archaea is one of the most
abundant groups in the subsurface sedimentary
biosphere based on the 16S rRNA gene abundance:
the MCG clones account for 33% of all clones from
47 16S rRNA gene libraries obtained from 11
published studies of the deep marine biosphere
(Fry et al., 2008). Moreover, the MCG was found to
be one of the most active groups in the deep marine
biosphere (Fry et al., 2008; Li et al., 2012b). Parallel
16S rRNA and rDNA analyses of Ocean Drilling
Program site 1229 on the Peru Margin indicated
that the MCG dominated the archaeal clone
libraries based on PCR-amplified 16S rDNA genes
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(Parkes et al., 2005) and on reverse-transcribed 16S
rRNA (Biddle et al., 2006). At the Ocean Drilling
Program site 1227 on the Peru Margin, MCG archaea
were abundant in 16S rRNA gene clone libraries
from all depths (Inagaki et al., 2006) and they
dominated the reverse-transcribed 16S rRNA pool in
all sediment layers except the deep-sea archaeal
group/Marine benthic group B horizon (Sørensen
and Teske, 2006). In addition, the carbon isotope
signatures of archaeal cells and polar lipids from
MCG-dominated sediment horizons indicate that
these anaerobes utilize buried organic carbon sub-
strates (Biddle et al., 2006). The widespread dis-
tribution, high abundance and metabolic activities
of MCG archaea all indicate that these organisms
might be significant players in biogeochemical
cycles. However, the paucity of representative pure
cultures has hindered our understanding of the
physiological properties of these archaea as well as
their ecological functions and evolutionary position.
Environmental genomics provides an approach to
explore the potential physiological characteristics
and genomic information of uncultivated microbes
in the context of indigenous microbial communities.
Just recently, single-cell genome analysis suggested
that members of the MCG archaea are specializing in
extracellular protein degradation (Lloyd et al.,
2013). Till now, only a few MCG fosmid and cosmid
clones have been identified. One MCG fosmid clone
was reported containing a functional bacteriochloro-
phyll a synthase (bchG) gene, a key enzyme for
bacteriochlorophyll a biosynthesis. However, the
in vivo physiological functions of BchG in MCG are
still unknown, although it was supposed that
containing a presumptive Bchl a synthase gene,
may give the archaea more flexibility to survive or
adapt to various environments (Meng et al., 2009).
The other three analyzed fosmid clones contain
homologous to potentially important functional
genes involving in lipid biosynthesis, energy meta-
bolism and resistance to oxidants (Li et al., 2012a).
But the physiological properties and the roles of
these organisms in natural biogeochemical cycles
are still remaining to be determined.

In this study, we investigated the phylogenetic
position and potential ecophysiological properties of
this little understood MCG archaeal group using an
environmental metagenomic method. A member of
the MCG was hypothesized to be aromatic compound
degrader based on genome information. This hypoth-
esis was further supported by target gene expression
analysis after substrate supplementation.

Materials and methods

Site description and sampling
Estuarine sediment was collected from a site of
around 0.5 m water depth on the Qi’ao Island
(Pearl River Estuary, 22127021.400 N, 11313807.300E)
in Guangdong Province, China, in 2005 April using

a single-core sampler. The temperature of the bottom
water was 21.5 1C and the salinity at the surface
of sediment was 2.6%. Mangrove sediment was
collected from a national mangrove reserve in
Jiulongjiang estuary (24124048.600N, 117156030.500E),
Fujian Province, China, 2009. All samples were kept
on dry ice during transport and then stored in a
� 20 1C fridge.

Construction of the genomic library
High-molecular-weight genomic DNA was extracted
according to the method of Zhou et al. (1996) and
separated using pulsed-field agarose gel electro-
phoresis after both DNA ends were end-repaired
following the manufacturer’s instructions (Epicentre,
Madison, WI, USA). After the electrophoresis was
completed, an agarose plug containing 33–48 kb
DNA was cut out, and the DNA was recovered using
electro-elution (Bio-Rad, Hercules, CA, USA). The
genomic DNA purified from this plug was ligated to
pCC1FOS fosmid or pWEB-TNC cosmid, followed
by packaging into MaxPlax Lambda Packaging
Extract (Epicentre). The packaged particles were
transferred into Escherichia coli EPI300 or EPI100
(Epicentre). In total, B8000 clones for the estuarine
sediment and B9000 clones for the mangrove
sediment were obtained in this study. The average
insert size was 35 kb.

Screening for the archaeal genome fragments
The library was pooled into groups of 12 clones, and
the mixed fosmid or cosmid plasmids were
extracted using a standard alkaline lyses procedure.
These extracted plasmids were used as templates for
PCR amplification. Multiplex PCR with archeal 16S
rRNA universal primer set Arch21F/958R (DeLong,
1992) was used to screen for clones containing
archaeal 16S rRNA gene. Plasmids of 12 individual
fosmid/cosmid clones, with positive archaeal 16S
rRNA gene amplification, were then extracted and
used as templates for the second round of PCR
amplification. The single fosmid/cosmid clones
containing archaral 16S rRNA gene were under
subsequent investigations.

Analysis of the metagenome sequences 75G8 and 26B6:
tRNA genes, Open Reading Frame search and protein
identification
Shotgun libraries were sequenced by the Sanger
sequencing method to determine the complete insert
sequences of each clone as described before (Meng
et al., 2009). Open Reading Frame was predicted
with GeneMark (Lukashin and Borodovsky, 1998).
BLAST were used to search for similar sequences in
GenBank (Altschul et al., 1997) with an E-value
cutoff of o10� 5. In addition, protein annotation
against Pfam (Sonnhammer et al., 1997) and InterPro
(Zdobnov and Apweiler, 2001) was performed with
an e-value o10� 5. Signal peptides were scanned

Genetic and functional properties of uncultivated MCG archaea
J Meng et al

651

The ISME Journal



with SignalP 4.0 (Petersen et al., 2011) and trans-
membrane segments were predicted using TMHMM
2.0 (http://www.cbs.dtu.dk/services/TMHMM/). The
conserved domains of predicted protein sequences
were detected using the program InterProScan
(Zdobnov and Apweiler, 2001). tRNAs were
scanned using tRNAscan-SE v.1.21 tool (Lowe
and Eddy, 1997).

Phylogenetic analysis of 16S rRNA, LSU-SSU rRNA
and predicted proteins
For 16S rRNA phylogeny, representatives of MCG
and Marine benthic group B, Marine group I were
selected from ARB-silva (http://www.arb-silva.de/)
as reference sequences. The LSU-SSU (large-subunit-
small-subunit) operon (23S rRNA-16S rRNA) from
Crenarchaeota, Euryarchaeota, Thaumarchaeota from
GenBank were selected for LSU-SSU phylogenetic
tree. MAFFT with L-INS-i strategy was used for all
alignments in this paper (Katoh et al., 2002).
Maximum likelihood phylogenetic trees of aligned
genes were inferred with RAxML, using the general
time-reversible model of substitution and the
GAMMA model of rate heterogeneity; tree topologies
were checked by 100 bootstrapping replicates.

In the case of ribosomal proteins, each ribosomal
protein was aligned by MAFFT first and then all
alignments were concatenated. For the phylogenetic
tree of protein, the best protein model was deter-
mined with ProteinModelSelection.pl (http://sco.
h-its.org/exelixis/software.html). LG were selected
as best protein model for ribosomal protein and
Topomerase IB (ToPoIB) protein (Le and Gascuel,
2008). Maximum likelihood phylogenetic trees were
constructed using RAxML estimated by the LG
model of protein substitution and the GAMMA
model of rate heterogeneity, with 100 replications
for bootstrapping.

Sediment collection and substrate feeding experiment
Mangrove sediment from the same location as that
for cosmid library was utilized for substrate feeding
experiment, on 2009 October. First, we emptied the
core rod of a sterile 50 ml syringe, and then
vertically inserted it into sediment with the tip up.
After the syringe was filled with sediment, the core
rod was pushed back to expel remaining air in the
syringe. The top tip of each syringe was immediately
sealed with parafilm and all filled syringes were
transported on ice to the laboratory. One syringe was
stored at � 80 1C as original sample. Others were
processed with incubation experiment. Protocatech-
uate solution was prepared as following: 0.5 g
protocatechuate was dissolved in 2 ml of deionized
water and filtered with 0.22 mm filter. The proto-
catechuate solution was then injected into the
syringe from the top tip and seeped into the
sediment. The tip of the syringe was then sealed
with parafilm, and the whole syringe was covered

with foil and incubated at a thermostatic room
(26 1C) for 45 days. One syringe without injection of
protocatechuate was used as a control and was
covered with foil and incubated under the same
condition.

RNA extraction and gene expression
Original sample, control sample and each layer (L1–L4)
from the protocatechuate-supplemented samples
were used for RNA extraction, respectively. Two
grams of each sediment sample were used for RNA
extraction using E.Z.N.A. Soil RNA Kit (Omega,
Bio-Tek, Norcross, GA, USA). Total RNA was treated
with DNase I at 37 1C for 1 h to remove potential
DNA contamination. Reverse transcription-PCR was
performed on the purified total RNA using RevertAid
H Minus Reverse Transcriptase (Fermentas, Hanover,
MD, USA) with specific primers (CDS16-forward:
50-CCTCGGCGAGCATTTCCGGG-30, CDS16-reverse:
50-GCCCATCGGCAGGAAGGTGG-30; CDS17-forward:
50-CATCACCTGCTTGATGCTCT-30, CDS17-reverse:
50-CGGGAAATTCGTGGAATATG-30), following the
manufactures’ instructions. Two microliters of
reaction mixture from reverse transcription was
used for following PCR amplification. The PCR
cycle condition was as following: 98 1C for 30 s, 30
cylces of 95 1C for 30 s, 55 1C for 30 s, 72 1C for 30 s
and extension at 72 1C for 7 min. After amplification,
PCR products were subject to electrophoresis, and
PCR bands from agarose gels were purified by
E.Z.N.A Gel Extraction kit (Omega, Bio-Tek). The
purified PCR amplicons were ligated with pMD-18T
vector and transformed to E. coli DH- 5a. Three
positive clones for each PCR amplicon were sent out
for sequencing.

Nucleotide sequence accession number
The 16S rRNA gene and the genomic sequences in
this study were all deposited in the DDBJ/EMBL/
GenBank nucleotide sequence databases with
KF439060 and KF439061.

Results and discussion

Metagenomic library construction and screening
A cosmid library was constructed from mangrove
sediment from Zhangjiang Mangrove Reservation,
Fujian Province, China. The mangrove sediment
used in this study contained abundant MCG archaea
estimated by 16S rRNA gene library analyses (Zhang
et al., 2009; Li et al., 2012b). The cosmid library
contained B9000 clones and the average insert
length was 35 kb.

This cosmid library derived from the mangrove
sediment and a fosmid library constructed from
estuarine sediment (Meng et al., 2009) were
screened for MCG clones by PCR amplification. Six
clones containing archaeal 16S rRNA genes were
obtained, four of them belonged to MCG group

Genetic and functional properties of uncultivated MCG archaea
J Meng et al

652

The ISME Journal

http://www.cbs.dtu.dk/services/TMHMM/
http://www.arb-silva.de/
http://sco.h-its.org/exelixis/software.html
http://sco.h-its.org/exelixis/software.html


(as shown in Figure 1). Three clones 37F10, 75G8
and 26B6 yielded full insert sequences. On the basis
of the classification and phylogenetic analyses of

MCG 16S rRNA gene sequences by Jiang et al.
(2011), 37F10 was grouped into MCG-A, whereas
75G8 and 26B6 were placed within the MCG-G
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Figure 1 The phylogenetic tree of uncultivated MCG discussed in the text. The tree was constructed from the alignment of 4900
unambiguously aligned base pairs using MAFFT followed by Maximum likelihood method by RAxML with the GTRGAMMA model. The
stability of the topology was evaluated by bootstrapping (100 replicates). The resulting bootstrap values are indicated at each node in the
tree. The names of MCG groups (MCG-A to -G, and class 1–17) were modified based on Jiang et al.’s classification (Jiang et al., 2011) and
Kubo et al.’s classification (Kubo et al., 2012), respectively.
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subgroup. Whereas according to Kubo et al. (2012)
classification, 37F10 belongs to class 6, 75G8 and
26B6 belong to class 8 (Figure 1).

Gene composition and comparative analyses of MCG
genomic fragments
Clone 75G8 had a 33887 bp insert size, which
contained 32 predicted conserved domain
sequences (CDS) and one 16S–23S rRNA operon
(Figure 2, Supplementary Table S1). The GþC
content of the whole insert was 56.94% and that
of 16S rRNA was 59.80%. Twenty-five of the
predicted protein-encoding sequences (CDS) could
be assigned with functions, four were identified
as hypothetical conserved proteins and three
of the CDSs did not show significant similarity
to any amino-acid sequences in the protein
databases.

Clone 26B6 had an insert size of 34887 bp and
contained a dispersed 16S rRNA gene and 40 CDSs
(Figure 2, Supplementary Table S2). The average
GþC content of the insert sequence was 44.71%
and that of 16S rRNA gene was 59.15%. Neither 23S
nor 5S genes were found in this fragment. Most of
the known archaea had one or a few copies of an
rRNA operon containing at least both 16S and 23S
rRNA genes, but the dispersed localization of the
16S and 23S rRNAs was common within MCG and

other archaeal members (Meng et al., 2009; Li et al.,
2012a). Twenty-two of the predicted CDSs could be
assigned with functions, 10 were identified as
hypothetical conserved proteins and 9 CDSs did
not show significant similarity to any amino-acid
sequences in the protein databases (Supplementary
Table S1).

The main characteristics of six available MCG
fosmid/cosmid clones were listed in Table 1. The
GþC contents of listed MCG 16S rRNA genes were
relatively stable, ranging from 55.9 to 59.8%. But the
GþC contents of the whole clones exhibited greater
differences to as high as 19.4%, with the lowest
GþC content of 37.5% for E37-7F and the highest of
56.9% for 75G8. The similarities between 16S rRNA
genes from metagenome clones and single cell clone
ranged from 80 to 95% (Table 2), with an average
similarity of 85%. The gene organizations on these
six fosmid/cosmid MCG fragments were compared
(as shown in Figure 2), big variations were demon-
strated. Even focusing on the gene organizations
around the 16S rRNA gene from all the six MCG
metagenome clones, no synteny was found
(Figure 2). This result was consistent with previous
report that no colinear regions were found between
MCG fosmids and any reported archaeal genomic
fragments or genomes (Li et al., 2012a).

The physiological traits and ecological
significance of MCG archaea remain unclear.

5 kb

37F10

E48_1C

E6_3G

75G8

26B6

E37_7F

16S rRNA

16S rRNA

16S rRNA

16S rRNA

16S rRNA

16S rRNA

[V] Defense mechanisms

[T] Signal transduction mechanisms

[S] Function unknown

tRNArRNA

[R] General function prediction only

[Q] Secondary metabolites biosynthesis, transport and catabolism

[P] Inorganic ion transport and metabolism

NA

[M] Cellwall/membrane/envelope biogenesis

[K] Transcription

[J] Translation, ribosomal structure and biogenesis

[I] Lipid transport and metabolism

[H] Coenzyme transport and metabolism

[G] Carbohydrate transport and metabolism

[F] Nucleotide transport and metabolism

[E] Amino acid transport and metabolism
[O] Post translational modification, protein turnover, chaperones  

[L] Replication, recombination and repair

[C] Energy production and conversion

Figure 2 Comparison of gene organization. The gene organizations of the genomic fragment from six MCG fosmid/cosmid clones were
compared with each other. The genes are colored according to Clusters of Orthologous Groups (COG) category, and 16S rRNAs are linked
in gray.
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Previous studies have suggested that MCG were
distributed in various habitats and exhibit extraordin-
ary versatility. The 16S rRNA sequences of MCG
members varied greatly, exhibiting as low as 76%
similarity even within groups (Fry et al., 2008; Kubo
et al., 2012). The comparison of retrieved MCG
genomic fragments indicated huge variations in geno-
mic regions other than the 16S rRNA gene sequences,
and such high genomic diversity also supported the
high metabolic diversity of MCGs, as suggested by their
evolutionary diversity (Biddle et al., 2006; Fry et al.,
2008; Teske and Sørensen, 2008).

MCG phylogenetic analysis based on LSU-SSU rRNA,
ribosomal proteins and DNA TopoIB gene
Currently, the MCG cluster exhibits no clear affilia-
tion to any of the established archaeal phyla and
presented an unstable branching order when 16S
rRNA-based trees are constructed with different
methods (Pester et al., 2011). LSU-SSU rRNA
and/or concatenated ribosomal proteins have served
as robust gene markers for phylogenetic analysis.
MCG clone 75G8 contained a complete 16S–23S
rRNA operon, and clone 26B6 contains several
ribosomal protein genes, which gave us a chance
to re-examine the phylogenetic relationship of MCG
with other archaeal groups.

In the LSU-SSU rRNA phylogenetic tree
(Figure 3), MCG was clearly shown as a sister lineage
of Aigarchaeota and Thaumarchaoeta. The novel
archaeal phylum Aigarchaeota was just recently
proposed by Nunoura et al. (2011) based on the
distinct genomic features (that is, including genes
encoding a ubiquitin-like protein modifier system) of
Candidatus ‘Caldiarchaeum subterraneum’, which
belongs to the HWCGI group. Our LSU-SSU rRNA
phylogenetic analysis supported the independence
of Aigarchaeota from Thaumarchaeota and further
suggested that MCG could constitute a new phylum.
Moreover, consistent with the LSU-SSU rRNA
phylogenetic tree, the phylogenetic tree of concate-
nated ribosomal proteins (Supplementary Figure S1)
also indicated that MCG represents as a sister lineage
with Thaumarchaeota.

The genomic fragment of clone 26B6 contained a
putative DNA TopoIB type protein (CDS1), which

showed highest similarity (40%) with that from
Nitrosopumilus maritimus SCM1 (Supplementary
Table S2). Historically, type IB topoisomerases were
thought to be eukaryotic-specific enzymes. A shorter
version was then found in viruses and later on in
several bacteria (Forterre et al., 2007), but these
genes were not found in any archaea until recently
in members of the proposed novel archaeal phylum
Thaumarchaeota and Aigarchaeota (Brochier-
Armanet et al., 2008; Nunoura et al., 2011). ToPoIB
from MCG clone 26B6 formed a sister group with
those from Thaumarchaeota and Aigarchaeota,
forming an archaeal branch independent of those
from Eukarya and virus (Figure 4). The archaeal-
topoisomerase does not seem to be acquired via
lateral gene transfer from Eukarya, but instead might
have been present in the last ancestral common
ancestor.

According to the phylogenetic analyzes of
LSU-SSU rRNA, ribosomal proteins and ToPoIB
gene, MCG is clearly shown as a sister
lineage with Thaumarchaeota and Aigarchaeota,
and it is likely that they evolved from a common
ancestor. In a recently published partial genome
(with 30% genome recovery) obtained from a
single cell of a MCG member (MCGE09, as
shown in Figure 1), initial phylogenetic analyses
using single copy genes in archaea also placed
MCG as a sister lineage with Thaumarchaeota
and Aigarchaeota (Lloyd et al., 2013). All these

Table 1 Characteristic summary of MCG fosmid/cosmid clones

37F10 75G8 26B6 E6-3G E37-7F E48-1C

Insert length (bp) 34 528 33 887 34 877 38 227 42 618 34 738
GþC content (%) 52.5 56.9 44.7 50.1 37.5 44.9
GþC content of 16S rRNA (%) 58.0 59.8 59.1 57.6 55.9 58.6
rrn operon and tRNA 16S 16S–23S

tRNAIle

16S tRNAAla,
tRNATrp

16S-5.8S–23S 16S-5.8S–23S
tRNAArg, tRNACys

16S tRNASer

No. of predicted ORFs 36 32 40 30 41 37
No. of conserved hypothetic protein 4 4 10 3 4 4
No. of hypothetical protein 7 3 9 12 8 13
Average ORF length 807 756 747 885 696 706
16S rRNA identities to 37F10 (%) 100 87 86 82 82 89

Abbreviations: ORF, Open Reading Frame; MCG, Miscellaneous Crenarchaeota group.

Table 2 Similarity of 16S rRNA genes between MCG fosmid/
cosmid and single-cell clones

37F10 75G8 26B6 E6-3G E37-7F E48-1C MCGE09a

37F10 1 0.87 0.86 0.82 0.82 0.89 0.80
75G8 1 0.95 0.85 0.87 0.89 0.83
26B6 1 0.85 0.85 0.87 0.83
E6-3G 1 0.83 0.83 0.93
E37-7F 1 0.85 0.81
E48-1C 1 0.83
MCGE09 1

Abbreviation: MCG, Miscellaneous Crenarchaeota group.
aMCGE09 is the single-cell sequencing clone (Lloyd et al., 2013), the
partial 16S rRNA gene (900 bp) is used here for the pairwise
comparison.
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evidences indicate that MCG is not Crenarchaeota,
and it locates at a deep branching position with
Thaumarchaeota and Aigarchaeaota. Therefore,
MCG is likely to be considered as a novel archaeal
phylum, and we propose to name the new phylum

‘Bathyarchaeota’ (from the Greek ‘bathys’,
meaning deep as it locates deep branching
with Thaumarchaeota and Aigarchaeaota, and
frequently detected in the deep subsurface
sediments). More precise phylogenetic placement
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of MCG requires isolates and more genomes of
MCG members in the future.

Genes for aromatic compound degradation and
expression verification
Within the genome fragment of 75G8, one CDS,
CDS21, shared the highest identity (43% protein
identity, e-value¼ 4e-90) with a methyl-accepting
chemotaxis protein (MCPs) from Nitrobacter wino-
gradskyi Nb-255 (Supplementary Table S1). MCPs
are a family of receptors that mediate chemotaxis
toward diverse signals, allowing organisms to
respond to changes in the concentration of attrac-
tants and repellents in the environment by altering
swimming behavior (Szurmant and Ordal, 2004).
Two continuous CDSs (CDS16 and CDS17), locating
upstream of MCPs protein in the MCG clone 75G8,
were identified as putative 4-carboxymuconolactone
decarboxylases (CMD) as matched to protein family
HMM PF02627 (Supplementary Table S1). CMD
catalyze the third step in the catabolism of proto-
catechuate (and therefore the fourth step in the
catabolism of para-hydroxybenzoate, of 3-hydroxy-
benzoate, of vanillate and other compounds).

CMDs catalyze the decarboxylation of carboxymu-
conolactone, yielding b-ketoadipate enol-lactone, in
the catabolism of aromatic compounds through the
protocatechuate branch of the b-ketoadipate path-
way (Stanier and Ornston, 1973).

On fosmid clone 75G8, putative CMD genes
involved in protocatechuate catabolism locates at
the upstream of the MCP gene. These putative
MCG-CMD proteins show highest sequence
identity to putative CMDs from bacterial strains
(Supplementary Table S1 and Supplementary Figure
S2). The CMD genes are widely distributed in
various bacteria but rarely found in the available
archaeal genomes (the presence of the CMD gene has
only been observed in Sulfolobus and Methanomi-
crobia so far). The MCG-CMD seems to have a
bacterial origin (Supplementary Figure S2). As there
is still very limited information available, no
confirmed conclusion could be obtained. Never-
theless, the presence of genes for both CMD and
MCP in a genome fragment strongly suggests that
MCG members (here, the MCG-G subcluster) may
have the ability to utilize aromatic compounds. To
test this hypothesis, we performed a substrate
feeding cultivation experiment in which the source
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sediment was supplemented with protocatechuate
as substrate. Fresh sediment from the mangrove
reservation district, the same location where the
sediment collected for metagenome construction,
was sampled by a syringe as shown in Figure 5a.
Then, dissolved protocatechuate solution was
injected into the syringe from the top hole and
seeped into the syringe core (See Materials and
Methods for details). The syringe was then sealed
and incubated in a thermostatic room (26 1C) for 45
days. The incubated syringe was cut into four
portions according to the color stratification
(Figure 5a). Total RNA was extracted to examine the
expression of MCG-CMD genes (CDS 16 and CDS 17).
The expression of CDS16 was clearly observed only
in the protocatechuate-supplemented sediment
layer L1, whereas the expression of CDS17 was
observed in both L1 and L2. In contrast, no
expression of either CDS16 or CDS17 was observed
in the original sediment sample or the control
sample without protocatechuate supplementation
(Figure 5b and Materials and Methods). The PCR
bands of these two MCG-CMD genes were recovered
from the gel, cloned and sequenced, and these
sequences are identical to the CMD sequences in
75G8 genomic fragment. Therefore, the expression
of CMD genes was stimulated by protocatechuate.
The result of this preliminary substrate feeding
experiment and gene expression analysis strongly
supported our hypothesis that MCG archaea could
utilize protocatechuate as a substrate. A previous
study has considered MCG archaea to be hetero-
trophic anaerobes on the basis of depleted level of
the stable 13C (� 15 to � 28%) in whole archaeal

cells and intact archaeal membrane lipids (Biddle
et al., 2006). Recently, one of the MCG group
members was suggested to have the capability of
protein degradation (Lloyd et al., 2013). Here, we
identified another putative substrate: protocatechuate.
It seemed to be very likely that MCG members
within different MCG subgroups may have divergent
substrate-utilizing capabilities, considering that
MCG subgroups had extremely high genomic diver-
sities as demonstrated above. Identifying other
possible substrates in addition to protocatechuate
by stable isotope probing and/or single-cell sequen-
cing, represents a new exciting avenue of MCG
research that may help elucidate the physio-
logical properties of these organisms and facilitate
isolation.
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Figure 5 (a) A photo of the syringe filled with sediment and protocatechuate after 45 days’ culturing. The labels from top to bottom
(L1, L2, L3 and L4) correspond to the colors of the sediment layers. (b) Reverse transcription PCR (RT-PCR) analysis of 75G8_CDS16 and
75G8_CDS 17 from the RNA extracted from different layers of a culturing syringe (L1–L4), original sediment (B1) and a control sample
(B2). L1–L4 indicate the different layers of the syringe sediment. B1 represents the original sediment sample without any treatment and
B2 represents the control sample that was cultured under the same conditions but without protocatechuate. P indicates the positive
control that used 75G8 fosmid DNA as the PCR template, and N indicates the negative control that used water as template.
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