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In Huntington disease (HD) subtle symptoms in patients may occur years or even
decades prior to diagnosis. HD changes at a molecular level may begin as early as
in cells that are non-lineage committed such as stem cells or HD patients induced
pluripotent stem cells (iPSCs) offering opportunity to enhance the understanding of the
HD pathogenesis. In addition, juvenile HD non-linage committed cells were previously
not directly investigated in detail by RNA-seq. In the present manuscript, we define
the early HD and juvenile HD transcriptional alterations using 6 human HD iPS cell
lines from two patients, one with 71 CAGs and one with 109 CAG repeats. We
identified 107 (6 HD lines), 198 (3 HD71Q lines) and 217 (3 HD109Q lines) significantly
dysregulated mRNAs in each comparison group. The analyses showed that many of
dysregulated transcripts in HD109Q iPSC lines are involved in DNA damage response
and apoptosis, such as CCND1, CDKN1A, TP53, BAX, TNFRSF10B, TNFRSF10C,
TNFRSF10D, DDB2, PLCB1, PRKCQ, HSH2D, ZMAT3, PLK2, and RPS27L. Most of
them were identified as downregulated and their proteins are direct interactors with
TP53. HTT probably alters the level of several TP53 interactors influencing apoptosis.
This may lead to accumulation of an excessive number of progenitor cells and potential
disruption of cell differentiation and production of mature neurons. In addition, HTT
effects on cell polarization also demonstrated in the analysis may result in a generation
of incorrect progenitors. Bioinformatics analysis of transcripts dysregulated in HD71Q
iPSC lines showed that several of them act as transcription regulators during the
early multicellular stages of development, such as ZFP57, PIWIL2, HIST1H3C, and
HIST1H2BB. Significant upregulation of most of these transcripts may lead to a global
increase in expression level of genes involved in pathways critical for embryogenesis
and early neural development. In addition, MS analysis revealed altered levels of TP53
and ZFP30 proteins reflecting the functional significance of dysregulated mRNA levels
of these proteins which were associated with apoptosis and DNA binding. Our finding
very well corresponds to the fact that mutation in the HTT gene may cause precocious
neurogenesis and identifies pathways likely disrupted during development.

Keywords: polyglutamine (polyQ), neurodevelopmental disease, iPSC, stem cells, neurodegenerative, Huntington
disease, HD, RNA sequencing
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INTRODUCTION

Huntington disease (HD) is a fatal dominantly inherited
neurodegenerative disorder, caused by expansion of cytosine-
adenine-guanine (CAG) repeats in exon 1 of the huntingtin
(HTT) gene, resulting in elongated polyglutamine tract in
HTT protein (MacDonald et al., 1993). HD symptoms are
characterized by a general lack of coordination, progressive
motor dysfunction accompanied by cognitive decline, psychiatric
disturbances all leading to dementia (Victorson et al., 2014).
The pathology of HD is most extensively localized in the
central nervous system and includes striatal neuronal cell
death followed by atrophy of the cerebral cortex, subcortical
white matter, thalamus, hypothalamus, and other brain regions
(Jimenez-Sanchez et al., 2017). Despite the fact that HD has a
much-delayed clinical onset, subtle symptoms in patients may
occur years or even decades prior to diagnosis. HD symptoms
often aggravate with increasing number of CAG repeats and
number of CAG repeats above 60 may result in disease onset
occurring early in life, before age of 20 or even in childhood
manifesting as juvenile HD (JHD) (Quarrell et al., 2013). Lack
of HTT protein in an embryo is lethal probably because of
HTT essential function in gastrulation (Saudou and Humbert,
2016) and for development of the nervous system, among
others for development of brain corticostriatal pathways (Godin
et al., 2010). Moreover, HTT gene is involved in the regulation
of various biological processes and cellular activities that are
impaired in HD cells, for example, apoptosis, transcription, signal
transduction, vesicle-mediated transport, cytoskeleton assembly,
centrosome formation and mitochondrial activity (Saudou and
Humbert, 2016). In addition, a growing number of evidence
points to HD as a neurodevelopmental disorder (Wiatr et al.,
2018). In such context, the pathogenic function of mutant HTT
in embryonic cells is not fully understood. The molecular HD
changes begin at early cellular stages, even in cells that are not yet
lineage committed such as stem cells. The molecular changes in
the HD iPSC lines included MAPK signaling, increase in SOD1
expression and decreased expression of TP53 (Szlachcic et al.,
2015) and changes of neurodevelopmental pathways (Ring et al.,
2015). To date, high throughput transcriptional profiling focused
on neuronal stem cells derived from HD patient iPSCs and
demonstrated HD dysregulated genes and pathways, connected
with GABA signaling, axonal guidance and calcium influx (HD
iPSC Consortium, 2012, 2017). Until now, the single research
group reported RNA-seq data on undifferentiated human HD
iPSCs with 71 CAG repeats (Ring et al., 2015). However, no
reports compared cells from juvenile patients with different
number of CAG repeats and age of disease onset. A focus on
pluripotent juvenile HD cells with a distinct number of CAG
will be valuable for understanding the earliest events in HD
pathogenesis and their impact on later developmental events and
HD clinical picture. For example, it is unknown if pathways
dysregulated already in stem cells may contribute to cell fate
specification failures in HD.

We aimed here to reveal transcriptional changes in
juvenile HD iPSC lines in order to identify dysregulated
transcripts that may be involved in pathways critical for the

early, neurodevelopmental HD pathogenesis. Therefore, we
investigated the transcriptional profiles of several lines of HD
juvenile iPSC with 71 and 109 CAG repeats using RNA-seq.
We identified commonly dysregulated genes for both HD71Q
and HD109Q iPSC lines and also unique genes dysregulated in
sets HD lines with different CAG repeats. The mRNA profiling
was followed by qRT-PCR validation of several mRNAs and
bioinformatics analyses and also the mass spectrometry assay
of proteins. As a result, we pointed out the involvement of
several dysregulated transcripts and proteins in several biological
processes crucial for proper neurodevelopment. In view of
these results, it can be assumed that the molecular processes
underlying juvenile HD begin as early as in stem cells in initial
stages of embryo development.

MATERIALS AND METHODS

All experiments were conducted in accordance with the relevant
guidelines and established standards.

Human HD iPS Cells Culture
Human episomal HD and control iPSC lines were obtained
from the NINDS Human Genetics Resource Center DNA
and Cell Line Repository1. For the analysis, we used three
clonal HD lines with 71 CAG repeats (ND42228, ND42229,
ND42230; derived from a 20-year-old patient), three juvenile
HD clonal lines with 109 CAG repeats (ND42222, ND42223,
ND42224; derived from a 9-year-old patient) control lines
(two clonal lines with 17/18 (ND41654, ND41658) and one
line with 21 (ND42245) CAG repeats. Human iPSCs were
cultured in chemically defined conditions in Essential 8
medium (Life Technologies) and grown on recombinant human
vitronectin-coated surfaces (VTN-N, Life Technologies). Cells
were passaged using gentle dissociation with 0.5 mM EDTA
in PBS.

RNA Isolation and Assessment
After medium removal, iPS cells were washed once with PBS
and subsequently covered with 1 mL of RNAzol RT RNA
Isolation Reagent (GeneCopoeia, Inc.), scraped and frozen
in −80◦C. Upon thaw, total RNA isolation was performed
according to the manufacturer’s protocol with 75% ethanol,
isopropanol, and RNase-free water. Isolated total RNA was
then treated with TURBO DNase (ambion) and purified with
QIAquick R© Nucleotide Removal Kit (QIAGEN). Each reaction
was performed in PCR probes and contained 10 µg of RNA
sample, 10x TURBO Buffer, RNaseOUT (Invitrogen), DNase
TURBO and RNase-free water. The reaction mix was incubated
in 37◦C for 30 min and transferred to 1.5 ml Eppendorf tubes.
Purification was performed according to the manufacturer’s
protocol. RNA content was measured on NanoDrop. RNA quality
and integrity were validated using capillary electrophoresis (2100
Bioanalyzer, Agilent). Average RNA Integrity Number (RIN) for
all samples was 9.78, where 10 is the highest score.

1https://catalog.coriell.org/1/ninds
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Library Preparation and RNA Sequencing
For RNA-seq, total RNA was extracted from 9 samples, including
3 from control iPSC lines, 3 from clonal iPSC lines with 71 CAG
repeats and 3 from clonal iPSC lines with 109 CAG repeats. RNA
was analyzed with Bioanalyzer 2100 and RNA 6000 Nano kit
(Agilent Technologies, Santa Clara, CA, United States). Libraries
were prepared from 5 µg of total RNA with RIN > 9.3, using
KAPA Stranded mRNA-seq Kit (Kapa Biosystems, Wilmington,
MA, United States) and NEBNext Multiplex Oligos for Illumina
(New England Biolabs, Ipswich, MA, United States). 9 pM-
indexed libraries were sequenced with the use of Illumina
HiSeq2000, rapid run with paired-end 75 bp reads. On average, 65
mln reads were collected per library (Supplementary Figure S1).

RNA-seq Data Statistical Analysis
NGSQCToolkit (v 2.2.3) (Patel and Jain, 2012) was used to
generate quality metrics for assessment of FASTQ input files.
Statistics generated by the above-mentioned tool was used to
generate two charts which show the average quality score on
the base positions for iPSC lines separately in R. Fastq files
were then aligned to the GRCh38.p10 reference genome using
STAR (v 2.5.3a) (Dobin et al., 2013) with default parameters
suggested by QoRTs (v 1.3.0) (Hartley and Mullikin, 2015)
used for genes and exons hits count. After alignment and hits
counting, the differential gene expression was calculated using the
Bioconductor package DESeq2 (v 1.14.1) (Love et al., 2014) and
it consisted mainly of estimation of size factor and dispersion.
The genes with significant differential expression were detected
by DESeq2 pipeline and manually checked in order to find
genes where outliers (automatic outliers detection with replacing
their expression by mean across replicates is recommended for
a larger number of replicates) influenced the mean expression
of replicates. Dysregulated X and Y chromosome genes were
excluded from DESeq2 analysis. After calculation of the
differential expression by DESeq2, the shrinkage of effect size
was performed (function lfcShrink of DESeq2 package). Then,
for the results, the base mean expression against the log2 fold
change (MA plots) were plotted with significant genes marked
in red (plotMA from DESeq2 package). The gene counts were
transformed to the log2 scale and normalized with respect to
the library size (rlog function). Then, the Principal Component
Analysis (PCA) was performed, and a chart was generated
automatically by plotPCA DESeq2 function. For each normalized
gene count for each sample the total mean gene expression was
subtracted and based on the result, the heat map chart was
prepared for manually selected list of genes (pheatmap function
from pheatmap_1.0.10 package). All the RNA-seq data were
uploaded to the GEO repository (accession number GSE124664).

RT-PCR and Quantitative Real Time PCR
Reverse transcription was performed using Maxima H Minus
Reverse Transcriptase (Thermo Fisher) (200U per reaction) on
2 µg of RNA in 20 µl of total reaction according to the
manufacturer’s protocol. For priming a mixture of random
hexamers (25 pmol) and oligo(dT) 18 (25 pmol) was used.
Additionally, RiboLock RNase inhibitor was added to the

reaction mix (20U). Before adding the enzyme and the inhibitor,
templates were denatured in 65◦C for 5 min; after mixing all
reaction reagents reaction was incubated for 10 min at 25◦C
followed by 15 min at 50◦C. Resulting cDNA was further 10
times diluted with nuclease-free water and stored in −20◦C.
RT- controls were included. RT-PCR products from all HD
lines were checked for reference gene (GAPDH) and several
pluripotency markers, including SOX2, NANOG, OCT4 and
LIN28A (Supplementary Figure S2).

qPCR was performed using HOT FIREPol R© EvaGreen R©

qPCR Mix Plus (ROX) (SOLIS BIODYNE) on 1 µl of cDNA
in 10 µl of total reaction volume. Reaction mix included
250/125 nM primers. Primers are listed in Supplementary
Table S1. Thermocycling parameters were as follows: 12 min
of initial denaturation at 95◦C and 45 three-step cycles with
15 s denaturation at 95◦C; 20 s annealing at 60–64◦C and 20 s
elongation at 72◦C. The reaction was run on CFX96 instrument
(Bio-Rad). Specificity of reaction for each primer pair was
confirmed by agarose gel electrophoresis and EtBr staining. For
each primer calibration curves were prepared within 10 1 to
10 −4 cDNA concentration; slope, y intercepts, PCR efficiency,
r 2, linear dynamic range an CIs were calculated. Details for
each primer set are included in Supplementary Table S1. Each
qPCR plate included a calibrator, non-treated control (NTC)
and samples were run in duplicates. For each cDNA template, a
corresponding RT- sample was amplified; none of the analyzed
samples had a positive signal of RT- reaction. Data was obtained
and analyzed using CFX Manager 3.1 (Bio-Rad). Cq values were
determined in software using the regression model and were
exported to Excel for further analyses. GAPDH, PGK1, and
C1orf43 were used as reference genes.

Log2 NRQ was calculated as follows for each gene. First,
a mean Cq was calculated for each sample as an arithmetical
mean of technical replicates Cq values. Then the mean Cq
values were corrected for a gene’s amplification efficiency by
its multiplication by Log2 of E. E values was calculated as a
(%Efficiency ∗ 0.01 + 1). Next, Relative Quantities (RQ) were
calculated for each sample as the exponentiation of the efficiency
corrected mean Cq of a sample subtracted from the arithmetic
mean Cq of control samples mean Cqs, with the base of E,
which is Eˆ[(arithmetic mean of control samples Cqs) – sample
Cq]. Normalized Relative Quantities (NRQ) for each sample
were calculated by dividing a gene of interest (GOI) RQ by
Normalization Factor (NF). Normalization factor for each sample
was calculated as a geometrical mean of Reference Genes (REF)
RQs of that sample. Next, a base 2 logarithm was calculated
from NRQ values and the resulting symmetrical Log2 NRQ
value for each sample and GOI was visualized as a dot in a
scatter plot together of Mean Log2 NRQ for each genotype. To
calculate 95% CI in an RQ for genotype (geometrical mean of
mean genotype Cqs) and genotype Standard deviation (from
Mean genotype Cqs) were calculated. Based on these values
NF and NRQ were calculated as before (genotype NF and
genotype NRQ). Error propagation was calculated in subsequent
steps: RQ SD = genotype SD ∗ genotype RQ ∗ ln(E), then SD
NF = NF ∗ sqrt(sum(SD RQ/X∗ genotype RQ)ˆ2)REF1toX),
where X is number of REF genes; SD NRQ = genotype NRQ

Frontiers in Cellular Neuroscience | www.frontiersin.org 3 January 2019 | Volume 12 | Article 528

https://www.frontiersin.org/journals/cellular-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-neuroscience#articles


fncel-12-00528 January 16, 2019 Time: 18:45 # 4
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∗ sqrt((SD NF/NF)ˆ2 + (SD RQ/RQ)ˆ2), then SE NRQ = SD
NRQ/sqrt(genotype N), where N is number of samples per
genotype, then SE Log2 NRQ = SE NRQ/(genotype NRQ ∗ ln(2)).
The final Combined-SE Log2 NRQ, which combines SE of a
disease genotype with SE of a control genotype is sqrt ((SE log2
NRQ dis)ˆ2 + (SE log2 NRQ ctrl)ˆ2). Upper and lower 95% CI
limits were as follows: CI = Log2 NRQ ± s∗Combined-SE Log2
NRQ, where s is a scaling parameter value from a t-Student table
for N-1 degrees of freedom and 0.05 confidence.

Bioinformatics Analysis
Two open source platforms were used for the bioinformatics
analysis of significantly differentiated transcripts, including
ConsensusPathDB (CPDB) (Herwig et al., 2016), and ClueGO
(Cytoscape plug-in) (Bindea et al., 2009, 2013). A simple
meta-analysis, considering data from several publications, was
also performed. As considered to be significantly dysregulated,
transcripts with padj < 0.05 were submitted to the analyses.
As genes identifier type, HUGO Gene Nomenclature Comity
symbols (HGNC) symbols were chosen.

Genetic, Biochemical, and Protein Interaction
Analyses
A list of differentially expressed mRNAs was submitted to the
web interface of CPDB for induced network modules analysis
to create a network of different types of functional interactions
between transcripts. CPDB collects data from 32 public resources,
such as Kyoto Encyclopedia of Genes and Genomes (KEGG),
Wikipathways, Reactome, Pathway Interaction Database (PID)
and BioGRID, and integrate them to create networks containing
different types of interactions.

We performed three separate analyses, one for each
comparison group. We pasted a list of significantly dysregulated
mRNAs in both HD lines and only in HD71Q or HD109Q lines.
63, 73, and 69% of accession numbers from the input lists were
mapped to proteins in CPDB, respectively. Identifiers which
were not mapped are listed in the Supplementary Table S2.
In the next step, we chose protein, genetic, biochemical and
gene regulatory interactions to be considered. For protein
interactions confidence filter, we decided to choose high and
medium confidence in the analysis considering both HD lines
and high, medium and low confidence in the two following
analyses. We set intermediate nodes z-score threshold to 30 in
the analysis considering transcripts DE in both HD iPSC lines.
Intermediate nodes were excluded from the analyses for genes
dysregulated only in 71Q or 109Q HD lines. Nodes which were
additionally added to the generated network and which were
placed peripherally were deleted from the network in order
to make the whole protein complex clearer. What is more, in
order to visualize down- and upregulation in created networks
we decided to upload log2FoldChange values for transcripts,
obtained during the RNA-seq data statistical analysis. In order to
do that, we chose the overlay values option.

Over-Representation and Enrichment Analyses
Over-representation and Gene Ontology (GO) enrichment
analyses were conducted in CPDB to reveal overrepresented

functional terms in the genomic background. Pathway-based sets
and Gene Ontology-based sets were the two chosen categories
of pre-defined gene sets among which over-represented terms
were searched. Pre-defined sets contain proteins and/or genes
that are together annotated with a specific pathway or GO term.
A list of significantly dysregulated transcripts was submitted
to the analysis (p < 0.05). For the pathway-based sets, search
settings were set to 2 minimum overlap with input list and p-value
cutoff = 0.01. Gene ontology level 4 and 5 were chosen to identify
overrepresented biological processes, molecular functions, and
cellular components. GO terms showing p < 0.01 were regarded
as significantly enriched.

Enrichment analysis and data visualization were also
performed with ClueGO app, which is another Cytoscape plug-
in. It analyzes interrelations of terms and functional groups in
biological networks. Gene identifier sets were directly uploaded
in a simple text format. Few adjustments were made to reveal
functional clusters for submitted transcripts. Analysis mode
was set to “ClueGO: Function,” network specificity was set as
default, between medium and detailed although much closer
to the medium value. The visual style was set to “Groups.”
We also selected “Use GO Term Fusion” function, which fuses
GO parent-child terms based on similar associated genes,
and “Show only Pathways with pV ≤ 0.05.” In the advanced
term/pathway selection options, no changes were made. In the
advanced statistical options enrichment/depletion (two-sided
hypergeometric test) was chosen and the pV correction, which
refers to the most significant pVs, was set to “Bonferroni step
down.” The preferred layout was set to Organic Layout (yFiles).

Meta-Analysis of Differences in Gene Expression
Nine works listed in Table 1, all containing HT (microarray,
RNA-seq) data on human HD cells, were selected for the meta-
analysis. The analysis was performed similarly as previously
(Wiatr et al., 2018), but with the inclusion of the additional
data from the recent HD consortium publication (HD iPSC
Consortium, 2017) and in order to compare dysregulated genes
from these other publications with dysregulated genes obtained
from our work. The names of the dysregulated genes or
proteins were retrieved from 9 original publications and were
sorted into 4 separate lists. We did not distinguish between
the dysregulated genes/proteins identified in transcriptomic and
proteomic experiments. Names of genes and names of genes

TABLE 1 | List of publications used for the meta-analysis of differences in gene
expression.

Publication reference

Ring et al., 2015

HD iPSC Consortium, 2012

HD iPSC Consortium, 2017

An et al., 2012

McQuade et al., 2014

Chae et al., 2012

Nekrasov et al., 2016

Chiu et al., 2015

Feyeux et al., 2012

Frontiers in Cellular Neuroscience | www.frontiersin.org 4 January 2019 | Volume 12 | Article 528

https://www.frontiersin.org/journals/cellular-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-neuroscience#articles


fncel-12-00528 January 16, 2019 Time: 18:45 # 5
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corresponding to dysregulated proteins were subsequently listed
as HGNC symbol. We established a list containing names of
genes dysregulated in ESC, iPSC, NSC, and neurons. The genes
overlapping between lists, and the genes reported in more than
one of the nine studies included in the meta-analysis, were
identified using MS Excel formulas.

Protein Extraction, Ultrafiltration, and
Digestion for Proteomics Analysis
Each cell line was collected for lysis in buffer containing 1
M triethylammonium bicarbonate (TEAB) and 0.1% SDS. The
material was subjected to a threefold cycle of freezing and
thawing followed by bath sonication for 3-min repeated three
times while cooling the tube on ice in between the sonication.
The material was centrifuged in 8,000 × g for 10 min and the
supernatant was collected. Lysates were then ultra-filtrated using
Amicon Ultra-2 Centrifugal Filter 3 kDa Devices (MERCK) to
remove any remnants of culture media. The device was pre-
rinsed with milli-Q water and 600 µL of lysate was subjected to
a fivefold cycle of centrifugation with a fresh amount of TEAB
buffer in 7,500 × g for 5 min. Proteins in clear concentrate were
estimated using 2-D Quant Kit (GE Healthcare Life Sciences).
Ten µg of total protein per sample were diluted with 15 µl of
50 mM NH4HCO3, reduced with 5.6 mM DTT for 5 min at 95◦C
followed by alkylation with 5 mM iodoacetamide for 20 min in
the dark at RT. Subsequently, the proteins were digested with
0.2 µg of sequencing-grade trypsin (Promega) overnight at 37◦C
followed by label free quantitative proteomics.

Mass Spectrometry Analysis of Proteins
Analysis of protein extracts was done on Dionex UltiMate
3000 RSLC nanoLC System coupled with QExactive Orbitrap
mass spectrometer (Thermo Fisher Scientific). Peptides derived
from in-solution digestion of proteins were separated on a
reverse phase Acclaim PepMap RSLC nanoViper C18 column
(75 µm × 25 cm, 2 µm granulation) using acetonitrile gradient
(from 4 to 60%, in 0.1% formic acid) at 30◦C and a flow rate
of 300 nL/min (for 185 min). Mass spectra were acquired in
a semi-targeted method using two analysis modes. First was
a classic data-dependent mode with top 10 data-dependent
MS/MS scans, and second, was scheduled MS/MS mode with
inclusion list containing peptide sequences chosen based on
protein targets selected from previous transcriptome analysis.
The target value for the full scan MS spectra was set to 1e6
with a maximum injection time of 100 ms and a resolution
of 70,000 at m/z 400. The 10 most intense ions charged two
or more were selected with an isolation window of 2 Da and
fragmented by a higher energy collisional dissociation with NCE
28. The ion target value for MS/MS was set to 5e4 with a
maximum injection time of 100 ms and a resolution of 17,500
at m/z 400.

Analysis of Proteomic Data
Protein identification was performed using UniProt human
database (March 2017, 137404 entries) with a precision
tolerance 10 ppm for peptide masses and 0.08 Da for fragment

ion masses. For protein identification and quantification,
all raw data obtained were analyzed using MaxQuant
1.5.3.30 (Max Planck Institute of Biochemistry, Munich)
(Cox and Mann, 2008). Obtained normalized data were
imported to Perseus 1.6.1.3 software (Max Planck Institute
of Biochemistry, Munich) (Tyanova et al., 2016). All numeric
values corresponding to protein intensity were transformed
to a logarithmic scale, and all samples were grouped using
categorical annotation. Missing values were then replaced by
imputation and PCA analysis was performed. For protein
differentiation, ANOVA test was performed with the p-value
calculation used for protein truncation. The proteins were
annotated for chromosome localization and all proteins
translated from genes located on X and Y chromosomes were
removed from the list. Then, for the clustering analysis, the
data were normalized for each compound using the Z-score
algorithm.

RESULTS

Early Transcriptional Changes in Human
HD iPSC Lines Revealed by
Next-Generation High-Throughput RNA
Sequencing
Strand-specific RNA-seq of the whole transcriptome was
performed using clonal lines from 2 HD patients with 71 or
109 CAG repeats in exon 1 of the HTT gene, and 2 healthy
individuals, with 17/18 and 21 CAG repeats, to comprehensively
identify mRNAs related to HD. A DESeq2 pipeline for transcripts
of HD was developed to identify significantly dysregulated
mRNAs. During the RNA-seq data analysis, we compared 6
HD iPSC lines derived from both patients (71Q and 109Q)
with control lines and also compared separately each set of
three HD lines from one patient with three control lines. As
a result of such an approach, we generated statistical values
for three comparison groups, HD vs. WT, HD71Q vs. WT,
and HD109Q vs. WT (Supplementary Table S3). Heat map
diagram, PCA graph and MA plots were generated for differential
gene expression analysis (Figures 1A–D and Supplementary
Figures S3, S4).

We set the padj cutoff value to create lists of significantly
dysregulated mRNAs in each comparison group. Transcripts
with padj < 0.05 were considered to be differentially expressed.
In the first group, comparing HD iPSC lines (71Q and 109Q)
with control lines, 107 significantly dysregulated mRNAs were
identified (31 downregulated and 76 upregulated). In HD71Q
iPSC lines 198 differentially expressed mRNAs were identified
(64 downregulated and 134 upregulated). In the last group,
in which HD109Q lines were compared with control lines,
217 significantly dysregulated mRNAs were identified (111
downregulated and 106 upregulated). The number of transcripts
differentially expressed in both HD lines and in each line
separately is shown on the Venn diagram (Figures 1E,F).
We have focused our experimental validation and further
bioinformatics analyses on these mRNAs (Supplementary
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FIGURE 1 | RNA-seq Analysis of HD and control iPSC lines show early transcriptional changes in affected cells. (A) Heat map representing gene expression patterns
of DE genes when comparing HD71Q and HD109Q iPSCs to control iPSCs at an adjusted p-value of < 0.05 and baseMean cutoff > 50. Red represents elevated
expression while blue represent decreased expression, compared with the row mean. Each column represents each isogenic line. Gene names are shown on
Supplementary Figure S3. (B–D) MA plots – differential expression analysis of significantly downregulated or upregulated mRNAs in HD iPSCs vs. control lines, as
determined by population level RNA-seq – for HD vs. WT, 71Q vs. WT and 109Q vs. WT, respectively. (E) Venn diagram display of downregulated genes. (F) Venn
diagram display of upregulated genes.
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TABLE 2 | Top 30 the most dysregulated mRNAs in HD iPSC lines (71Q and 109Q) when compared to control lines.

Symbol Ensembl gene Log2FoldChange p-value padj

U1 ENSG00000277918 6.253425519 7.44E-118 1.60E-113

NANOGP8 ENSG00000255192 4.839594108 1.77E-30 1.90E-26

ALG10B ENSG00000175548 3.418278891 4.27E-26 3.06E-22

CBSL ENSG00000274276 −3.09690354 8.47E-23 4.55E-19

OTOGL ENSG00000165899 3.170966795 9.53E-20 4.10E-16

TRIM69 ENSG00000185880 1.140358901 1.69E-17 6.07E-14

CNTNAP3B ENSG00000154529 −2.300972053 6.27E-12 1.93E-08

TAS2R64P ENSG00000256274 1.893607772 1.09E-11 2.93E-08

AC005276.1 ENSG00000197462 4.247092094 1.45E-10 3.11E-07

MEIOB ENSG00000162039 1.950419866 1.92E-09 2.96E-06

LINC00649 ENSG00000237945 1.07452898 2.69E-09 3.85E-06

C3 ENSG00000125730 1.347898641 6.03E-09 8.11E-06

AC003973.3 ENSG00000279377 11.45502355 2.81E-08 3.55E-05

AC009005.2 ENSG00000267751 1.298509518 6.23E-08 7.45E-05

ZFP30 ENSG00000120784 0.952711732 7.25E-08 7.80E-05

RP11-78F17.1 ENSG00000263551 1.583170794 6.94E-08 7.80E-05

PARP12 ENSG00000059378 0.870056271 8.53E-08 8.73E-05

XDH ENSG00000158125 1.073538005 1.12E-07 0.000109785

ZNF208 ENSG00000160321 9.248212473 1.24E-07 0.000111532

ZNF257 ENSG00000197134 7.158769565 1.23E-07 0.000111532

RP11-343H5.4 ENSG00000224114 2.502023616 1.68E-07 0.000144269

ACTA1 ENSG00000143632 −2.644830326 4.07E-07 0.000316863

RPL13P12 ENSG00000215030 −2.978270182 4.10E-07 0.000316863

RP11-114H24.2 ENSG00000260776 1.437940024 4.12E-07 0.000316863

RDM1 ENSG00000278023 0.980241441 8.83E-07 0.000633438

FAM86B3P ENSG00000173295 1.56869681 1.02E-06 0.000709353

SLC24A3 ENSG00000185052 −0.952696056 1.76E-06 0.001115434

Table S3). Lists of 30 the most dysregulated transcripts for each
group were shown in Tables 2–4.

A total of 17 differentially expressed mRNAs were selected
to verify RNA-seq data by quantitative real-time PCR (qPCR)
(Figure 2). We have selected 10 mRNAs which were differentially
expressed in both HD iPSC lines (OTOGL, TRIM69, CNTNAP3B,
MEIOB, C3, PARP12, XDH, CDKN1A, ZFP30, WDR72), 4
mRNAs which were differentially expressed in HD71Q iPSC
lines (PIWIL2, HIST1H3C, FAM65B, PDGFB) and 3 mRNAs
differentially expressed in HD109Q iPSC line (TP53, PHLDA3,
TRIM22). Validation of transcripts dysregulated in both HD
lines confirmed results obtained from the RNA-seq analysis
for 7 out of 10 analyzed mRNAs. Validation of chosen
transcripts dysregulated only in HD71Q lines was completely
consistent with up- and downregulation in RNA-seq data.
Last experimental analysis, considering mRNAs dysregulated
only in HD109Q lines also showed consistency with RNA-seq
(Figure 2).

Altered Levels of Proteins Overlap With
Several Dysregulated Transcripts in HD
iPSC
We performed a mass spectrometry analysis to validate
dysregulated transcripts at the protein level (Figure 3
and Supplementary Table S4). As a result, we identified

65 differentiating proteins, however, the proteins from
chromosomes X and Y were excluded. Among the proteins
which demonstrated statistically significant change, there
were TP53 and ZFP30 which were also found in the pool of
dysregulated transcripts and which showed the same direction
of the level change. These proteins are connected with intrinsic
apoptotic signaling pathway in response to DNA damage
(TP53) and DNA binding transcription factor activity (ZFP30).
Moreover, in support of our transcriptional changes, we
found that many of the non-statistically significant proteins
demonstrated dysregulation pattern similar to significantly
dysregulated transcripts.

Interaction Analysis of HD-iPS
Dysregulated Genes Identifies a Network
Rich in Transcription Regulators in 71Q
Lines, Whereas a Network of
TP53-Dependent Genes in 109Q Lines
Using the web interface of CPDB we conducted the interaction-
and pathway-centric analysis of list of differentially expressed
mRNAs in each comparison group. Induced network modules
analysis generates network in which genetic, biochemical and
protein interactions between given genes are shown. It also
includes genes that are not in the submitted list but connect two
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TABLE 3 | List of 30 the most dysregulated mRNAs in HD71Q iPSC lines compared to control lines.

Symbol Ensembl gene Log2FoldChange p-value padj

U1 ENSG00000277918 6.286072251 7.79E-87 1.68E-82

NANOGP8 ENSG00000255192 5.161894598 1.44E-32 1.55E-28

ALG10B ENSG00000175548 2.883022339 3.12E-31 2.24E-27

RNF20 ENSG00000155827 −1.182765532 5.15E-25 2.77E-21

PIWIL2 ENSG00000197181 3.194234427 8.65E-23 3.73E-19

OTOGL ENSG00000165899 3.434955786 1.73E-22 6.20E-19

FAM65B ENSG00000111913 −2.775405407 8.52E-17 2.62E-13

CBSL ENSG00000274276 −3.102564495 1.93E-16 5.20E-13

APOBEC3B ENSG00000179750 −3.283380768 3.00E-16 7.19E-13

MATN2 ENSG00000132561 −1.152507133 5.20E-15 1.12E-11

HIST1H3C ENSG00000278272 2.979803376 6.11E-15 1.20E-11

ZNF257 ENSG00000197134 8.043476357 4.82E-13 7.99E-10

TRIM69 ENSG00000185880 1.129527997 3.03E-12 4.35E-09

HERC2P9 ENSG00000206149 −1.392763638 4.07E-12 5.48E-09

HIST1H2BB ENSG00000276410 2.83218348 6.10E-12 7.73E-09

AC003973.3 ENSG00000279377 12.38024867 9.33E-12 1.06E-08

TAS2R64P ENSG00000256274 2.045242418 3.95E-11 4.25E-08

GOLGA8B ENSG00000215252 −1.916866228 1.03E-10 1.05E-07

CDKN1A ENSG00000124762 1.161235447 4.51E-10 4.22E-07

CDH7 ENSG00000081138 −1.86720424 4.50E-10 4.22E-07

ZNF208 ENSG00000160321 10.17366602 4.94E-10 4.43E-07

LINC01535 ENSG00000226686 3.470961414 8.70E-10 6.88E-07

RP11-350D17.3 ENSG00000271369 2.194112973 8.34E-10 6.88E-07

CNTNAP3B ENSG00000154529 −2.50348849 8.95E-10 6.88E-07

TTC13 ENSG00000143643 −0.888229847 1.24E-09 9.21E-07

ALS2 ENSG00000003393 −0.742660378 2.71E-09 1.95E-06

SULT1A1 ENSG00000196502 −1.632429581 5.08E-09 3.53E-06

AC016582.2 ENSG00000225868 1.648898784 5.67E-09 3.82E-06

MT-ND3 ENSG00000198840 1.052399972 1.94E-08 1.23E-05

THNSL2 ENSG00000144115 −1.443657812 2.46E-08 1.51E-05

or more seed genes with each other and have many connections
within the induced network module. Such bioinformatics
approach helped us with visualizing biological associations
between dysregulated transcripts and their connections with
other genes, which may have an impact on HD pathogenesis.

Our first analysis considered mRNAs differentially expressed
in both iPSC lines (Figure 4A). Proteins for 25 out of 107
dysregulated transcripts were assigned to the generated network.
Main observation from the visualized protein complex is that
most of seed genes are associated with each other through
intermediate nodes which were not present in the input list.
Although no obvious center node can be distinguished, PARK2
seems to be crucial for the whole network as it unites all
of the other protein complexes. PARK2 gene is associated
with synaptic vesicle exocytosis and central nervous system
development. Among other interesting proteins highlighted in
the network, there is PIK3R1 whose gene is strongly upregulated
in both HD iPSC lines and necessary for the insulin-stimulated
increase in glucose uptake, but it is also connected with axon
guidance and negative regulation of the apoptotic process.
Different proteins in the generated network are also involved
in signal transduction and nervous system development, like

ARHGAP8, DPYSL4, and FLRT2. Other biological processes in
which visualized proteins are involved are RNA splicing and cell
motility.

Second analysis considered mRNAs differentially expressed
only in HD71Q iPSC lines (Figure 4B). Proteins for 37 out of 198
seed genes were visualized during the analysis. The analysis shows
the presence of histones (HIST1H3C, HIST1H2BB, HIST1H1A)
and other transcription regulators (ZNF257, BCAS3) in the
network. All of the downregulated genes for which proteins
are present in the main network are also connected with
transcription regulation, likeMCM5 andRNF20. Almost all of the
upregulated nodes mentioned above are associated with positive
regulation of transcription.

The third analysis, considering mRNAs differentially
expressed in HD109Q iPSC lines (Figure 4C), shows the
crucial role of downregulated transcripts and gene regulatory
interactions. Proteins for 41 out of 217 genes from the input
list were visualized in the network. The most important protein
present in the generated network, with the highest number
of edges, is TP53. Many of its interactors are, like TP53 itself,
associated with apoptotic signaling, such as tumor necrosis factor
receptor superfamily members, TNRFSR10B, TNFRSF10C, and
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TABLE 4 | List of 30 the most dysregulated mRNAs in HD109Q iPSC lines compared to control lines.

Symbol Ensembl gene Log2FoldChange p-value padj

U1 ENSG00000277918 6.219895444 4.67E-85 1.09E-80

CDKN1A ENSG00000124762 −3.933483105 3.37E-73 3.93E-69

PHLDA3 ENSG00000174307 −2.551015174 3.38E-56 2.62E-52

ALG10B ENSG00000175548 3.802701616 5.17E-54 3.01E-50

TP53 ENSG00000141510 −3.274551066 3.91E-48 1.82E-44

EIF2S3L ENSG00000180574 3.037222044 6.21E-33 2.41E-29

ASNSP1 ENSG00000248498 5.965875222 4.48E-29 1.49E-25

CDC20P1 ENSG00000231007 4.12484708 6.13E-28 1.79E-24

SNORD3B-1 ENSG00000265185 −3.685369931 2.56E-27 6.64E-24

INPP5D ENSG00000168918 −2.188602587 4.32E-27 1.01E-23

MIR34A ENSG00000228526 −2.523159497 5.26E-26 1.11E-22

NANOGP8 ENSG00000255192 4.417935163 2.97E-24 5.77E-21

MUC19 ENSG00000205592 −3.336959246 3.06E-22 5.49E-19

RP11-958N24.2 ENSG00000227827 3.589013767 3.18E-21 5.30E-18

BAX ENSG00000087088 −1.204461789 2.10E-20 3.26E-17

LINC01021 ENSG00000250337 −3.135350542 2.96E-18 4.31E-15

CRYGEP ENSG00000229150 2.387074711 4.44E-18 6.10E-15

CBSL ENSG00000274276 −3.091183178 1.72E-16 2.22E-13

TEC ENSG00000135605 1.639741292 3.30E-16 4.05E-13

OTOGL ENSG00000165899 2.83934664 8.89E-16 1.04E-12

FAM86B3P ENSG00000173295 1.951641415 8.99E-14 9.98E-11

RP11-366M4.11 ENSG00000248632 −4.56130814 4.33E-13 4.59E-10

RP11-632K20.7 ENSG00000223509 1.925042321 8.28E-13 8.40E-10

TRIM69 ENSG00000185880 1.151508188 9.51E-13 9.24E-10

SPATA18 ENSG00000163071 −2.328900814 1.84E-12 1.72E-09

RP11-115D19.1 ENSG00000251095 −3.099666004 1.34E-11 1.11E-08

AEN ENSG00000181026 −0.980726499 1.71E-11 1.38E-08

HIST3H2BA ENSG00000181201 −1.810817061 3.56E-11 2.77E-08

LIMCH1 ENSG00000064042 2.500401748 3.98E-11 3.00E-08

TNFRSF10D but also BAX, CDKN1A, PLK2, HSPA1A, and
others.

Over-Representation and Enrichment
Analyses Based on the Most
Differentially Expressed Transcripts
Over-representation and enrichment analyses were performed
with significantly dysregulated mRNAs for each comparison
group. We used two bioinformatics tools to identify
overrepresented gene ontology and pathway-based terms –
CPDB and ClueGO.

In each analysis, we have focused on identifying pathway and
gene ontology-based gene sets considering molecular functions,
biological processes and cellular components (Figure 5). First
analysis included the list of differentially expressed mRNAs
in both HD iPSC lines. The most overrepresented GO terms,
with the biggest number of genes associated with the term
were metal ion binding, regulation of cytokine production and
GTPase activator activity (Figure 5A). As for the pathway-based
analysis, phospholipase c signaling pathway was distinguished
as the one with the lowest p-value (Supplementary Table S5).
Phospholipase-C is known to be key signaling proteins in the
cellular action of many hormones, neurotransmitters, growth

factors, and other extracellular stimuli. The input overlap
members in this pathway are PLCB1 and PIK3R1. These two
genes are also members of pathways associated with Joubert
syndrome, a brain development disorder characterized by the
agenesis or underdevelopment of the cerebellar vermis and also
by the malformed brain stem. Other identified pathways include
selective serotonin reuptake inhibitor pathway, reelin signaling
pathway, Beta2 integrin cell surface interactions, downstream
signaling of activated FGFR1 and apoptosis.

The most overrepresented GO terms obtained due to the
analysis of significantly dysregulated transcripts in HD71Q
iPSC line included positive regulation of cellular process, metal
ion binding and regulation of cellular component organization
(Figure 5B). Cellular components with the lowest p-value and the
higher number of submitted transcripts at the same time referred
to ruffle, germ plasm and chromatoid body. As for the pathway-
based analysis, transcriptional regulation of white adipocyte
differentiation is the one with the lowest p-value (Supplementary
Table S5). The input overlap members in this pathway are
LPL, CEBPA, and ANGPTL4. Other identified pathways are p73
transcription factor network, inflammatory mediator regulation
of TRP channels, DNA damage response and lncRNA mediated
mechanisms of therapeutic resistance.
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FIGURE 2 | qPCR validation of RNA-seq results. Seventeen genes in total were selected for DE confirmation in the same RNA samples used for RNA-seq. Among
selected genes, 10 were DE in both HD iPSC lines (A), 4 were DE only in HD71Q iPSC lines (B), and 3 genes were DE only in HD109Q iPSC lines (C), compared to
control lines. Results for each analyzed gene are presented as a scatter plot of Log2 NRQ values for each sample (n = 3 per genotype), together with Mean Log2
NRQ (thick horizontal line) for each genotype and 95% CIs (thin vertical lines). Dashed lines at 0 represent WT control lines. Genes are differentially expressed when
95% CI lines do not cross WT line. For easier reference, Log2 FC data from RNA-seq experiments (circles) were also included on plots. (D) Two additional reference
genes, identified as not significantly dysregulated, were also selected for RNA-seq results validation.

Last analysis, which focused on differentially expressed
mRNAs in HD109Q iPSC line, revealed the regulation of
biological and cellular process and a great number of apoptosis-
related terms (Figure 5C). As for the pathway-based analysis,
direct p53 effectors and p53 signaling p53 signaling pathway are
the most significant among identified pathways (Supplementary
Table S5). Other include terms like validated transcriptional
targets of TAp63 isoforms, DNA damage response, signaling
pathways in glioblastoma, apoptosis modulation and signaling,
Wnt signaling pathway and pluripotency and a few viral infection
pathways.

Protein complex-based sets of mRNAs, whose protein
products are members of the same annotated protein complex,
are shown in Supplementary Table S6.

ClueGO overrepresentation and enrichment analysis of
transcripts significantly dysregulated in both HD iPSC lines
revealed positive regulation of humoral immune response and
ion transport by P-type ATPases as GO terms with the lowest p
value (Figure 6 and Supplementary Table S7) C3 gene, which
is highlighted as associated with the first biological process, is
in the top 10 dysregulated transcripts in both HD iPSC lines.
Next to C3, there are few other genes that are present in many
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FIGURE 3 | Mass spectrometry analysis of HD and control iPSC lines show early proteomic changes in affected cells. Heat map representing all differentiating
proteins identified after comparing HD71Q and HD109Q iPSC lines to control iPSC lines. Red represents elevated level of protein while green represents decreased
level of protein. Each column represents each isogenic line. Protein names are shown on the left side.
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FIGURE 4 | Induced network modules analysis of DE transcripts in HD iPSC lines. CPDB induced network modules aims to connect a list of seed genes via different
types of interactions (protein interactions, biochemical interactions, or gene regulatory interactions). Connections are made directly, or via an intermediate node
(shown in gray). As considered to be significantly dysregulated, transcripts with adjusted p value of < 0.05 were submitted to the analysis. As genes identifier types,
HGNC symbols were chosen. (A) Network plot for significantly dysregulated transcripts in both HD iPSC lines vs. control. (B) Network plot for significantly
dysregulated transcripts only in HD71Q iPSC lines. (C) Network plot for significantly dysregulated transcripts only in HD109Q iPSC lines. Proteins confirmed after
proteomic analysis were pinpointed by a green border of the certain nodes. Names of direct interacting partners of the HTT protein were highlighted with red border.
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FIGURE 5 | Gene Ontology (GO) term analysis in HD iPSC lines. In the CPDB over-representation analysis, the submitted list of dysregulated genes was mapped to
physical entities. Gene Ontology-base sets, containing genes that are together annotated with a specific GO term, were generated for genes dysregulated in both
HD iPSC lines (A) and for genes DE only in 71Q lines (B) or 109Q lines (C). Functional sets were sorted by the decreasing number of genes in each set.

generated clusters, such as ZP3, KLK5, ATP10B, ATP8B3, and
ATP12A.

Analysis of transcripts differentially expressed in HD71Q
iPSC lines showed the presence of processes connected with DNA
damage response among which CDKN1A, GADD45B, DDB2, and
RAD51 play major roles (Figure 6 and Supplementary Table S8).
Other annotations included regulation of establishment of
cell polarity, PPAR signaling pathway, negative regulation
of transforming growth factor beta receptor signaling
pathway, Prader-Willi and Angelman Syndrome, removal
of licensing factors from origins, mononuclear cell migration
and inflammatory mediator regulation of TRP channels.

The last ClueGO analysis, considered transcripts significantly
dysregulated in HD109Q iPSC lines, generated a large
cluster connected with p53 signaling pathway (Figure 6
and Supplementary Table S9). Six genes associated with these
processes are also in the list of the top 30 dysregulated transcripts
in HD109Q iPSC lines. Different processes highlighted during
the analysis, which were specific to HD109Q iPSC lines, included
Pancreatic cancer, interleukin-3, 5 and GM-CSF signaling,

Leishmaniasis, Systemic lupus erythematosus and a large cluster
associated to TNF-related factors activation by TP53.

Genes Dysregulated in 71Q and 109Q HD
iPSC Lines Are Also Shared With ESCs,
iPSCs, NSCs, and Neurons Obtained in
Other Studies
The performed meta-analysis showed that among genes
significantly dysregulated in HD iPSC lines several are
shared with iPS-derived or ES-derived NSCs and/or
neurons (Figures 7A–D and Supplementary Table S10).
Five out of 107 genes found to be altered in both HD lines
overlap with genes from neurons. Two of them, LHFP and
FLRT2 are strongly downregulated in both HD lines, with
log2FoldChange = −4. Among 16 genes which overlap between
HD109Q lines and neurons 9 are strongly downregulated
in our work, with TP53 on top of the list. Names of genes
overlapping between all three comparison groups were listed in
Figure 7D.
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FIGURE 6 | Overrepresentation and enrichment analysis of DE transcripts in HD iPSC lines. ClueGO (Cytoscape plug-in) analyzes interrelations of terms and
functional groups in biological networks. Several functional clusters for submitted transcripts were identified. (A) Functional clusters generated with ClueGO analysis
of transcripts differentially expressed in both HD iPSC lines vs. control. (B) Functional clusters for transcripts DE only in HD71Q iPSC lines. (C) Functional clusters for
transcripts DE only in HD109Q iPSC lines. Genes shared between terms were also shown. Upregulation or downregulation of visualized genes was marked as red or
green, respectively.

The meta-analysis was also performed to establish whether
genes altered in our study are also shared with iPSCs obtained
in other studies (Figures 7E–G). The analysis revealed that 8,
15, and 14 genes dysregulated in both HD, 71Q and 109Q
lines are shared with iPSCs, respectively. Among eight genes
which overlap between both HD lines and iPSCs from other
studies, ZNF208 and ZNF257 were the most dysregulated in our
analyses with log2FoldChange 9,24 and 7,15, respectively. Lists of
overlapping genes created during the analysis included also those
associated with HD-altered neurodevelopmental pathways, like
TGFβ (TGFBI), as well as p53 pathway (CDKN1A, GADD45B),
cell adhesion (ANK1) and calcium signaling (CALCRL, ANXA2).
Lists of overlapping genes are included in Supplementary
Table S10. Only four genes overlap between all HD lines and
ESCs, including ACTA1, DPYSL4, HSPA5, and PCK2.

DISCUSSION

A crucial role of HTT in embryogenesis and nervous system
development has been well established (Schulte and Littleton,
2011; Saudou and Humbert, 2016). What is more, an increasing
number of reports have begun to asses differential roles of HTT
and mHTT during embryogenesis and early neural development

processes (Nguyen et al., 2013b), proving molecular changes
that occur in HD brains long before the clinical onset of
disease symptoms (Wiatr et al., 2018). The reports pointed out
several developmental impairments which are due to mHTT,
such as the integrity of germ layer specification disruption,
precocious oligodendrocyte over neurons maturation, striatal
cells vulnerability to death, and dysregulation of Notch signaling
pathways (Nguyen et al., 2013b; Molero et al., 2016; Yu and
Tanese, 2017). Here, we analyzed iPSC lines from HD patients
and unaffected subjects with RNA sequencing and bioinformatics
tools. In our study, we aimed to identify alterations in genes
and subsequently in biological processes that might be associated
with a pathological CAG repeat length. We performed high-
throughput analyses of three isogenic iPSC lines from a patient
with 71 CAG repeats, three isogenic cell lines from a patient
with 109 CAG repeats, and three control lines from two healthy
individuals. According to a recent report, the HD109 lines may
correspond to ultra juvenile HD and HD71 lines may represent
the juvenile HD manifestation (Fusilli et al., 2018). We compared
all 6 HD lines to 3 control lines but also each set of 3 isogenic
lines to control lines separately to evaluate HD gene expression
and to identify early transcriptional changes that occur due to
the different range of CAG repeats. As a result, we identified
107 (6 HD lines), 198 (3 HD71Q lines), and 217 (3 HD109Q
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FIGURE 7 | Meta-analysis reveals common genes/proteins for HD lines, ESCs, iPSCs, NSCs and neurons. (A–C) Venn diagrams indicate number of genes/proteins
included in the meta-analysis that overlap between only two or all three of the analyzed lists of genes. Venn diagrams show number of genes/proteins overlapping
between HD iPSC lines and NSCs and neurons. (D) Lists of genes/proteins that overlap between all three lists of genes for HD iPSC lines, NSCs and neurons. (E,F)
Venn diagrams indicate number of genes/proteins included in the meta-analysis that overlap between only two or all three of the analyzed lists of genes. Venn
diagrams show number of genes overlapping between HD iPSC lines and ESCs and iPSCs. (A–C) Venn diagrams were generated with eulerAPE v3. (E–G) Venn
diagrams were generated with Meta-Chart.
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lines) significantly dysregulated mRNAs in each comparison
group. Moreover, we asked the question whether the observed
alterations at the mRNA level led to the corresponding changes at
the protein level, thereby whether mRNA changes reflect on the
functionality of HD stem cells. Our proteomic analyses confirmed
similar directionality in dysregulation of protein expression of
ZFP30 and TP53. We have previously reported such changes
of TP53 protein expression which was highly downregulated in
HD109 ultra juvenile HD iPSC lines (Szlachcic et al., 2015, 2017).
Bioinformatics analyses of the dysregulated mRNAs and proteins
revealed alterations of biological pathways and processes in HD
iPSC lines which may have an impact on later neuropathology
of Huntington’s disease. These processes related to DNA damage
response, p53 signaling pathway, regulation of establishment of
cell polarity, and negative regulation of TGFβ signaling pathway.

In previous reports investigating human HD iPSC by RNA-
seq the main focus in research on human HD iPSC-derived cells
has been put in later differentiation steps, e.g., NSC, however,
dysregulated genes in 71Q HD iPSC lines were identified (Ring
et al., 2015). In line with the previous report we found a
similar number of dysregulated genes and among these genes,
14 have shown dysregulation similarly to Ring et al. (2015)
(Supplementary Table S11). Moreover we identified genes
associated with HD-altered neurodevelopmental pathways which
were dysregulated in human NSCs, like TGFβ (TGFBI) and REST
(BDNF), as well as p53 pathway (CDKN1A, GADD45B), cell
adhesion (TMEM132C, ANK1) and calcium signaling (CALCRL,
ANXA2) (Ring et al., 2015; HD iPSC Consortium, 2017; Xu
et al., 2017). However, BDNF transcript in pluripotent 71Q cells
is slightly upregulated, whereas it is depleted at later stages in
71Q (Ring et al., 2015) and other human NSC and neurons (HD
iPSC Consortium, 2012) and patients (Zuccato and Cattaneo,
2014). This depletion may be associated with abnormal striatal
development and later degeneration. The early upregulation
identified in our 71Q iPSC could be the result of the preference
of HD pluripotent cells toward differentiation to neural lineages,
which was also observed in mouse cells (Nguyen et al., 2013a).
However, the majority of identified common genes has not been
previously examined in HD. For instance, noteworthy may be
the ZFP57 transcription factor which is the controller of CpG
methylation during embryonic development (Strogantsev et al.,
2015; Riso et al., 2016; Mohammed et al., 2017).

ClueGO overrepresentation and enrichment analyses for
this study showed that many of dysregulated transcripts in
HD109Q iPSC lines are involved in DNA damage response and
apoptosis, such as CCND1, CDKN1A, TP53, BAX, TNFRSF10B,
TNFRSF10C, TNFRSF10D, DDB2, PLCB1, PRKCQ, HSH2D,
ZMAT3, PLK2, and RPS27L. Most of the transcripts were
downregulated and their proteins were also showed as direct
interactors with TP53 in Induced Network Modules analysis. This
may indicate that mHTT interacts with TP53 to alter the level
of several TP53 interactors (shown in Figure 4C) influencing
the apoptosis. Such disruption in the apoptotic pathway can
lead to accumulation of an excessive number of progenitor cells
and potential disruption of cell differentiation and production of
mature neurons (Pfisterer and Khodosevich, 2017). In addition,
HTT effects on cell polarization may result in the generation of

incorrect progenitors which need to undergo apoptosis (Godin
and Humbert, 2011).

Bioinformatics analysis of transcripts dysregulated in HD71Q
iPSC lines revealed that several of them act as transcription
regulators during the early multicellular stages of development,
such as ZFP57, PIWIL2, HIST1H3C, and HIST1H2BB. Significant
upregulation of most of these transcripts may lead to a global
increase in expression level of genes involved in pathways
critical for embryogenesis and early neural development.
Interestingly, the mutation in the HTT gene may cause
precocious neurogenesis, which can lead to subsequent
neuropathology (Nguyen et al., 2013a). The analysis of induced
network modules (CPDB) in dysregulated mRNAs in both
HD lines revealed interactions between genes associated with
central nervous system development, axon guidance, signal
transduction and migration of cortical neurons during brain
development (BBS2, POU6F2, and PARK2). In addition, in all
6 HD lines we found genes such as DBX2, FAM72C, TRIM69,
FLRT2 that were recently reported (still absent annotation as
GO terms) as controllers of neuronal development or were
found to be enriched in neuronal progenitor cells. DBX2 gene
is associated with embryonic and adult neurogenesis while high
expression level of this gene can suppress adult neurogenesis
(Karaz et al., 2016, p. 2; Lupo et al., 2018). FAM72C is one of
the human-specific genes enriched in cortical neural progenitor
cells (Florio et al., 2018). TRIM69 is the regulator of brain
development demonstrated in zebrafish (Han et al., 2016). What
is more, cortical pathology present in Huntington’s disease,
may have its molecular onset in downregulation of FLRT2 gene,
which is one of the neural development regulators (Seiradake
et al., 2014) and is responsible for regulation of cortical neurons
migration during brain development (van Roon-Mom et al.,
2008). Furthermore, FLRT2 is one of the genes which was
revealed by our meta-analysis of 9 HD research works (An
et al., 2012; Chae et al., 2012; Feyeux et al., 2012; HD iPSC
Consortium, 2012, 2017; McQuade et al., 2014; Chiu et al., 2015;
Ring et al., 2015; Nekrasov et al., 2016). It overlaps between
the analyzed HD iPSC lines and previously reported iPS- or
ES-derived NSCs and neurons. Besides the above-mentioned
functions of this gene, it has been also reported as one of
the potential regulators of rosette neural stem cells (Zhao
et al., 2014). Other genes which overlap between the analyzed
HD iPSC lines and previously reported NSCs and neurons
included LHFP, ATP8B3, MATN2, TRPV4, ANGPTL4, ANXA2,
CA12, GDPD5, CALCRL, FBN1, PDGFB, S100A11, CEBPA,
EPS8L2, FBXL16, ONECUT1, SLC1A6, TMEM64, ADAMTS1,
ZNF471, EMILIN1, LIMA1, MEST, PHYHIP, RCN3, H2AFY2,
and TP53. Except for TP53, the gene known to be involved
in neurodegenerative disorders, H2AFY2 seems to be another
valuable gene for further studies. H2AFY2, gene encoding
histone macroH2A, has been recently linked to Friedrich’s ataxia
(Soragni et al., 2015) because of its involvement in FXN gene
silencing.

Moreover, ClueGO overrepresentation and enrichment
analysis identified processes connected with the ErbB signaling
pathway. ERBB3 and CDKN1A, genes associated with that GO
term, are significantly downregulated in HD109Q iPSC lines.
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Our findings, along with other recent studies strongly suggest
that HD-associated impairments in adult life may result from
very early and cumulative embryogenic abnormalities. Studying
such early transcriptional changes may help to discover key
molecular alterations occurring in HD-affected cells and can thus
provide new possibilities for therapeutic and preventive strategies
for Huntington’s disease.
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FIGURE S1 | Graph representing number of reads collected per library during
RNA-seq analysis. Each column represents each HD iPSC line.

FIGURE S2 | (A) Detection of pluripotency markers in HD iPSC lines (numbered
clonal lines: 2, 22, 32 – ND42245; 3, 23, 33 – ND41654; 4, 24, 34 – ND41658; 5,
25, 35 – ND42228; 6, 26, 36 – ND42229; 7, 27, 37 – ND42230; 8, 28,
38 – ND42222; 9, 29, 39 – ND42223; 10, 30, 40 – ND42224). Following markers
were selected for the validation: SOX2 (2–10; product size 338 bp), NANOG
(12–20; product size 294 bp), OCT4 (22–30; product size 273 bp) and LIN28A
(32–40; product size 382 bp). (B) Validation of RT-PCR products of all HD lines for
reference gene, GAPDH. 42–50 – HD iPSC lines in the same order as in (A). (C)
List of primers used for the detection of pluripotency markers in HD iPSC lines.
Primers sequence for GAPDH is already in Supplementary Table S1.

FIGURE S3 | (A) Heat map representing gene expression patterns of DE genes
when comparing HD71Q and HD109Q iPSCs to control iPSCs at an adjusted
p-value of < 0.05 and baseMean cutoff > 50. Red represents elevated expression
while blue represent decreased expression, compared with the row mean. Each
column represents each isogenic line. Gene names are shown on the right side of
the heat map. As genes identifier type, HGNC symbols were chosen. Heat map
clearly shows clusters of genes with the same level of dysregulation in both HD
lines and also clusters of genes with the opposite type of dysregulation in HD lines
from each patient.

FIGURE S4 | Principal component analysis (PCA) of RNA-seq on HD71Q iPSCs
(green), HD109Q iPSCs (red) and unaffected iPSCs (blue).

TABLE S1 | A list of primers used for qPCR validation of RNA-seq results. All
primer pairs were designed in Primer3Plus web program.

TABLE S2 | Identifiers from the submitted list of dysregulated genes which were
not mapped to distinct proteins in CPDB induced network modules analysis.

TABLE S3 | Lists of transcripts obtained from RNA-seq analysis on 71Q and
109Q HD iPSC lines. Lists contain statistical values for three comparison groups,
both HD lines vs. control, HD71Q vs. control, and HD109Q vs. control.

TABLE S4 | Data from proteomic analysis.

TABLE S5 | A list of pathway-based sets containing all the genes, from the
submitted list, involved in a specific biochemical pathway. Genes DE in both HD
iPSC lines or only in 71Q or 109Q lines were submitted to the analysis.

TABLE S6 | A list of complex-based sets containing sets of genes whose protein
products are over-represented in the same protein complex. Genes DE in both HD
iPSC lines or only in 71Q or 109Q lines were submitted to the analysis.

TABLE S7 | GO/pathway terms specific for genes dysregulated in both HD iPSC
lines. Number of genes associated with the term and the percentage of genes per
term are included. Colors of each functional set corresponds with colors of
functional clusters shown in Figure 4A.

TABLE S8 | GO/pathway terms specific for genes dysregulated only in 71Q HD
iPSC lines. Number of genes associated with the term and the percentage of
genes per term are included. Colors of each functional set corresponds with
colors of functional clusters shown in Figure 4B.

TABLE S9 | GO/pathway terms specific for genes dysregulated only in 109Q HD
iPSC lines. Number of genes associated with the term and the percentage of
genes per term are included. Colors of each functional set corresponds with
colors of functional clusters shown in Figure 4C.

TABLE S10 | Lists of genes used for and generated from the meta-analysis of
differences in genes expression. Genes overlapping between lists, and the genes
reported in more than one of the 9 studies included in the meta-analysis, were
identified using MS Excel formulas and are shown in properly entitled columns.

TABLE S11 | List of genes similarly dysregulated in Ring et al. publication (Ring
et al., 2015).
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