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Abstract

In this commentary, we work out the specific desired functions required for sharing

knowledge objects (based on statistical models) presumably to be used for clinical

decision support derived from a learning health system, and, in so doing, discuss

the implications for novel knowledge architectures. We will demonstrate how

decision models, implemented as influence diagrams, satisfy the desiderata. The

desiderata include locally validate discrimination, locally validate calibration, locally

recalculate thresholds by incorporating local preferences, provide explanation,

enable monitoring, enable debiasing, account for generalizability, account for

semantic uncertainty, shall be findable, and others as necessary and proper. We

demonstrate how formal decision models, especially when implemented as influence

diagrams based on Bayesian networks, support both the knowledge artifact

itself (the “primary decision”) and the “meta‐decision” of whether to deploy the

knowledge artifact. We close with a research and development agenda to put this

framework into place.
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1 | THE PROBLEM

“Learning health systems” (LHS) create knowledge, but they also cre-

ate knowledge objects (KOs)1: rules, guidelines, predictive models,

and the like.2 Applying what we learn in 1 complex adaptive system3

to another is fraught with dangers: How can 1 complex health care

environment resemble another? And yet, share we must. Researchers

of clinical prediction rules recommend a well‐articulated sequence of

evidence collection leading to broad dissemination.4 However, we

contend that the enthusiasm for modern computation2 and the

demand for Big Data5 to provide quicker results6 lead to the expecta-

tion that LHS KOs shall be shared quickly and broadly.7

Making KOs accessible and reusable has motivated much work in

decision support, including at the very least Arden Syntax,8 FHIR,9 and
- - - - - - - - - - - - - - - - - - - - - - - - - - -
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CDS Hooks.10 The BD2K community applies FORCE11's acronym,

FAIR, to this goal: Findable, Accessible, Interoperable, and Reusable.11

These features of KOs shared among LHS would seem to be the

minimum requirement.

The KOs that are shared among clinical decision support systems

(CDSs) for electronic health records (EHRs) generally result from long

processes, comprising evidence collection over several years, review

by the community of practitioners and experts, and achievement of

consensus.12 As opposed to such complex sociotechnical processes,

the knowledge gained from LHS is derived from observational data

and is generally much earlier in the epistemological process than tradi-

tional CDS rules. They are, thus, closer to the data from which they

were derived. Our claim is that those who share LHS KOs have a

responsibility to maintain the link between the knowledge and source
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data much differently from traditional CDS. The resulting knowledge

representation (KR) will need to be different from CDS KR as well.

The frameworks used to implement sharing of CDSs are wrongly

applied to LHS.

In this commentary, we will work out the specific desired func-

tions expected of LHS knowledge sharing, and, in so doing, discuss

the implications for novel knowledge architectures. We will demon-

strate how influence diagrams satisfy the desiderata. Influence

diagrams are a specific format for representing decision analytic or

cost‐effectiveness models as directed acyclic graphs. An important

conclusion of this commentary is that decision modeling is integral

to the process of sharing LHS KOs. We use the threshold theory of

decision making as an organizing principle, where the optimal decision

is suggested by whether the mean belief (estimate) of a quantity of

concern, like mortality risk, is above a threshold determined by the

decision maker's assessment of the tradeoff between harms and

benefits of action or inaction.13,14

We acknowledge 2 levels of decisions involved in the use of these

KOs: the decision implicit in the artifact and the institutional decision

about whether to use the artifact (the “meta‐decision”). Our desiderata

concern both.
2 | THE DESIDERATA

The following are desiderata for making a data‐based model usable at

a local institution remote from its site of creation or validation. We

recognize that a KO library can be built and not meet all or even any

of these items; hence, we cannot call them “requirements.” “Local val-

idation,” a recurring component of the desiderata, includes local repre-

sentation, recalculations, and assessment of the newly implemented

model's characteristics. We use as our use case the question of blood

lead screening in children: What should the local rule be?
FIGURE 1 Asthma risk. A, Bayesian network (built in Netica™). Recta
distributions. The arrows between nodes reflect conditional probabilistic
Bayesian network. Two models are reflected: one based on probability est
electronic health record system. The ROCs almost overlap each other. The
2.1 | LHS models shall enable local validation of
discrimination

A model must discriminate cases from noncases, whether a “case” is a

diagnosis (eg, high blood lead level) or a health state, such as intellec-

tual achievement. The usual measure of discrimination is the receiver

operating characteristic (ROC) curve's area under the curve (AUC).

Figure 1 shows 1 author's (SMD) experience in describing models

based on either observed data or expert opinion.15 While higher

numbers are better, left unstated in almost every report of a model's

performance is what threshold AUC is considered acceptable (for the

meta‐decision). Moreover, identifying the optimal cutoff point (false

positive rate [FPR] and true positive rate [TPR]) on the curve for a

local implementation requires decision modeling and valuation of the

“cost” of a false positive or false negative.
2.2 | LHS models shall enable local recalibration

If, for the same inputs, 1 model calculates a risk of MI of 30% and,

another, 40%, and the patient's threshold for concern is 35%, then

that patient will feel advised in diametrically opposite directions.

The calibration of risk models varies across instances of use, and

depends on the local population.16 The need to focus on calibration

in the neighborhood of the threshold led Walsh and colleagues to

offer a novel calibration approach based on its performance near

the decision threshold.17
2.3 | LHS models shall enable incorporation of local
preferences into local calculation of thresholds

Both of the first 2 desiderata raise the notion of thresholding, either

for the meta‐decision (what maximum FPR and minimum TPR would

the clinicians find acceptable) or for the decision itself (act on the
ngles represent probabilistic nodes, the bar graphs, the probability
relationships (numbers not shown). B, ROC resulting from the
imates elicited from experts and the other from data in the RMRS
AUC for each is 0.7015
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mortality risk), yet such thresholds are rarely explicitly articulated, nor

methods for their assessment, elicitation, or calculation provided.

In the LHS context, there are at least 3 types of thresholds. For

the primary decision, there are 2: risk (probability) thresholds and cut-

off levels. The first type of threshold is what risk level is high enough

to institute risk‐based screening.18 If the risk is high enough, then

action (eg, screening) makes sense; local factors (eg, subgroup compo-

sitions) map to a risk level, which lead to the rule: For this locale, you

should (not) screen. An example of the second type of risk threshold,

the lab test cutoff, is the blood lead level above which action should

be taken. These cutoffs are often presented as resulting from a statis-

tical analysis. The history of lead‐level cutoffs is a classic example:

Back in the 1970s, the CDC recommendation for referral was

25 mcg/dL.19 In 1981, a decision analysis calculated a threshold for

an ROC for a lead test at 35 mcg/dL.20 The threshold today is 5.21

The changes in the cutoff reflect research on the long‐term

neurocognitive changes, including what level of such changes is

acceptable. While the cutoff may be expressed as a percentile (today's

“97.5%th percentile,” justifying the 5 mcg/dL cutoff21), the reasoning

for this level is left implicit (Figure 2).

As an example of determining a risk‐based rule, see Figure 3.

Figure 3 shows how the calculation of expected value (utility) for

all possible values of risk suggests when different strategies are

recommended by the model. Thus, the same model can give different

recommendations, based on local values of key parameters, like base

risk of levels above the reference level.

The third type of threshold is the cost‐effectiveness threshold,

required for the meta‐decision. The measure of cost‐effectiveness,

the incremental cost‐effectiveness ratio (ICER), is compared with a

maximum willingness to pay, the threshold for this decision problem.24

These thresholds are derived from decision modeling. Decision

analytic modeling presents a particularly appealing framework for

representing knowledge in a LHS KO. Properly designed, a decision

model can represent statistical information at an arbitrary level of

detail, including representation of the analytic approach and potential

biases. Moreover, decision models represent the preferences that are

the basis of setting thresholds. The components of a decision model

are mnemonically encapsulated by the term You SHOULDT: You is

perspective, S, Structure, H, history or who enters the model, O, out-

comes of concern, U, uncertainties, L, list of alternatives or options, D,

desires or tradeoffs, and T, time horizon. (See Supplement.)
FIGURE 2 Threshold model of decision making. The horizontal line
reflects the probability of the outcome driving the decision. The
vertical up arrow, what probability the decision maker holds before
gaining information; the vertical down arrow, the probability after that
information
Decision models establish decision thresholds using expected util-

ity theory, which is predicated on the notion that the preferred option

in a decision problem is the one that offers the highest expected

(weighted average) utility. Utility is a function on the outcomes of

the decision problem that quantifies preferences. Methods for deriv-

ing utilities were first devised by von Neumann and Morgenstern in

1947.25 Working from 5 intuitive axioms of preference under uncer-

tainty, they derived the standard reference gamble that allows the

decision maker to assign any outcome the correct preference value

(or utility) relative to other outcomes. The resulting utilities have the

property described above.

In the intervening decades, numerous methods have been derived

that approximate the standard reference gamble and have better

psychometric properties and lower cognitive burden.26 It has become

conventional to anchor health utility values on 0 (for death) and 1

(for perfect health).27 There have also been a number of standard

utility scales developed to more easily assign “population” utilities to

health states.28,29

To illustrate how a decision model might provide the right frame-

work for constructing and using an LHS KO, we consider a decision

rule to screen children for lead poisoning. The rules says that if a child

has any risk factors for lead poisoning (anemia, siblings with high blood

lead levels, or living in a house build before 1960), s/he should be

tested with a blood lead level. The rule is illustrated by the algorithm

shown in Figure 4.

This decision rule has a great deal more background, which can be

represented by the decision model in Figure 5 as an influence diagram

based on the last published simulation in the literature, but with added

concerns about risk factors for increased blood lead levels.31 The darker

nodes are directly represented in the algorithm. An influence diagram

has nodes representing probabilistic, deterministic, decision, and utility

concerns.32,33 In essence, they are Bayesian belief networks34 with

decision and utility nodes added. They thereby encompass both statis-

tical and decision models.35 The ovals (chance nodes) repres\ent ran-

dom variables. An arc (or edge) directed toward a random variable

indicates another variable on which its probability distribution is condi-

tioned. Thus, blood lead level increases the likelihood of anemia; having

a sibling with a high lead level or a home build before 1960 increases

the probability of an elevated blood lead, and an elevated blood lead

increases the chance of a positive result on a blood lead test.

The rectangular (or decision) node represents the choices from

which the decision maker can select, in this case, screening or not

screening for lead poisoning. An arc entering a decision node indicates

information that will be available at the time the decision is made. The

decision maker knows about the risk factors before making a decision

to screen.

The diamond node is a value node. It represents the value (utility)

for the potential outcomes. Arcs entering this node indicate the vari-

ables that affect the utility. The “treat” node is deterministic. In this

model, it indicates that if the blood lead result is above 5 mcg/dL,

the child will be treated.

Evaluation of the model in Figure 5, as is, will result in the same

decision rule as the algorithm in Figure 4.

However, the model makes explicit all of the reasoning and data

behind the recommendation. The structure of the model makes clear



FIGURE 3 Sensitivity analysis for the lead‐testing problem. Higher values of expected value are preferred to lower values, so the screen‐and‐test
strategy (△) is preferred between the 2 blood lead risk thresholds of .0066 and .139 mcg/dL. To the left of that interval, the do‐nothing strategy (○)
is preferred, and to the right, the test strategy (□) is preferred. In 1994, the general US probability was .26,22 to the right of the interval, so “test”
was preferred (and indeed recommended). In the case of Flint, MI, the strategy of screen and test had the highest expected value before and after
the water switch.23 The value of spending resources to get a better estimate of the probability of a lead value between 5 and 10 mcg/dL can is
related to the distance between the best and second‐best strategies, wherever the locale's current estimate lies on the x‐axis
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how the problem was conceptualized and the probability distributions

in each of the chance nodes. Moreover, the statistical methods for

deriving the distributions, including confidence limits and corrections

for biases, can be represented with additional nodes.30 The values

(utilities) chosen by the KO creators are made explicit

A KO that is presented in this kind of detail can be evaluated and

adjusted by users. For example, the prior probability of an elevated

blood lead level can vary dramatically from 1 location to another.

Value judgments on the utilities of outcomes may vary from place

to place.

Elicitation or assessment of preferences required to localize a

model can be done qualitatively or quantitatively. Qualitative

preferences can be used in the context of sensitivity analysis (see

below). Quantitative preferences can be assessed in many different

ways, such as standard gambles36 or multiattribute assessments,37

both of which are based on formal theories of preference.38 The

analytic hierarchical process39 and conjoint analysis40 are examples

of methods used that are not tied to an axiomatic basis, but work

well enough.
FIGURE 4 An algorithm depicting a decision rule for blood lead
screening. If a child has any risk factors for lead poisoning shown, s/
he should be tested with a blood lead level. A rule like this is easily
implemented in all EHR‐based CDSSs
2.4 | LHS models shall provide explanation

“Explanation” covers a wide scope: justification, provenance, and why

the model came up with the answer it did in a particular case. Models

“justify” themselves in their evidential rigor. Provenance affirms the

sources of the data41; we need the equivalent for models. Justification

and provenance that provide transparency are generally identified in

static meta‐data.42 Answering why a model came up in a particular

case requires dynamic computation. In the early days of medical

expert systems, we learned both that clinicians wanted explanation43

but rarely sought it out (eg, 5 uses of Infobuttons per user per

month44), at least in decision support transactions. With complex

models, we are finding that clinicians indeed want an explanation of

sorts. For instance, Austrian and colleagues provide an interface for

sepsis surveillance that indicates with red (vs black) font color which

of the patient's finding triggered the alert.45 Their override rate

was only 3.7%, vastly lower than the typical rate of 49% to 96%.46

Showing what data lead to which results constitutes a modern form

of explanation. Decision models in general, and influence diagrams in

particular, can generate such explanations.47
2.5 | LHS models shall enable local monitoring

Interventions in complex adaptive systems lead to unpredictable

results.48 Only with monitoring will those responsible for the health

system know whether the intervention is working and the level and

types of harms resulting from the new intervention. Yet monitoring

brings its own complications. Take the example of risk‐based pediatric

lead screening. If the health system decides to implement such

screening, then any child not meeting the explicit risk profile (or risk

threshold) will not be screened. Monitoring only the blood lead levels

available from the clinical lab system means that clinical leaders will no

longer be monitoring the entire population of children, just the

population of those who screen positive. To assess whether those

screening negative are indeed below threshold requires a separate



FIGURE 5 Example influence diagram for deciding whether to test a child, or children in general, for lead poisoning. At the point of the decision,
whether to test blood lead, the decision maker knows the patient's risk factors (anemia, siblings with high lead level themselves, and whether their
home was built before 1960). These risk factors have a probabilistic impact on the actual blood lead level, which is not observed, but whose
probabilistic relationship (sensitivity, specificity) to blood lead test result is known. If the measured blood level is above a cutoff (not shown), then
treatment occurs certainty (deterministically). The value (utility) to the patient will depend on what the actual blood lead level was, as well as the
effectiveness of treatment; this value results from neurological sequelae and costs. The you SHOULDT components are labeled. (See supplement
for details)

FIGURE 6 The knowledge artifact localization cycle
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surveillance strategy. Yet, if the clinical leaders are not aware of this

skew brought about by the intervention of risk‐based screening, they

will have a biased understanding of their population.

Figure 6 summarizes the desiderata to date—the knowledge arti-

fact localization cycle. The figure makes clear that the decision model

is where localization should occur; it is at this level that local experi-

ence and opinion, as well as local regard for the scientific literature

and available remote data, such as registries or public health data,

should be incorporated and integrated. With probabilities and utilities

specified, the mathematical cranks of utility maximization, sensitivity

analysis, and value of information49 can be turned: Thresholds are

determined, and the local version of the knowledge artifact is gener-

ated—an artifact assured to be consistent with all the knowledge

supplied. That artifact may be turned into decision support—rules,

dashboard, guidelines, and other knowledge widgets.50 In the course

of use, data are generated into the data repository (eg, enterprise data

warehouse), which data are then used for monitoring. If the thresholds

do not change, then the knowledge artifact may be simply updated; if

thresholds do change, the knowledge artifact may need to be regener-

ated. The notion that the decision model is the locus of knowledge

maintenance appears in Chapman's and Sonnenberg's monograph.51

The decision model can itself be used to determine which param-

eters need to be monitored: Calculating the value of information for
each parameter in the model points to the parameter having the

biggest influence on whether the institution is below or above

the threshold for action.52,53
2.6 | LHS models shall enable debiasing

The notion of biases in monitoring raises the much larger concern for

bias in general. Epidemiologists have spent decades articulating differ-

ent types of bias that analysis of observational (and other) data must

take into account. For instance, Sander Greenland has spent gathered

his quantitative models in a recent chapter of his in a definitive epide-

miology text book.54 These biases generally fall into 4 types: selection,

information, confounder, and execution of intervention.55 For obser-

vational data, like EHR data, authors have identified at least 16 biases.

Figure 7 attempts to place where these biases operate, along a spine

of successive dependencies of patient populations and cohorts. A

17th bias, semantic uncertainty, arises because of variability in the

database query uses.

The monitoring bias identified under Monitoring is the inverse of

sick quitter bias: Instead of losing the experience of those who drop

out of observation because of the progression of their surveilled

illness, it is the “well” patients who are lost to observation. (See

Supplement for an estimate of this bias.)



FIGURE 7 Bayesian meta‐model for debiasing. Specific biases come from Delgado‐Rodriguez56
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Lehmann and Shachter showed how some of these biases may be

represented in Bayesian networks at 2 levels: qualitatively and quanti-

tatively.57 The qualitative representation is based on the location of

bias sources that act at the level at which they appear: population,

sample, observed, and reported.

Bayesian networks can also represent the quantitative model.

Over the past 20 years, generalized software (OpenBUGs,58 BRugs,59

Stan60) have been developed that, given a coherent model, along with

prior distributions and data, can provide estimates and credible sets

(Bayesian confidence intervals) for the parameters in the model,

parameters representing both the domain concerns (eg, relationship

between blood lead levels and risk factors) and bias concerns

(eg, crossovers).

To date, no LHS models have taken such models into account in

their analyses or in their dissemination. The recent attention to the

informatics of data quality points out the types of errors, if not

biases, resulting from the EHR environment.61 However, these data

quality issues are articulated as issues that need to be assessed,

not as biases generated by specific observation and documentation

mechanisms.62-64
2.7 | LHS models shall account for generalizability

To apply an LHS knowledge artifact at a new institution means that

the institution must assess whether or how that knowledge applies

locally. This concern is not limited to issues of population similarity,

but to larger range of sociotechnical factors that speak to the meta‐

decision: Are the treatments involved available? Can the institution

apply them the same way? What barriers would prevent successful

implementation?62-64

The LHS KO must, “out of the box,” tell the prospective new

locale how the “knowledge” contained in the KO should be modified,

taking local realities into account. The method by which this modifica-

tion is performed is the essence of generalizability.

In controlled studies, the goal of generalizability is reflected in the

appeal to some sort of sampling or other strategy to make the study

population as “representative” of the target population as possible.

In LHSs, explicit attention to selection biases must be made. There

are 2 approaches to addressing this generalizability concern. One is

through statistical modeling.57
Figure 7's meta‐model depicts the levels of concern. The other is

more heuristic, calculating the “distance” between the studied popula-

tion and the target population. Some researchers have worked out

heuristics for calculating this distance, and using that distance to

change the implications of results, with GIST 2.0 as an example.65
2.8 | LHS models shall account for semantic
uncertainty

Semantic interoperability has been a goal of much work in informat-

ics.66 However, analysts are quite aware that applying vocabulary or

conceptual standards to their data may amount to stuffing that data

into a Procrustean bed,67 chopping off or stretching out the intention

of the data. Ideally, we would have an epistemic confidence interval,

whose uncertainty would communicate uncertainty, not because of

sampling, but because of the semantics‐related modeling decisions

made along the way, and would communicate the corners cut in so

doing. Sensitivity analysis makes sense as an approach to accomplish

this communication, but has not been used much, to date.
2.9 | LHS models shall be findable

Findability is the first of the FAIR data principles.68 One would imagine

that this desideratum would precede the rest: After all, before

assessing discrimination, calibration, and the rest, one needs the model

in hand.

We left this desideratum for last, because we now know the

elements we need to “find” the appropriate model: As statistical

models, they require ontological concepts for parameters, statistical

distributions, relationships among the parameters, the types of

outcomes, and the intention of the model at both statistical level

and computational levels. As epidemiological models, they require

ontological concepts for the design of the study leading to the artifact,

for the biases represented, and for the qualitative and quantitative

“hooks” for biases not explicitly included. As decision models, they

require ontological concepts for attributes of utility. For generalizabil-

ity, they require ontological concepts important in determining the

“distance” from the local dataset to the data of the knowledge artifact.

Some currently available ontologies meet some of these needs:

STATO supplies concepts for statistical tests, conditional of



TABLE 1 Desiderata and work needed to be done

Desiderata Development Work to be Done

1. Discrimination Measures that take clinical thresholds
into account73,74

Elicitation and articulation of those
thresholds

Methods for recalculating local
discrimination

2. Local recalibration Application of calibration based on
thresholds17

3. Thresholds and local
preferences

Elicitation, articulation of preferences
Local calculation of thresholds

4. Explanation Deployment

5. Monitoring Choose variables based on value of
information75

6. Debiasing Creation and curation of debiasing
models

Application of debiasing models

7. Generalizability Calculation of distance65

Adding to the knowledge artifact the
meta‐data required to choose the
calculation

8. Semantic uncertainty Derivation of the epistemic confidence
interval

9. Findable Articulation of the full ontology required
to index a knowledge artifact at all its
multiple levels

Tagging KO with that ontology

10. Other commandments as
necessary and proper

Continuous monitoring and improvement
of these desiderata
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application, probability distributions, and experimental designs.69 The

OCRe ontology addresses study designs,70 and CDISC, study

execution.71
2.10 | LHS models shall enable future properties as
necessary and proper

No listing of desiderata can be complete in this early phase of KO

development and sharing. As such, we reserve an “elastic clause” to

enable additions as the community gains experience.72 Two issues

not already addressed, for instance, is that models should explain

how their components (existing or new ones) should be integrated

together and that their entry in the shared library should accrete the

experience of those who have used the models.
3 | DISCUSSION

In this commentary, we have developed 10 desiderata for sharing

KOs based on LHS experience, and aimed at reapplication in

other locations.

Table 1 lists the desiderata and suggests works that needs to be

done, either research or development.

We hypothesize that attention to these desiderata would lead to

more correct local reapplications of LHS KO. The TRIPOD statement

for publishing reports about predictive models gets closer to what

we intend, but their focus does not address dissemination for deploy-

ment in health systems outside the locale of creation.42 However, it is

the presumption of evidence collection through rigorous research that
does not obtain, necessarily, in the enthusiasm of learning health

systems to share the models derived from their local data. It is just

the interstices between evidence‐based prediction rules and natural

experiments of LHSs that these desiderata are intended to fill.

We are aware that our discussion of influence diagrams has been

predicated on KOs as statistical models. That presumption may not

apply in the case of machine learning or similar methods. However,

the desiderata still do, and the meta‐decision remains coherently

modeled as a decision model. We are also aware that the local

activities suggested here require workforce competencies probably

beyond what local institutions host currently. Whether this lack of

competence means that staff must upskill or whether consulting

services are required, in either case, such skills are required for

safe and effective reuse of KO. Yet, if such skills are made

available, and if the research and development listed above are

carried through, we can look forward to true learning among LHS as

they share their knowledge.

Influence diagrams can be used in 3 ways: First, they can be the

primary knowledge representation of the KO, and second, they can

serve as a meta‐model for the use of the KO, enabling 2 decisions:

what action to take in the individual case and how to use the KO at

the population level. Our treatment has addressed all of these. While

our comments have been addressed primarily at those implementing

and deploying knowledge objects, our concerns are predicated on

the impact use of these objects has on the lives of the patients to

whom these objects are applied.
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