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Abstract

Background

The course of coronavirus disease 2019 (COVID-19) seems to be aggravated by air pollu-

tion, and some industrial chemicals, such as the perfluorinated alkylate substances

(PFASs), are immunotoxic and may contribute to an association with disease severity.

Methods

From Danish biobanks, we obtained plasma samples from 323 subjects aged 30–70 years

with known SARS-CoV-2 infection. The PFAS concentrations measured at the background

exposures included five PFASs known to be immunotoxic. Register data was obtained to

classify disease status, other health information, and demographic variables. We used

ordered logistic regression analyses to determine associations between PFAS concentra-

tions and disease outcome.

Results

Plasma-PFAS concentrations were higher in males, in subjects with Western European

background, and tended to increase with age, but were not associated with the presence of

chronic disease. Of the study population, 108 (33%) had not been hospitalized, and of those

hospitalized, 53 (16%) had been in intensive care or were deceased. Among the five PFASs

considered, perfluorobutanoic acid (PFBA) showed an unadjusted odds ratio (OR) of 2.19

(95% confidence interval, CI, 1.39–3.46) for increasing severities of the disease. Among

those hospitalized, the fully adjusted OR for getting into intensive care or expiring was 5.18

(1.29, 20.72) when based on plasma samples obtained at the time of diagnosis or up to one

week before.
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Conclusions

Measures of individual exposures to immunotoxic PFASs included short-chain PFBA known

to accumulate in the lungs. Elevated plasma-PFBA concentrations were associated with an

increased risk of a more severe course of COVID-19. Given the low background exposure

levels in this study, the role of exposure to PFASs in COVID-19 needs to be ascertained in

populations with elevated exposures.

Introduction

Elevated exposure to community pollution is associated with a worsened outcome of coronavi-

rus disease 2019 (COVID-19) [1–4]. While replicated in different populations, this evidence

relies solely on ecological study designs of air pollution without measures of individual expo-

sures. Several environmental chemicals are known to suppress immune functions [5, 6] and

worsen the course of infections [7]. Of particular relevance, the perfluorinated alkylate sub-

stances (PFASs) are persistent, globally disseminated chemicals known to be immunotoxic [8].

Thus, elevated blood-PFAS concentrations are associated with lower antibody responses to

vaccinations in children [9] and in adults [10]. Also, infectious disease occurs more frequently

in children with elevated exposure [11–13]. In support of the potential impact of these sub-

stances, a modeling study suggested that endocrine disruptors, including major PFASs, may

interfere with proteins involved in critical pathways, such as IL-17, associated with severe clini-

cal outcomes of the COVID-19 infection [14].

Substantial differences occur in the clinical course of the disease, and the reasons for this

variability are only partially known [15, 16]. As a possible contributor, a deficient antibody

response may be an important contributor to a more severe clinical course of the infection

[17], as also suggested by the poorer prognosis in patients with bacterial co-infection [18]. The

most serious clinical consequences are associated with male sex, older age, and the presence of

co-morbidities, including obesity and diabetes [19–23]. In parallel, serum-PFAS concentra-

tions are higher in men than in women and also tend to increase with age [8, 24]. Because ele-

vated PFAS exposure has been linked to both obesity and diabetes [25, 26], these substances

may potentially affect the progression of COVID-19 directly as well as indirectly.

Several PFASs can be reliably determined in human blood samples, where most of them

show long biological half-lives of 2–3 years or more [27], thereby providing a measure of

cumulated exposure. Still, blood concentrations may not accurately reflect the retention in spe-

cific organs, e.g., the short-chain perfluorobutanoic acid (PFBA), which accumulates in the

lungs [28].

To assess if elevated background exposures to immunotoxic PFASs are associated with the

clinical course of the infection, a study was undertaken in Denmark to determine individual

plasma-PFAS concentrations in adults confirmed to be infected with severe acute respiratory

syndrome coronavirus 2 (SARS-CoV-2) and examine the association with the severity of

COVID-19 development.

Methods

Population

Plasma samples for PFAS analysis were obtained from medical biobanks that store excess

material from diagnostic tests, viz., the Danish National Biobank at the Statens Serum Institut
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(SSI) and Odense University Hospital (OUH). Eligible subjects were identified from the Dan-

ish cohort of COVID-19 patients [29]. All cases were tested by quantitative polymerase-chain-

reaction (PCR) and had a positive response for SARS-CoV-2 infection, as recorded in the Dan-

ish Microbiology Database (MiBa), a national database that contains both positive and nega-

tive results of the majority of microbiology testing done in Denmark [30].

The study included non-pregnant subjects aged 30–70 years at the time of the positive test

by early March 2020 through early May 2020, provided that the biobanks could provide a

plasma sample of 0.15 mL. Although most blood samples were obtained soon after SARS-

CoV-2 infection was identified, we also included subjects, mainly those not hospitalized,

whose plasma in the SSI biobank had been obtained up to 28 months earlier, i.e., less than a

half-life for major PFASs [27]. We calculated the time interval from blood sampling to the

time of diagnosis, of relevance mainly for non-hospitalized subjects. In those hospitalized, we

computed the interval from admission to the time of sampling the plasma used for PFAS

analysis.

All samples were coded, and the Personal Identification Number for each subject was sepa-

rately transferred to the Danish Health Data Authority (FSEID-00005000) to allow linkage to

demographic and medical information from the Danish Civil Registration System (CRS) [31],

the Danish National Register of Patients (DNRP) [32], and the National Health Insurance Ser-

vice Register [33]. We used the following classification of disease status: no hospital admission

and completed infection within 14 days of testing positive, hospitalization with COVID-19 up

to, or above, 14 days, admission to intensive care unit, or death. Presence of chronic disease

was based on the following diagnoses in the register data: diabetes type I and II (ICD10 codes

E10-E11), malignant cancers (C00-C99), cerebrovascular and coronary disease (I00-I99), pul-

monary disease (J00-J99), and obesity (E66-E68). Renal disease (N0-N2) was treated as a sepa-

rate covariate due to the possible impact of kidney function on plasma-PFAS concentrations

[34]. The linked data set was analyzed via secure server without access to information on the

Personal Identification Numbers of the subjects involved. For confidentiality reasons, all tabu-

lar information had to be based on at least five subjects.

The protocol was approved by the Regional Committee on Health Research Ethics (S-

20200064), which also allowed the project to proceed without seeking informed consent from

the subjects identified for study participation. Additional approvals were obtained from the

Danish Data Protection Agency as well as institutional and regional authorities for the transfer

blood samples and linkage of subject information to the PFAS analyses, while protecting

confidentiality.

Chemical analysis

The plasma samples were analyzed in successive series for PFAS concentrations, including

PFBA, perfluorooctane sulfonate (PFOS), perfluorooctanoate (PFOA), perfluorohexane sulfo-

nate (PFHxS), and perfluoronanoate (PFNA), which are known from previous studies to be

associated with immunotoxicity in humans [8, 35, 36]. We also determined plasma concentra-

tions of PFASs so far not linked to immunotoxicity, i.e., short-chain perfluorobutanesulfonate

(PFBS), perfluoroheptanesulfonate (PFHpS), perfluorodecanoate (PFDA), and perfluorounde-

canoate (PFUdA) (results shown in the Supporting information). We used online solid-phase

extraction followed by liquid chromatography and triple quadropole mass spectrometry (LC–

MS/MS) at the University of Southern Denmark [37]. Accuracy of the analysis was ensured by

inclusion of quality control (QC) samples comprising proficiency test specimens from the

HBM4EU program organized by Interlaboratory Comparison Investigations (ICI) and Exter-

nal Quality Assurance Schemes (EQUAS). All results of the QC samples were within the
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acceptance range. The between-batch CVs for the actual series ranged between 3% and 14%

for all compounds. Both PFOS and PFOA were quantified in all blood samples, and all PFASs

were detectable in at least 30% of the samples. Results below the limit of detection (LOD, 0.03

ng/ml) were replaced by LOD/2 before uploading to the secure server at the Danish Health

Data Authority, where linkage to other information took place.

Statistical analysis

Correlations between PFASs were examined using Spearman’s correlation coefficient. The

PFAS concentrations were compared between demographic groups (age in years, sex, national

origin, place of inclusion), presence of comorbidities, and number of days between blood sam-

pling and diagnosis, and differences were tested using Kruskal-Wallis and Wilcoxon rank-sum

test. Furthermore, associations of COVID-19 severity with age were tested using Kruskal-Wal-

lis test, and relations with each of the variables sex, national origin, presence of comorbidities,

and number of days between blood sampling and diagnosis were tested using χ2 test. Associa-

tions between place of inclusion and COVID-19 severity could not be displayed and tested, as

some cells contained less than five individuals.

Because COVID-19 severity was categorized, the association between the continuous

plasma-PFAS concentrations and COVID-19 severity was tested in ordered logistic regression

models. More than half the short-chain PFAS concentrations were below the LOD, and they

were therefore treated as binary variables (below/above LOD). Potential confounding variables

were identified based on a priori knowledge as summarized above and included age (continu-

ous, years) sex, and national origin (Western European yes/no). Among those of Western

European national origin, 94% were Danish, while most of the participants of non-Western

European national origin were born in or of parents from Somalia (20% of the sample), Paki-

stan (13%), Iraq (12%), Morocco (11%), Eastern Europe (9%), and Turkey (9%). Kidney dis-

ease may affect PFAS elimination, and PFAS exposure could potentially increase the risk of

certain other chronic diseases that may affect COVID-19 severity [8]. Kidney disease (yes/no)

and other chronic disease (yes/no) were thus considered potential confounders to allow esti-

mation of the direct, rather than the total effect of plasma-PFAS concentrations. Due to

changes in PFAS exposures over time, the timing of blood sampling was included as covariate.

Further, due to the short elimination half-life for short-chain PFASs [8], we carried out sensi-

tivity analyses excluding plasma samples obtained more than one week before or after diagno-

sis. We also adjusted for the place of inclusion (OUH/SSI) but, under the circumstances of this

study, detailed data on socioeconomic status (e.g., income, education or labor market affilia-

tion) were unavailable for this study. Dichotomous analyses comparing severities of the disease

were performed in logistic regression models.

The default assumption of dose-response linearity was tested by including PFAS squared

along with PFAS in the regression models. No significant (p<0.05) deviation from linearity

was found. The proportional odds assumption in the ordered logistic regression was tested by

a likelihood-ratio test using the Stata omodel package. In a model adjusting for age, place of

inclusion, and timing of blood sampling, the hypothesis of proportional odds was accepted

(p>0.05) in all analyses. Odds ratios (ORs) between groups of COVID-19 severity were there-

fore calculated using logistic regression models.

Results

The predominant PFAS in plasma was PFOS, with an average concentration of 6.1 ng/mL

(median, 4.7 ng/L), approximately equally distributed between the normal and branched iso-

mers. Other PFASs quantified showed averages below 1 ng/mL. In a sensitivity analysis, one
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extreme PFHxS outlier at 12.9 ng/mL was omitted. The PFAS concentrations correlated well,

with Spearman correlation coefficients generally above 0.5 (Table 1 and S1 Table), except for

short-chained PFAS. PFOS on average contributed 69% of the total PFAS concentrations by

weight and correlated particularly well with most other PFASs quantified.

In general, serum-PFAS concentrations were higher at older ages, in men, and among those

of Western European origin. Although the presence of chronic disease did not seem to be asso-

ciated with PFAS, the plasma concentrations appeared to be higher in the presence of kidney

disease (Table 2 and S2 Table).

In the study population, males, older subjects, and those with chronic disease, were more

frequently represented among subjects with severe COVID-19, while there was no difference

in regard to national origin for disease severity (Table 3). The PFAS-associations with disease

severity were similar in Western Europeans and subjects with other backgrounds (P> 0.2 for

population differences).

A more severe disease outcome was associated with higher plasma-PFBA concentrations,

also after adjustment for all covariates (Table 4 and S4 Table). None of the other PFASs showed

a similar tendency. If leaving out presence of chronic disease as a non-significant predictor,

the adjusted OR for PFBA was 1.77 (95% CI, 1.09, 2.87). More importantly, when excluding

samples collected earlier than one week before the time of diagnosis (148 samples), or more

than one week later (5 samples), stronger ORs emerged for PFBA (Table 4). Counter to the a
priori hypothesis, some PFASs, including PFHxS, seemed associated with a lower risk, but this

tendency was weakened when relying on plasma samples collected in close connection to the

diagnosis of corona infection (Table 4 and S3 Table).

In dichotomous analyses comparing severities of the disease (S4 Table), detectable PFBA in

plasma also showed a clear association with a more severe clinical course of the disease, most

pronounced for odds between hospitalization and admission to intensive care unit/death,

especially when based on plasma samples obtained at the time of diagnosis or up to one week

before where the adjusted OR was 5.18 (1.29, 20.72). No such tendency was seen for the other

PFASs detected (S4 Table). The association between PFBA and disease severity was similar for

men and women (Fig 1).

Discussion

The present study aimed at determining the potential aggravation of COVID-19 associated

with elevated exposures to PFASs. Several of these substances are known immunotoxicants in

laboratory animals [35] and in humans [8, 9]. In addition to immunotoxicity, major PFASs

can potentially interfere with major pathways that are predictive of a serious clinical outcome

of the infection [14]. An association of PFAS exposure with disease severity therefore appears

biologically plausible.

Among the PFASs, presence of detectable PFBA in plasma showed the strongest positive

association with the severity of the disease. This finding may at first seem surprising, as this

Table 1. Spearman’s correlation coefficients for pairwise comparisons of detectable PFASs in plasma from 323

subjects included in the study.

PFBA PFHxS PFOA PFOS

PFHxS 0.0520

PFOA 0.0617 0.7072

PFOS 0.0591 0.8406 0.7248

PFNA 0.0127 0.7133 0.7759 0.8406

https://doi.org/10.1371/journal.pone.0244815.t001
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PFAS has a short elimination half-life in the blood and is often considered of less importance

to health [27]. However, in tissue samples from autopsies, PFBA is the only PFAS that is sub-

stantially accumulated in the lungs [28]. Given the persistence of the PFASs in general, the

unique retention of PFBA in lung tissue may offer a clue to interpreting the findings in this

study.

Some odds ratios for PFBA were weakened after adjustment for covariates. However,

adjustment for all covariates may result in over-adjustment bias. Thus, older age and male sex

are known to be strong predictors of higher blood-PFAS concentrations, and simple adjust-

ment for these factors could potentially result in a bias toward the null. As PFAS exposure has

been linked to important comorbidities, such as diabetes and obesity [25, 26], both of which

Table 2. Median plasma-PFAS concentrations (25th, 75th percentiles) in ng/mL by population characteristics.

PFAS (ng/mL) median (25th,75th percentile)

Population characteristics n (%) PFBA PFHXS PFOA PFOS PFNA

Total 323 (100) <LOD (<LOD, 0.04) 0.48 (0.28, 0.71) 0.77 (0.43, 1.18) 4.86 (2.85, 8.29) 0.38 (0.23, 0.59)

Age (years)

30–39 37 (11) <LOD (<LOD, 0.03) 0.32 (0.19, 0.46) 0.59 (0.43, 0.86) 3.30 (1.89, 5.27) 0.29 (0.21, 0.43)

40–49 64 (20) <LOD (<LOD, 0.03) 0.35 (0.15, 0.57) 0.58 (0.35, 0.89) 3.11 (2.24, 5.06) 0.27 (0.19, 0.39)

50–59 106 (33) <LOD (<LOD, <LOD) 0.50 (0.31, 0.75) 0.83 (0.43, 1.18) 5.41 (2.79, 8.84) 0.40 (0.24, 0.61)

60–70 116 (36) <LOD (<LOD, 0.05) 0.56 (0.39, 0.89) 0.97 (0.56, 1.51) 6.11 (3.83, 9.60) 0.48 (0.30, 0.70)

p-value a 0.008 <0.001 <0.001 <0.001 <0.001

Sex

Male 174 (54) <LOD (<LOD, 0.04) 0.59 (0.40, 0.87) 0.81 (0.51, 1.26) 5.96 (3.65, 10.17) 0.40 (0.25, 0.61)

Female 149 (46) <LOD (<LOD, 0.04) 0.35 (0.17, 0.52) 0.70 (0.40, 1.04) 3.43 (2.06, 5.66) 0.36 (0.22, 0.56)

p-value b 0.713 <0.001 0.011 <0.001 0.131

Kidney disease

yes 34 (11) <LOD (<LOD, 0.06) 0.55 (0.34, 0.77) 0.91 (0.54, 1.46) 5.60 (3.08, 8.38) 0.50 (0.24, 0.67)

no 289 (89) <LOD (<LOD, 0.03) 0.47 (0.28, 0.71) 0.76 (0.43, 1.15) 4.76 (2.82, 8.10) 0.36 (0.23, 0.57)

p-value b 0.040 0.466 0.065 0.489 0.141

Other chronic disease

Yes 220(68) <LOD (<LOD, 0.04) 0.47 (0.28, 0.68) 0.71 (0.42, 1.15) 4.70 (2.87, 7.99) 0.38 (0.23, 0.57)

No 103 (32) <LOD (<LOD, 0.03) 0.51 (0.28, 0.76) 0.87 (0.47, 1.23) 5.35 (2.72, 8.41) 0.41 (0.23, 0.65)

p-value b 0.075 0.314 0.124 0.850 0.407

National origin

Western Europe 224 (69) <LOD (<LOD, 0.04) 0.52 (0.35, 0.76) 0.91 (0.60, 1.29) 5.61 (3.40, 9.18) 0.43 (0.29, 0.64)

Other 99 (31) <LOD (<LOD, 0.04) 0.34 (0.16, 0.57) 0.44 (0.31, 0.80) 2.86 (1.61, 5.13) 0.23 (0.16, 0.36)

p-value b 0.552 <0.001 <0.001 <0.001 <0.001

Place of inclusion

Odense 48 (15) <LOD (<LOD, 0.06) 0.45 (0.32, 0.69) 0.67 (0.42, 0.95) 4.67 (3.29, 8.09) 0.36 (0.24, 0.45)

Copenhagen 275 (85) <LOD (<LOD, 0.03) 0.48 (0.28, 0.72) 0.79 (0.44, 1.20) 4.89 (2.72, 8.31) 0.39 (0.23, 0.62)

p-value b 0.003 0.967 0.203 0.697 0.299

Timing of blood sampling

After diagnosis—1 week before 193 (60) <LOD (<LOD, 0.04) 0.48 (0.30, 0.71) 0.70 (0.40, 1.11) 4.63 (2.83, 7.65) 0.34 (0.23, 0.56)

>1 week—1 year before 46 (14) <LOD (<LOD, 0.03) 0.45 (0.21, 0.66) 0.82 (0.38, 1.35) 4.81 (2.36, 8.62) 0.38 (0.20, 0.65)

> 1year before diagnosis 84 (26) <LOD (<LOD, 0.03) 0.50 (0.30, 0.72) 0.87 (0.57, 1.22) 5.48 (3.10, 10.28) 0.45 (0.28, 0.65)

p-value a 0.185 0.756 0.085 0.209 0.053

a Variables with more than two categories tested using Kruskal-Wallis rank test.
b Binary variables tested using Wilcoxon rank-sum test.

https://doi.org/10.1371/journal.pone.0244815.t002
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may exacerbate the virus infection, adjustment for chronic disease may also not be justified.

Leaving it out slightly strengthened the PFBA association with the disease severity. The stron-

gest associations for PFBA, but not for other PFASs, appeared when focusing on the most rep-

resentative blood samples obtained close to the time of diagnosis.

Table 3. COVID-19 severity by population characteristics.

COVID-19 severity

Population characteristics No. of subjects No hospitalization Hospitalization Intensive care unit and/or deceased

Total No. of subjects (%) 323 (100) 108 (33) 162 (50) 53 (16)

Age (years) median (25th,75th percentile) 55 (46, 62) 49 (41, 57) 57 (51, 63) 62 (53, 67)

P value a <0.001

Sex

Male, n (%) 174 (100) 44 (25) 94 (54) 36 (21)

Female, n (%) 149 (100) 64 (43) 68 (46) 17 (11)

P value b 0.002

Kidney disease

Yes, n (%) 34 (11) 7 (21) 13 (38) 14 (41)

No, n (%) 289 (89) 101 (35) 149 (52) 39 (13)

P value b <0.001

Other chronic disease

Yes, n (%) 220 (100) 54 (25) 119 (54) 47 (21)

No, n (%) 103 (100) 54 (52) 43 (42) 6 (6)

P value b <0.001

National origin

Western Europe, n (%) 224 (100) 76 (34) 113 (50) 35 (16)

Other, n (%) 99 (100) 32 (32) 49 (49) 18 (18)

P value b 0.844

Days between blood sampling and diagnosis

median (25th,75th percentile) 0 (-1, 393) 335 (22.5, 639.5) 0 (-1, 0) 0 (-2, 1)

P value a <0.001

a Associations tested using Kruskal-Wallis rank test.
b Associations tested using Pearson’s chi-squared test.

https://doi.org/10.1371/journal.pone.0244815.t003

Table 4. Ordered logistic regression OR of increased Covid-19 severity for an increase by 1 ng/mL in plasma-PFAS concentrations.

PFAS No. of subjects OR (95% CI) No. of subjects OR (95% CI)

Crude Adjusted for main covariatesa Exposure at time of diagnosisa,b

PFBA (>LOD/<LOD) 104/219 2.19 (1.39, 3.46) 1.57 (0.96, 2.58) 61/109 2.10 (1.02, 4.33)

PFHxS (ng/mL) 323 0.85 (0.63, 1.15) 0.52 (0.29, 0.91) 170 0.52 (0.24, 1.14)

PFHxS c (ng/mL) 322 1.00 (0.62, 1.61) 0.52 (0.29, 0.93) 169 0.53 (0.22, 1.27)

PFOA (ng/mL) 323 0.99 (0.72, 1.36) 0.83 (0.57, 1.20) 170 0.62 (0.36, 1.08)

PFOS (ng/mL) 323 1.00 (0.96, 1.04) 0.97 (0.92, 1.02) 170 0.98 (0.89, 1.07)

PFNA (ng/mL) 323 1.18 (0.67, 2.09) 1.04 (0.54, 2.02) 170 0.73 (0.25, 2.11)

a Adjusted for age, sex, kidney disease, other chronic disease, national origin, place of testing, and days between blood sampling and diagnosis.
b Excluding individuals who had blood sampled more than one week before or after diagnosis.
c PFHxS >10 ng/mL excluded.

https://doi.org/10.1371/journal.pone.0244815.t004
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An additional consideration is that the present study relates to low background exposure

levels, in comparison with PFAS concentrations to findings in, e.g., U.S. adults [38]. Given the

wide occurrence of highly contaminated drinking water in other countries [39], the present

study results should not be interpreted as evidence that most PFASs do not contribute to a

worsened clinical course of COVID-19.

The results for PFBA in this study appear to parallel the findings in regard to other environ-

mental toxicants, viz., air pollutants [1–4] and suggest a need to ascertain the impact of rele-

vant occupational or environmental exposures on COVID-19 severity. Of note, the evidence

on air pollution relies solely on ecological study designs without measures of individual levels

of exposure, while the present study benefitted from measurements of plasma-PFAS concen-

trations of all study subjects.

In regard to limitations, the study population may not be representative of corona-positive

subjects, as inclusion in the study depended solely on the existence of plasma from diagnostic

blood samples at the participating hospitals. Thus, subjects with chronic disease or more severe

COVID-19 likely had more frequent hospital visits or longer admissions and thereby a greater

chance of having plasma available for inclusion in this study. With a corona-related fatality

rate of Danish blood donors below 70 years of age at 89 per 100,000 infections [40], the

Fig 1. Proportion of plasma samples with detectable PFBA concentrations at different disease severities. Results are shown for 44 men and 64 women

with up to two weeks of hospitalization, 94 men and 68 women with longer hospitalization, and 36 men and 17 women admitted to the intensive care unit

(ICU) or deceased (P = 0.003).

https://doi.org/10.1371/journal.pone.0244815.g001
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presence of 17 deaths in the present material (i.e., against 0.3 deaths expected) confirms that

the blood samples represent a highly selected population. Still, a total of 108 subjects were

known to have been infected, though not hospitalized. In many cases, their plasma had been

stored on previous occasions, and the PFAS concentrations may reflect slightly higher expo-

sures in the recent past [8], which could possibly explain the apparent protective effects of

some PFASs, although adjustment for the time interval since sample collection was included

in the analyses. However, the strongest associations for PFBA, but not for other PFASs, were

seen when excluding samples not obtained in close temporal connection with the infection.

The study population included mostly older subjects who were more frequently male, and a

large proportion of foreign-born subjects and second-generation immigrants (Table 3),

thereby possibly deviating from the background population of corona-infected patients in

Denmark. Still, the results do not suggest major biases affecting PFAS exposure and its associa-

tion with COVID-19 outcomes.

Among immigrants, adverse associations appeared slightly stronger, also after adjustments,

in accordance with national origin, perhaps as related to demographic or social factors, result-

ing in a greater likelihood also to PFAS-associated aggravation of the infection. Difference in

age, sex, or comorbidities did not explain this tendency, but is in agreement with previous

findings of ethnic differences in vulnerability [41]. However, national origin may be a surro-

gate marker for other factors, such as exposure at work or exposure within crowded house-

holds, as immigrant origin tends to be associated with certain occupations including front-line

workers and living in areas with higher population density [42]. Still, in agreement with higher

PFAS exposure being associated with higher socioeconomic position [43], we found that the

association between PFBA exposure and disease severity was independent of national origin.

Conclusions

Increased plasma-PFBA concentrations were associated with a greater severity of COVID-19

prognosis, and this tendency remained after adjustment for sex, age, comorbidities, national

origin, sampling location and time. Although occurring in fairly low concentrations in plasma,

PFBA is known to accumulate in the lungs. Thus, as immunotoxic substances, the PFASs may

well contribute to the severity of COVID-19. The present findings on a short-chain PFAS at

background exposures suggest a need to ascertain if elevated exposures to environmental

immunotoxicants may worsen the outcome of the SARS-CoV-2 infection.
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