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ORIGINAL ARTICLE

DIGRE: Drug-Induced Genomic Residual Effect Model for
Successful Prediction of Multidrug Effects

J Yang', H Tang', Y Li*3, R Zhong', T Wang', STC Wong", G Xiao' and Y Xie"**

Multidrug regimens are a promising strategy for improving therapeutic efficacy and reducing side effects, especially for
complex disorders such as cancer. However, the use of multidrug therapies is very challenging, due to a lack of
understanding of the mechanisms of drug interactions. We herein present a novel computational approachi\Drug-Induced
Genomic Residual Effect (DIGRE) Computational ModelAto predict drug combination effects by explicitly modeling drug
response curves and gene expression changes after drug treatments. The prediction performance of DIGRE was evaluated
using two datasets: (i) OCI-LY3 B-lymphoma cells treated with 14 different drugs and (ii) MCF breast cancer cells treated with
combinations of gefitinib and docetaxel at different doses. In both datasets, the predicted drug combination effects
significantly correlated with the experimental results. The results indicated the model was useful in predicting drug

combination effects, which may greatly facilitate the discovery of new, effective multidrug therapies.
CPT Pharmacometrics Syst. Pharmacol. (2015) 4, e1; doi:10.1002/psp4.1; published online on 18 February 2015.

Within the past two decades, numerous studies have aimed
to identify new drugs or compounds that modulate specific
therapeutic targets.’ Multidrug therapies have been used
successfully in clinical practice and have attracted tremen-
dous interest as promising treatments for complex disorders,
especially those with multifactorial pathogenic mechanisms.*
For example, the treatment combination of fluticasone and
propionate provides better asthma control than increasing
the dose of either single drug alone, while simultaneously
reducing the frequency of exacerbations.® Similarly, lova-
statin combined with extended-release niacin was first intro-
duced as an effective treatment for hyperlip-idemia.®
Furthermore, patients treated with a combination of cetuxi-
mab and platinum-based chemotherapy showed a signifi-
cantly longer overall survival time than those administered
chemotherapy alone.” However, the underlying mechanisms
of such drug combinations are vastly different from those of
single drugs and thus remain poorly understood. Individual
components can target different proteins in the same or dif-
ferent pathways, and complicated drug-drug interactions and
complex biological environments make it difficult to propose
effective new drug combinations. It is impractical to identify
effective drug combinations by large-scale drug screening
experiments, since the number of combinations increases
exponentially with the number of screened drugs. Moreover,
this task is made even more impractical by differing variations
of drug ratio and timing. As a result, only a tiny fraction of all
possible combinations can be experimentally tested, and of
those only a handful of combinations have well-understood
mechanisms elucidated from clinical experience.®~'2

Due to these limitations, the development of computa-
tional methods for predicting drug combination effects is

essential for a systematic identification of combinatorial
treatment regimens. Recently, Zhao et al.'® introduced a
model to predict the efficacies of drug combinations by inte-
grating molecular and pharmacological data, but its depend-
ence on feature patterns, specifically enriched in approved
drug combinations, severely limited its potential application.
Wu et al.' similarly proposed a network-analysis-based
model that utilized gene expression profiles, following indi-
vidual treatments, to predict gene expression changes
induced by drug combinations, which were then used to esti-
mate the effectiveness of the combinations. However, such
an approach ignores gene-gene interactions, which also play
an essential role in gene regulation. Moreover, while the
enhanced Petri-Net model'® (a method that provides inform-
ative insight into the mechanisms of drug actions) was
established to recognize the synergism of drug combina-
tions, that model is limited in application by its requirement
of a gene expression profile for every drug pair.

In this study, we hypothesized that if two drugs were
administrated sequentially, the first drug would alter the
treated cells’ transcriptome, and thus modulate the effect of
the later drug. We developed this novel Drug-Induced
Genomic Residual Effect (DIGRE) computational model to
predict drug combination effects by explicitly modeling the
drug response dynamics and gene expression changes after
individual drug treatments. The DIGRE model won the best
performance in the National Cancer Institute’s “DREAM 7
Drug Combination Synergy Prediction Challenge,” an inter-
national crowdsourcing-based computational challenge for
predicting drug combination effects using transcriptome
data. This challenge’s blind assessment of submitted compu-
tational models revealed that the prediction of drug pair
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Figure 1 Overall flowchart of the Drug-Induced Genomic Resid-
ual Effect (DIGRE) model.

activity from DIGRE was significantly consistent with the vast
majority of the organizers’ experimental validations. In addi-
tion, we further validated our DIGRE model using another
experimental dataset.'® Consequently, DIGRE could poten-
tially be used for large-scale discovery of effective drug com-
binations for further experimental validation, possibly leading
to the rapid identification of new therapies for complex
diseases.

RESULTS

The main hypothesis for DIGRE is that the transcriptomic
residual effects induced by treatment with a previous
drug(s) modulate the effect of a successively administered
drug(s). For example, suppose a cell line is treated with
compounds A and B sequentially. Compound A, beside its
own drug effect, also alters the cell line’s genomic context,
which further modulates the cells’ response to compound
B. Therefore, it is important to estimate this residual effect,
in order to predict the net effect of the drug combination.
Figure 1 shows the overall flowchart of the DIGRE model
(the entire workflow is also presented as pseudo-code in
the Supplementary Data). The expression changes were
first estimated from the gene expression profiles before and
after treatment with each individual drug, and then the
expression similarity between the two drugs was quantified.
Next, the genomic residual effect of drug A on drug B was
determined based on the two drugs’ expression similarity.
Finally, the drug combination effect was calculated from a
mathematical model, using the residual effect (please see
the Methods section for more details).

Application to predict 91 combinatorial drug effects on
the B-cell lymphoma OCI-1Y3 cell line

We first applied our model to the NCI DREAM Drug Combi-
nation Challenge dataset, in which OCI-LY3 B-lymphoma
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cells were treated with 14 drugs carefully selected to avoid
overlapping mechanisms. The goal of the study was to pre-
dict the treatment effects of pairwise combination of these
14 drugs using genomic profiles before and after treatment
with each individual drug. For each of the 14 single drug
treatments, the drug response curve was determined at 48
h after treatment, and the concentration corresponding to
each drug’s ICy (i.e., the drug concentration required to
obtain a 20% reduction in cell viability) was used for each
of the combined drugs. Gene expression profiles for the 14
single drug treatments were provided at three different time
points (6, 12 and 24h), including dimethyl sulfoxide-treated
control samples. The expression profiles of the treated
samples for each drug were measured in triplicate, and the
control samples were repeated eight times. The “gold
standard” for comparing each drug’s effectiveness was gen-
erated by the reduction in cell viability following treatment
by the 91 distinct drug combinations. Finally, “Excess Over
Bliss” (EOB) was calculated to define the syn-ergistic effects
of drug combinations. For example, if x, y, and z are experi-
mentally measured cell growth inhibition values induced by
drugs A, B, and their combination, respectively, then the
expected fractional inhibition ¢ of the combination (assuming
the two drugs work independently) is defined as ¢ = 1 —
(1 —x) (1 —y), and the EOB can be calculated by A = z — c.
The larger the EOB, the more synergistic the combination of
drugs A and B. Using EOB, drug pairs can be ranked from
the most synergistic to the most antagonistic.

The predicted results were scored by probabilistic con-
cordance indexes (PCls), which quantified the concordance
between the predicted ranks of the combinations and the
gold standard, while also accounting for “noise” in the
experimental data (see Methods section for details of deter-
mining the PCI score). The predictions from the DIGRE
model significantly correlated with the observed gold stand-
ard (PCI: 0.614 and P value: 0.0004) (Figure 2). This cor-
relation produced a PCI of 0.614 (Figure 3). To evaluate
the robustness of the approach, one drug was systemati-
cally removed from the 14 chosen drugs, and the prediction
scores were then reevaluated using the remaining 13
drugs. In this single drug removal study, the largest P value
consistently remained less than 0.015 (PCl >0.59), thus
validating the robustness of the model, with respect to per-
turbations by the selected drugs.

There are several key components to the DIGRE model
(see Discussion section). To better investigate how different
components contributed to the overall prediction, we com-
pared results from different variations of the current model.
In the DIGRE model, the major hypothesis is a genomic
“residual effect.” To test this hypothesis, we estimated the
synergistic effect using a similarity score, without consider-
ing the genomic residual effect (i.e., the combination of two
similar drugs is more synergistic), and the resulting PCI
was only 0.49. This PCI value was much worse than the
current DIGRE model, indicating that the genomic residual
effect is crucial for estimation of the drug combination
effect. We also checked the opposite assumption, i.e.,
assigning lower synergistic scores to the pairs of similar
drugs, and the result was also much worse than the current
model (data not shown).
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Figure 2 Heatmap for predicted drug combination effects using
the Drug-Induced Genomic Residual Effect (DIGRE) model. The
predicted rank from the most synergistic pair to the most antago-
nistic pair is colored from red to blue, showing compound H-7 to
have the most proclivity toward a synergistic combinatorial effect,
consistent with the phenomenon observed in the gold standard.
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Figure 3 Performance comparisons among different model set-
tings. PCI, probabilistic concordance index.

As described in the Methods section, we also hypothe-
sized that the estimation of expression similarity between
two drugs can be improved by (i) a “focused view,” i.e.,
only considering the genes in specific cell growth pathways
(CGPs), and (ii) a “global view,” accounting for gene-gene
interactions using global pathways (GPs).The focused view
allows the model to focus only on genes that directly relate
to cell growth, while the global view allows the model to
account for “upstream and downstream” genes (i.e., genes
whose effects succeed or precede those of the gene under
study). In our comparisons, the prediction performances for
models without focused or global views were 0.603 and
0.597, respectively (Figure 2), indicating that both the
focused and global views contributed to the superior per-
formance of the DIGRE model. Interestingly, the model that
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Table 1 Synergistic Bliss score for gefitinib and docetaxel combination with
different dose levels (original phenotypic response data was downloaded
from ref. 16

Gefitinib (umol)

Docetaxel (umol) 5 20 40
The change of killing effect (%)

0.15 —0.0909 0.0381 0.0139
0.6 —0.0485 —-0.0173 0.0264
1.2 0.0180 0.0251 0.0026

considered both upstream and downstream genes in the
global view (PCl = 0.627) performed even better than the
current model (PClI = 0.614), which only considered the
upstream genes in the global view. Based on the EOB,
there were 16 synergistic and 36 antagonistic compound
pairs. The overall Spearman’s rank correlation coefficient
between the predicted and observed synergistic effects was
0.377. The rank correlation was 0.443 for the 16 synergistic
pairs and 0.290 for the 36 antagonistic pairs. In addition,
among the top five predicted synergistic compound pairs,
Geldana-mycin & Rapamycin (ranked 3rd) and Etoposide &
Geldana-mycin (4th) were reported as synergistic in
refs. 16,17 and refs. 18,19 respectively.

In summary, based on our comparisons, the genomic
residual effect was the major factor contributing to the suc-
cess of the DIGRE model, while the focused view and the
global view approach also improved the model’s perform-
ance. Furthermore, considering the expression of both up-
and downstream genes in the global view can further
improve the prediction result. The DIGRE model was imple-
mented in R, and it takes less than 30 min to run for this
data application.

Application to nine combinatorial drug effects on the
breast cancer cell line McF7
We further validated the DIGRE model in predicting combi-
natorial effects with different dose levels. The dataset we
used was from a study by Jin et al.,'® which includes phe-
notypic responses and gene expression profiles of MCF7
breast cancer cells treated with combinations of gefitinib
and docetaxel at different dose levels (three dose levels for
each drug and nine combinations in total). The observed
synergistic Bliss scores for gefitinib and docetaxel combina-
tions at different dose levels were derived from the original
dataset and are summarized in table 1. In this study, since
the variability of the experimentally observed EOB score
was not available, we used Spearman rank correlations,
instead of PCls, to quantify the consistency between the
predicted and observed ranks of the synergistic effects.
The Spearman correlation coefficient between the predicted
and the observed ranks in this study was 0.517 (Figure 4).
Besides the consistency between the predicted and
observed ranks, we also studied the performance of the
DIGRE model in detecting synergistic or antagonistic com-
binations. Both synergistic and antagonistic drug pairs were
determined by EOB scores. Receiver operating characteris-
tic (ROC) curves were used to investigate the sensitivity
and specificity of the DIGRE model (results shown in Fig-
ure 5a,b). The areas under the ROC curve (AUC) were

www.wileyonlinelibrary/psp4
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Figure 4 Scatter plot for synergistic ranks. Predicted ranks ver-
sus true ranks for breast cancer cell line MCF7 dataset, the
Spearman correlation coefficient between two ranks was 0.517.

0.889 for both synergistic and antagonistic compound pairs.
These results convincingly indicate that the DIGRE model
performed well in predicting drug combination effects at dif-
ferent dose levels.

DISCUSSION

In this study, we developed a DIGRE model to predict syn-
ergistic effects of drug combinations using genomic profiles.
There are four key features of the model: (i) It is based on
a new biological hypothesis of DIGREs. So, the model
takes into account the sequential effect of the treatment, in
agreement with many observations that the sequencing of
drug treatment matters to patients’ outcomes.?%?' In the
DIGRE model, the genomic residual effect is estimated
based on a mathematical model of the drug response. (ii)
Information from the dose-response curves is incorporated
into the model, taking advantage of the entire drug
response curve rather than relying on only a single point,
(iii) Only relevant genes are included in estimation of the
expression similarity between two drugs (focused view). (iv)
Pathway and gene-gene interactions are also incorporated
into the model.

In this study, the DIGRE model performed reasonably
well using the two datasets. Several potential extensions
could be further studied: (i) the performance of our model
relies on the accuracy and completeness of the known
pathway information. The KEGG database was used for
pathway information in this study. Although the KEGG data-
base is one of the best known pathway databases, it con-
tains errors. Thus, the performance of DIGRE might be
improved by using a better curated pathway database; (ii)
to quantify genomic changes, we only used the differentially
expressed genes identified at 24 h after treatment using a
simple fold-change cutoff. Thus, more sophisticated meth-
ods could be used to quantify transcriptomic changes; and

CPT: Pharmacometrics & Systems Pharmacology

0.8

0.6 —

Sensitivity

0.4 —

0.2 4

Area under the curve: 0.889

T T T I I I
0.0 0.2 0.4 0.6 0.8 1.0

1 — Specificity

0.0+

0.8

0.6 —

Sensitivity

0.4

0.2 —

Area under the curve: 0.889

I I T I T I
0.0 0.2 0.4 0.6 0.8 1.0

1 — Specificity

0.0 —

Figure 5 Receiver operator characteristic curves and area under
the curve for (a) synergistic pair detection and (b) antagonistic
pair detection.

(iii) since our model is designed for sequential treatment of
drug combinations, we believe that obtaining experimental
results with a specific order of treatments (e.g., initial treat-
ment with drug A, followed by drug B), would significantly
improve prediction accuracy.

METHODS

As shown in Figure 6a-c, the DIGRE model contains three
major steps: (i) derive an expression similarity score
between paired compounds. In particular, we used the
gene expression changes induced by each compound to
evaluate similarities between the two compounds; (ii) esti-
mate the DIGRE by incorporating similarity scores and
drug response curves; and (iii) calculate a final synergy
score for each compound pair. In this section, we describe
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Figure 6 Detailed illustration of Drug-Induced Genomic Residual Effect (DIGRE) model. (a-c) The three steps of DIGRE model. Step 1
shows the derivation of the similarity score (r) between drug A and B from their genomic profiles. Step 2 depicts the estimation proce-
dure of the drug-induced genomic residual effect from the similarity score, while step 3 shows the model for the final synergy score.
(d) Residual effect hypothesis diagram. The green curve is the drug response curve for drug B. Here, we assumed that treatment with
compound B followed treatment with compound A at concentrations ICy g and ICx 4, respectively, where ICx \ is the X% growth inhib-
itory concentration for compound N. There are three cases to estimate inhibitory contributions from compound B: (1) if compounds A
and B function independently, the estimation would be fg; (2) if the genomic changes induced by compound B are exactly the same as
those induced by compound A, inhibition by B could be estimated as fog; (3) if the effect from compound B is not independent or the
same as the effect of compound A, it is estimated as fg, o determined by the similarity between compounds A and B. (e) Diagram
showing that the sign of the contribution to similarity score is determined both by the variation type of the genes and the direction of
the interaction. (f) A real case in KEGG (Kyoto Encyclopedia of Genes and Genomes) human cancer pathway. In this small pathway,
the HIF-a gene product is related to two genes that are up- and downregulated by the two drugs, respectively.

each step in detail; the pseudo-code for the DIGRE model genes that do not overlap but have direct regulation rela-
is available in the Supplementary Data. tionships in GPs.

For component 1, if a gene that is a member of one of

the eight cell growth-related KEGG pathways (CGPs, see

Estimation of similarities between two compounds Supplementary table S1) is up- or downregulated by both
Gene expression changes after drug treatment of the cell compounds A and B (in the same direction), then it contrib-
lines were used to estimate the similarities between the utes one positive point to a similarity score. On the other
two compounds’ genomic effects (Figure 6a). The differen- hand, if a CGP gene is differentially regulated by com-

tially expressed genes induced by one compound were pounds A and B, it contributes one negative point. Based
categorized into groups: (i) upregulated genes (URG) and on our knowledge, we empirically selected the following
(i) downregulated genes (DRG) after treatment. We eight KEGG CGP pathways: aminoacyl-tRNA biosynthesis,
denoted these two groups as URG, and DRG, for com- MAPK signaling, NF-xB signaling, cell cycle, p53 signaling
pound A, and URGg and DRGg for compound B. The simi- (DNA Damage), apoptosis, transforming growth factor-f8
larity score consists of two components: one component is signaling, and cancer pathways.

contributed from overlapping genes between the URGs For component 2, we summarized the contribution from
and DRGs, and the other component is contributed from differentially expressed genes which were immediately

www.wileyonlinelibrary/psp4



DIGRE Multidrug Prediction
Yang et al.

upstream or downstream of the CGP genes. Here, the
upstream or downstream gene regulation information was
derived from the 32 KEGG GPs (see Supplementary table
S2). Overall, 2,322 genes and 11,642 gene-gene interac-
tions were included in the GPs. The detailed steps to calcu-
late component 2 are as follows: (1) identify CGP genes
that are in URGAa or DRGa, but do not overlap with any
URGg or DRGg genes; (2) identify the upstream or down-
stream genes of the genes identified in step (1); if a gene
identified in step (2) belongs to URGg or DRGg, then it con-
tributes one point to the similarity score, while the sign of
the point is determined by both the direction of the expres-
sion change and the direction of the interaction. For exam-
ple, a positive contribution could be either from a gene in
URGg that activates a gene in URGA or inhibits a gene in
DRGg (as shown in Figure 6e). To make the similarity
scores comparable across different drugs, the final similar-
ity score is normalized by the total number of differential
expressed genes:

ry +.g=contribution(component 1+ component 2) / (URGg + DRGg)

Iy, 4= contribution(component 1+ component 2) / (URG4+ DRGp)

Here, ris the similarity score of gene expression between
compounds A and B, and —1 < r < 1. In the formula, the’
symbol indicates the first treatment. The similarity score of
the compounds’ effects is dependent on the sequence of
treatment with the two compounds, which agrees with the
widely observed phenomena that the sequence of drug
treatment matters to patients’ outcomes.2°:!

Estimate DIGRE

Let f4 and fg be the fraction of cell growth inhibition induced
by individual compounds A and B at concentrations Ca and
Cg, respectively (Figure 6b). Suppose the cells are first
treated by compound A, followed by compound B. After
treatment by compound A, f4 percent of cells are killed,-
while (1 — fa) percent of cells survive. The cells that sur-
vive compound A treatment carry the genomic change
induced by compound A. This genomic residual effect fur-
ther modulates the drug effect of compound B, which is the
key hypothesis of this study. Suppose that if f4. 5 is the
percentage of cell death induced by compound B, fa.p
may differ from fg (the effect of compound B when used
individually) because of the existence of the genomic resid-
ual effect induced by compound A. In this study, we
hypothesized that the cell death induced by the combina-
tion can be approximated by

fp=1=(1=1y 1prop)[1=(1=1y .5)f8] M

where fy . g is the expression similarity score introduced
previously, and fog is the percentage of cell death after
double-dose treatment of compound B by itself. Here, fog
can be derived from the drug response curve (Figure 6d).
Eq. 1 is developed by conceptually decomposing the effect
of compound A into two components: Bg, 4, which is inde-
pendent from compound A; and Bg_a, Which is similar to
compound A (see Figure 6). Therefore, in Eq. 1, rasp fos
accounts for the cell death induced by Bg_,4, while (1 —
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ra+g) fg accounts for the cell death induced by Bg_,. To
understand how this estimation equation works, let us look
at the two extreme cases: (i) If compound B is exactly the
same as compound A (i.e.,, ¥ = 1), Eq. 1 becomes fy .5 =
fog. Thus, the cell death induced by compound B, with the
residual effect of A, is the same as if the cells had been
treated by a double dose of compound B. (ii) If compound
B is completely independent of compound A (i.e., ry g =
0), Eq. 1 becomes f4. g = fg. So the cell death induced by
compound B, with the residual effect of A, is the same as
the cell death induced by compound B alone. In summary,
the estimation equation is reasonable in both cases. In gen-
eral, the effects of compounds A and B are neither inde-
pendent nor the same, but somewhere in between. In this
study, we showed that the equation performs well in gen-
eral cases in two real datasets.

Estimation of combinatorial effect
After we estimate f4 . 5, the cell viability reduction by the
combination of A and B can be calculated by

Zy g=1=(1=f)(1~fy 1p)
=1=(1=f) 1 =1y grogl[1= (1= 14 . 5)fs]
Similarly, if the sequence of treatment with the two com-
pounds is reversed (i.e., treat with compound B first, fol-

lowed by compound A), the induced cell death can be
estimated by

)

Zy o q=1=(1=18)[1 =g s poal [1 = (1 =15 1 4)fa] @)

In the estimation of induced cell death from compound
combination, we use the cell death averaged from both
possible sequences of compound treatment (Figure 6c).
So, the final estimated cell death is

Z=(Zg+pa+2Za+B)/2

Definition of the Pcls

A concordance index (c-index) was used to compute the
proportion of concordance between the predicted and
observed ranks of drug pairs to evaluate prediction per-
formances. Let {ry, r»...ry] be the rank of observed drug
pairs (Npairs in total) from the most synergistic to the most
antagonistic in a specific dataset, with {p;, po,...pn] pre-
dicted ranks calculated by the model. A score s; can then
be computed as

1, (> n&p>porn<n&p <p)

5= 0, if(r>n&p>porn<n&p <p)
=

,  otherwise

| —

where i, j = 1, 2,...5. The concordance index is defined as
. N—-1 N
c—index = gy oisy Yjmiv1 Si
Because of the experimental noise in the observation of
each drug pair, a probabilistic c-index (PC-index) is



calculatpd to incorporate uncertainties. Instead of s; a
score s;; is computed as

1 EOB;—EOB; PR
SEgos, + SEgog orrn < np; < pj
$i=9 1 EOB,—EOB; N Ly
2 1+er e if
SEgog, +SEgog orr < np; < pj
1
_ h i
5 otherwise

where er is an error function defined as er(x)=2 [ e at
EOB is excess over bliss, and SE is the standard error of
the mean EOB.
The final equation is PC—index= ﬁl\l—ﬂz it S
j=1+1..N
Generally, the PC-indexis less than one, due to noise in the
data. For example, the maximum PC-index was found to be
0.90inthe NCIDREAM Drug Combination Challenge dataset.
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WHAT IS THE CURRENT KNOWLEDGE ON THIS
TOPIC?

/ Multidrug regimens are considered a promising strategy
that can improve therapeutic efficacy and possibly reduce
side effects. However, published examples demonstrat-
ing their effectiveness by screening combinations by
computational models are rare and not well studied.

WHAT QUESTION DID THIS STUDY ADDRESS?

o/ We introduce a novel computational model to rank drug
combinations from the most synergistic to the most
antagonistic by incorporating a biological hypothesis.

WHAT THIS STUDY ADDS TO OUR KNOWLEDGE

The model was systematically validated by two datasets.
Its performance in the recent NCI-DRUG Sensitivity Pre-
diction Challenge indicates that the combinatorial drug
effect for compounds A and B at least partly derives
from gene expression change-induced residual effects.

DIGRE Multidrug Prediction
Yang et al.
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HOW THIS MIGHT CHANGE CLINICAL
PHARMACOLOGY AND THERAPEUTICS

This model allows a better understanding of the mecha-
nisms of drug interactions. In addition, its application
can optimize the laborious process of experimentally
screening drug combinations.

Drews, J. Drug discovery: a historical perspective. Science 287,1960-1964 (2000).
Smalley, K.S., Haass, N.K., Brafford, P.A., Lioni, M., Flaherty, K.T. & Herlyn, M. Mul-
tiple signaling pathways must be targeted to overcome drug resistance in cell lines
derived from melanoma metastases. Mol. Cancer Ther. 5, 1136-1144 (2006).
Overall, C.M. & Kleifeld, O. Validating matrix metalloproteinases as drug targets and
anti-targets for cancer therapy. Nat. Rev. Cancer 6, 227-239 (2006).

Jia, J. et al. Mechanisms of drug combinations: interaction and network perspectives.
Nat. Rev. Drug Discov. 8, 111-128 (2009).

Nelson, H.S. Advair: combination treatment with fluticasone propionate/salmeterol in
the treatment of asthma. J. Allergy Clin. Immunol. 107, 398-416 (2001).

Gupta, E.K. & Ito, MK. Lovastatin and extended-release niacin combination product: the
first drug combination for the management of hyperlipidemia. Heart Dis. 4, 124—137 (2002).
Vermorken, J.B. et al. Platinum-based chemotherapy plus cetuximab in head and
neck cancer. N. Engl. J. Med. 359, 1116-1127 (2008).

Kitano, H. A robustness-based approach to systems-oriented drug design. Nat. Rev.
Drug Discov. 6, 202-210(2007).

Kisliuk, R.L. Synergistic interactions among antifolates. Pharmacol. Ther. 85, 183190 (2000).
Rand, K.H. & Houck, H. Daptomycin synergy with rifampicin and ampicillin against
vancomycin-resistantenterococci. J. Antimicrob. Chemother. 53, 530-532 (2004).

. Graham, B.A., Hammond, D.L. & Proudfit, H.K. Synergistic interactions between two

alpha(2)-adrenoceptor agonists, dexmedetomidine and ST-91, in two substrains of
Sprague-Dawley rats. Pain 85, 135-143 (2000).

Azrak, R.G. et al. The mechanism of methylselenocysteine and docetaxel synergistic
activity in prostate cancer cells. Mol. CancerTher. 5, 2540-2548 (2006).

Zhao, X.M., Iskar, M., Zeller, G., Kuhn, M., van Noort, V. & Bork, R Prediction of
drug combinations by integrating molecular and pharmacological data. PLoS Comput.
Biol. 7, Binnprwrupn-m

Wu, Z.,, Zhao, X.M. & Chen, L. A systems biology approach to identify effective cock-
tail drugs. BMC Syst. Biol. 4 Suppl 2, S7 (2010).

Jin, G., Zhao, H., Zhou, X. & Wong, S.T. An enhanced Petri-net model to predict
synergistic effects of pairwise drug combinations from gene microarray data. Bioinfor-
matics 27, i310-i316 (2011).

Francis, LK. et al. Combination mammalian target of rapamycin inhibitor rapamycin
and HSP90 inhibitor 17-allylamino-17-demethoxygeldanamycin has synergistic activity
in multiple myeloma. Clin. Cancer Res. 12, 68266835 (2006).

Fujimoto, S., Inagaki, J., Horikoshi, N. & Ogawa, M. Combination chemotherapy with
a new anthracycline glycoside, aclacinomycin-A, and active drugs for malignant lym-
phomas in P388 mouse leukemia system. Gann 70, 411-420 (1979).

Barker, C.R. et al. Inhibition of Hsp90 acts synergistically with topoisomerase Il poi-
sons to increase the apoptotic killing of cells due to an increase in topoisomerase Il
mediated DNA damage. Nucleic Acids Res. 34,1148-1157 (2006).

Yao, Q., Weigel, B. & Kersey, J. Synergism between etoposide and 17-AAG in leuke-
mia cells: critical roles for Hsp90, FLT3, topoisomerase Il, Chk1, and Rad51. Clin.
Cancer Res. 13,1591-1600(2007).

Shah, M.A. & Schwartz, G.K. Cell cycle-mediated drug resistance: an emerging con-
cept in cancer therapy. Clin. CancerRes. 7, 2168-2181 (2001).

Recht, A. et al. The sequencing of chemotherapy and radiation therapy after conservative
surgery for early-stage breast cancer. N. Engl. J. Med. 334,1356-1361 (1996).

©2015 The Authors CPT: Pharmacometrics & Systems Phar-
macology published by Wiley Periodicals, Inc. on behalf of
American Society for Clinical Pharmacology and Therapeu-
tics. This is an open access article under the terms of the
Creative Commons Attribution-NonCommercial-NoDerivs
License, which permits use and distribution in any medium,
provided the original work is properly cited, the use is non-
commercial and no modifications or adaptations are made.

Supplementary information accompanies this paper on the CPT: Pharmacometrics & Systems Pharmacology website
(http://www.wileyonlinelibrary.com/psp4)

www.wileyonlinelibrary/psp4



	l
	l

