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Valve replacement is the main therapy for valvular heart disease, in which a diseased valve
is replaced by mechanical heart valve (MHV) or bioprosthetic heart valve (BHV). Since the
2000s, BHV surpassed MHV as the leading option of prosthetic valve substitute because
of its excellent hemocompatible and hemodynamic properties. However, BHV is apt to
structural valve degeneration (SVD), resulting in limited durability. Calcification is the most
frequent presentation and the core pathophysiological process of SVD. Understanding the
basic mechanisms of BHV calcification is an essential prerequisite to address the limited-
durability issues. In this narrative review, we provide a comprehensive summary about the
mechanisms of BHV calcification on 1) composition and site of calcifications; 2) material-
associated mechanisms; 3) host-associated mechanisms, including immune response
and foreign body reaction, oxidative stress, metabolic disorder, and thrombosis.
Strategies that target these mechanisms may be explored for novel drug therapy to
prevent or delay BHV calcification.
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1 INTRODUCTION

Valvular heart disease (VHD) inflicts a heavy burden on global health care, with an incidence rate of
13.3% for people over 75 (Roger et al., 2011; Virani et al., 2021). Given the aging of population
worldwide, the prevalence of VHD is expected to rise exponentially and will double before 2050
(D’arcy et al., 2016; Dziadzko et al., 2018). Currently, surgery replacement of the dysfunctional native
valves with artificial valves is the standard therapy for VHD, and artificial valves generally fall into
one of the two categories: mechanical heart valve (MHV) or bioprosthetic heart valve (BHV)
(Vahanian et al., 2021). The annual demand for interventions is expected to hit 850,000 by 2050,
owing to the increasing prevalence of VHD (Yacoub and Takkenberg, 2005). In the past 2 decades,
the application of BHV has surpassed MHV. Rapid advances in the field of transcatheter aortic valve
replacement (TAVR) also contributed to the extending scope and appreciation for BHV (Wen et al.,
2020).

In contrast to MHV, BHV has significant advantages by eliminating the need for anticoagulation
therapy while possessing exquisite hemodynamic properties similar to those of native valves.
However, its durability was hampered by inevitable structural valve degeneration (SVD). In
brief, SVD is defined as a permanent intrinsic change of the valve resulting in calcification,
leaflet tear, pannus deposition of a valve, which eventually manifested as stenosis or
regurgitation prompting high-risk reintervention (Capodanno et al., 2017; Dvir et al., 2018).
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Thus, SVD is becoming a major issue for surgeons and
researchers. Calcification is the most prevalent pathological
form of SVD (Koziarz et al., 2020) and is believed to be the
final pathway for valve dysfunction, leading to progressive cusp
stiffness and obstruction as well as leaflet fragility (Cartlidge et al.,
2019). Therefore, we review current knowledge of the
pathogenesis for BHV calcification.

BHV calcification has been once considered a passive
degenerative process, but now is seen as a complex
mechanism actively regulated by several factors (Kostyunin A.
E. et al., 2020). Recent studies provided evidence that multiple
processes were involved in BHV calcification, including
glutaraldehyde (GLUT) pretreatment, material composition,
mechanical stress, and immune response. In this review, we
sought to clarify pathophysiological features and mechanisms
of BHV calcification as well as potential drug strategies to prevent
or delay BHV calcification.

2 TYPES OF BHV

Since the 1960s, techniques and technologies of surgical aortic
valve replacement as well as the implanted aortic valves
themselves have been flourishing. Despite the superior long-
term durability, patients fitted with MHV face the burden of
lifelong anticoagulant treatment.

In the recent 2 decades, with the advent of TAVR and the
improvement of BHV, there has been a substantial shift toward
the use of BHVs compared to MHVs. Studies have demonstrated
that the overall usage of BHV in isolated aortic valve procedures
was up to 87% (Beckmann et al., 2016). Generally, BHV can be
classified according to materials that derived from pulmonary
autografts, homografts, and xenografts. Xenografts are the main
materials of commercial BHV, so the discussion we present below
focuses on xenografts BHV. Conventionally, porcine aortic valve
leaflets or pericardial bovine patches used for BHV are preserved
by GLUT fixation and other anti-mineralization treatments,
partly preventing immunogenicity and improving durability.
Of note, prior studies have shown that pericardial bovine
valves have significantly better hemodynamic results with
lower gradient pressure and larger orifice areas than porcine
valves (Ruzicka et al., 2009; Yap et al., 2013). In order to serve the
needs of various innovative technologies and pathoanatomical
diversity of the aortic roots, the design of BHV can be subdivided
into stented or stentless surgical valve and balloon-expandable or
self-expanding transcatheter valve. Stented valve is composed of
polymeric material or scallop-shaped external sewing ring located
outside of the stent frame, while stentless valve have neither a
stent frame nor a base ring that supports valve leaflets providing
greater effective orifice areas and lower transprosthetic gradients
(Paradis et al., 2015; Dangas et al., 2016).

3 DURABILITY AND FAILURE OF BHV

Despite the many advantages of BHV over MHV, particularly
without the need for lifelong anticoagulative treatment, BHV is

still not devoid of shortcoming. Numerous cohort studies indicate
the existing commercial BHV are not fully addressing long-term
needs as a prosthetic valve substitute due to inevitable SVD. A
retrospective study (Forcillo et al., 2013) reported the freedom
rate from reoperation after implanted Carpentier-Edwards valve
due to prosthesis dysfunction averaged 98 % ± 0.2%, 96% ± 1%,
and 67% ± 4% at 5, 10, and 20 years, respectively. Tirone et al.
(David et al., 2010) evaluated 1,134 patients underwent aortic
valve replacement surgery with Hancock II bioprosthesis,
showing survival rate and freedom rate from SVD at 20 years
were 19.2% ± 2% and 63.4% ± 4.2%, respectively. The mean
duration of SVD after implantation of Mitroflow bioprosthesis
was only 3.8 ± 1.4 years (Senage et al., 2014). Therefore, Long-
term outcomes of surgical BHV remain suboptimal, irrespective
of their brands and special anti-calcification pretreatment.

Since TAVR has only been widely generalized after 2007,
studies for durability of transcatheter valves are almost
circumscribed to the first 5 years of follow-up. Five-year rate
of BHV dysfunction undergoing TAVR was 1.4% (Barbanti et al.,
2015). Noteworthy, SVD usually begins 8 years after
implantation, with an increasing rate of SVD after 10 years
(Dvir et al., 2018). Generally, transcatheter valves are assumed
to have even worse durability compared with surgical valves due
to several factors. Transcatheter valves are thinner than surgical
valve to permit transcatheter delivery. Moreover, transcatheter
valves were under higher mechanical stresses and strains because
of non-circular, asymmetric stent deployment. Transcatheter
valves is vulnerable to traumatic injury during implantation,
while surgical valves remain well conserved without any
contact during operation. In this context, the SVD rate of
transcatheter valves was substantially underestimated.

Limited durability severely impedes broadening the scope of
BHV usage. Great care should be taken to decide whether to
choose BHV before surgery, especially for patients with extremely
high risks for SVD.Multiple factors are associated with early SVD
onset, including young age of patients, end-stage renal disease,
diabetes mellitus, hyperparathyroidism, smoking, and prosthesis-
patient mismatch (Kostyunin A. E. et al., 2020; Ochi et al., 2020),
which suggest that BHV failure is a continuous variable process,
rather than a binary categorical parameter. Given the similarities
of risk factors of BHV failure, atherosclerosis, and calcific aortic
valve disease, they may share the same molecular mechanisms, in
which calcification is the core signature and important target for
intervention. Understanding the biomolecular mechanisms
related to BHV calcification is the essential first step to
explore potential therapeutic targets to inhibit or at least slow
the progression of SVD and open novel avenues for improving
the longevity of BHV to fulfill clinical requirements.

4 GENERAL FEATURES OF BHV
CALCIFICATION

BHV calcification is one form of ectopic calcification, referring to
the aberrant deposition of calcium phosphate complexes in soft
tissues (Figures 1A,B). Based on the pathogenic mechanisms,
ectopic calcification can be classified as dystrophic, metastatic,

Frontiers in Pharmacology | www.frontiersin.org June 2022 | Volume 13 | Article 9098012

Wen et al. Bioprosthetic Heart Valve Calcification Mechanisms

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


idiopathic, iatrogenic, or tumoral (Chander and Gordon, 2012; Li
et al., 2014; Boraldi et al., 2021). In fact, to date, the pathogenesis
of BHV calcification remains unclear. However, the determinants
of all kinds of ectopic calcification cannot be separated from the
original level of calcium, the presence of scaffolding for mineral
deposition, and abnormal regulations during calcification. This
chapter will draw a comprehensive picture of BHV calcification as
possible from 1) the composition of the calcific foci in BHV; 2)
micro and macro-level perceptions for BHV calcification sites.
Compositions and sites of calcific foci are not only the final
manifestation but could reflect mechanisms of BHV calcification.

4.1 The Composition of Calcifications
Calcium phosphate (CaP) is the common name of the calcific
deposits family, and different type of CaP is formed under
different physiological and pathophysiological situations (Eliaz
and Metoki, 2017). Although several studies have confirmed the
mineral salt of calcific BHV is a mixture of CaP, the major
components of BHV calcifications from different studies were
inconsistent and conflicting. Delogne et al. (2007). showed
spectral features very similar to a crystalline hydroxyapatite
(HAP) spectrum, and refuted the findings of Mikroulis et al.
(2002), who reported the presence of dicalcium phosphate
dihydrate (DCPD), octacalcium phosphate (OCP), and β-
tricalcium phosphate (β-TCP). However, Tomazic et al. (1994)
characterized calcific deposits from 10 failed BHV that had been
implanted in patients for 2–13 years and suggested BHV

calcifications were composed of either an apatitic and/or OCP-
like material, but also eliminated HAP as a significant fraction in
BHV calcifications due to measured refraction index. CaP
mixture complexity and significant individual differences
contribute to different results. Despite these differences, all of
these studies collectively highlight that the Ca/P molar ratio of
BHV calcific deposits ranges from 1.34 to 1.67, considerably
lower than 1.70 found in mature atherosclerotic plaque, natural
valve calcification, and mature skeletal (Tomazic et al., 1994;
Mikroulis et al., 2002; Delogne et al., 2007). Collectively, it is
worth raising the possibility of the presence of precursor phases
associated during the early stages of calcification with substantial
incorporation of sodium, magnesium, silicon, and carbonate.
Regardless, different condition contributes to a different type
of CaP deposited. Thus, further studies in the component of BHV
calcification may help make the BHV calcification pathology
progression clearer.

4.2 The Location of CaP
Some ultrastructures of cell and extracellular matrix (ECM)
provide scaffolding or abundant feedstock for calcium deposits
that are prone to calcification. Despite differences in the
infrastructure of the porcine aortic valve and bovine
pericardium, the site features of calcification of these materials
were virtually similar (Schoen et al., 1986). Initial calcification
deposits were localized predominantly to cell remnants (Valente
et al., 1985; Schoen et al., 1986; Schoen et al., 1994).

FIGURE 1 | Schematic of bioprosthetic heart valve calcification. (A)Gross view of bioprosthetic heart valve calcification (arrowhead). (B) Low-energy radiography of
bioprosthetic heart valve calcification (Delogne et al., 2007). (C) Ultrastructure of calcium deposits in the cell nuclei (arrow) (Schoen et al., 1994). (D) Scanned electron
microscopy view of calcific loci depositing on collagen and elastin (Delogne et al., 2007). (E,F) calcospherulae arranged in concentric rings with and without a central core
(Valente et al., 1985).
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Microscopically, the earliest deposits were noted in the nuclei, but
it also appears to be at residual organelles or associated with the
plasma membrane in the cytoplasm (Schoen et al., 1994). In
addition, calcific deposits are also involved in the fibrosa, and
later deposits expanded the spongiosa. Namely, cellular debris,
collagen, and elastin can serve as foci for calcification (Figures
1C,D). The concrete mechanisms for this progression are
described below. When considering BHV as a whole, cuspal
commissures and basal attachment sites are more susceptible
to calcification (Schoen et al., 1994; Schoen and Levy, 1999).
Different implanted positions could be expected to have different
degrees of BHV calcification, as calcification developed more
commonly in inflow valves (ventricular valve) than the outflow
valve (aortic valve) (Liao et al., 2008), which may be ascribed to
different mechanical stress.

5 PATHOPHYSIOLOGICAL MECHANISM
OF BHV CALCIFICATION

By analogy with the pathology of native valve calcification, the
mechanism of BHV calcification should not be entirely attributed
to a passive process of calcium deposits but is probably complex
and multifactorial, and a comprehensive understanding remains
elusive. In this review, we categorized BHV calcification

mechanism into two major categories: material-associated
mechanism and host-associated mechanism. The former
involves the specific nature of valve materials and
physicochemical properties that lead to the high susceptibility
of calcification. On the other hand, the host-associated
mechanism is implicated in several processes after BHV
implantation, such as protein adsorption, oxidative stress,
activation of immune systems, and local inflammatory
response (Figure 2).

5.1 Material-Associated Mechanism
5.1.1 GLUT and Cell Debris
GLUT efficiently crosslinks collagen and mask xenoantigens,
showing substantial advantages like no other crosslinkers.
However, the mechanism of BHV calcification induced by
GLUT has been corroborated (Kim et al., 1999; Schoen and
Levy, 1999). Among these, calcification of implanted BHV is
mainly due to cytotoxic effects treated by GLUT. Under normal
physiological circumstances, the intracellular calcium level is up
to a thousand-fold lower than the extracellular one (Kiełbik et al.,
2020), tightly maintained by the mitochondria through the
calcium pump. In-vitro studies revealed that GLUT treatment
causes cell death and inactivation of calcium pump, triggering an
immediate influx of calcium ions from extracellular spaces and a
rise of intracellular phosphate ions in a dose-dependent manner

FIGURE2 | Schematic of the process of BHV calcification. Dead cells and cell debris, and elastin andGAGs degradation, and collagen crosslinks were present after
GLUT treatment, providing calcium ions and the specific space structure for calcification. Serum protein and lipid infiltrated, cytokines, xenoantibodies secreted by B cells
and thrombosis would activate macrophages and induce inflammatory response. Macrophages further secret MMPs and product ROS/RNS, leading to BHV
calcification.
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(Kim et al., 1999). However, due to very poor vascularization in
implanted BHV tissue, cell debris cannot be promptly scavenged
by macrophages. In this scenario, cell-membrane-derived acidic
phospholipids form the so-called “calcium-phospholipid-
phosphate complexes” (Boskey and Posner, 1976; Schoen and
Levy, 1992), so that calcium appears to deposit in the cell debris.
Another major mineral nucleation site is involved in cell-derived
matrix vesicles, the production of cell byproducts, including
multiply undefined forms, like “matrix vesicles”, “apoptotic
bodies”, “exosomes” et al. (Schraer and Gay, 1977). These
initial calcific foci consist of concentrically arranged, multi-
laminated vesicular bodies that were named spherulites or
calcospherulae (Figures 1E,F) (Valente et al., 1985; Lee, 1993),
which have been reported to have robust facilitatory effects on
mineral deposition. Moreover, free aldehyde groups and
impairing charges balances after GLUT treatment may hence
promote calcification as well, and aldehyde-free treatment was an
effective method to enhance the anti-calcification properties
(Chen et al., 1994; Rodriguez-Gabella et al., 2017; Meuris
et al., 2018; Badria et al., 2020).

5.1.2 Extracellular Matrix Damage
ECM, mainly composed of fibrillar collagens, elastin, and
glycosaminoglycans (GAGs), is the largest source of free
calcium ions during the process of BHV calcification. Of
concern, mineralization of ECM is a secondary process that
occurs after collagen and elastin fibers were embedded by dead
cells or vesicles induced calcium deposition (Kim, 2002). GLUT-
fixed tissues are not entirely resistant to enzymatic attack and are
not metabolically inert. Degradation and breakdown of ECM
provide spatial facilitation for calcification. GAGs provide
hydration and lubrication in the native valves and are
important for the stable assembly of the ECM. In particular,
GAGs interact specifically with type I collagen fibrils, bridging
and stabilizing adjacent collagen fibrils (MacGrogan et al., 2014).
Nevertheless, GAGs cannot be crosslinked by GLUT, and are
gradually lost during the preparation, storage, and implantation
of BHV (Leong et al., 2013). Degradation of GAGs disrupts
collagen integrity, resulting in exposing hole zones, a 3-
dimensional structure favoring nucleation of CaP crystals. In
parallel, GLUT doesn’t react with elastin. And when undergoing
proteolysis, elastin possesses a special structure that smooths the
path of calcium deposition (Bailey et al., 2003; Simionescu et al.,
2003; Wang et al., 2015). Multiple studies suggested that stabilizing
GAGs and elastin help reduce BHV calcification (Ohri et al., 2004;
Raghavan et al., 2007; Leong et al., 2013; Lei et al., 2019). Except for
degradation, fibers ruptured and damaged bymechanical stress are
also presented with calcium-binding sites (Whelan et al., 2021).

In short, the residual cell debris and cell-derived matrix
vesicles are the primary loci of calcification in BHV, while the
ECM provides massive calcium ions and a specific space structure
for mineralization during the degradation.

5.2 Host-Associated Mechanism
5.2.1 Immune/Inflammatory Response
Young patient age has been considered as an exact risk factor for
early SVD of BHV (Dvir et al., 2018; Pibarot et al., 2020). The

predicted 15-year risk of needing reoperation because of SVD is
50% for patients at age of 20, but patients >65 years old may show
greater freedom from SVD (Chan et al., 2006; Siddiqui et al., 2009;
Otto et al., 2021a). This phenomenon is widely believed to be
attributable to immune response because young adults mount a
more vigorous immune response than elderly people. In fact,
mounting evidence has accumulated over the past decade that
strongly points toward a crucial involvement of immune response
in the calcification and degradation of BHV (Hopkins, 2006;
Siddiqui et al., 2009; Manji et al., 2015b; Costa, 2020).
Significantly increased immune cellular infiltration, including
T cells, macrophages, B cells, neutrophils, and plasma cells,
was observed in the implanted calcific BHV tissue, with an
elevated cytokine concentration accompanied (Manji et al.,
2015a; Bozso et al., 2021). Senage and his colleagues (Senage
et al., 2022) carried out a large cohort study demonstrating graft-
special antibodies significantly increase and deposit on calcific
BHV tissue 1 month after BHV implantation. Animal studies also
showed T cells and macrophages infiltration and antibody rise in
GLUT fixed valve tissues (Manji et al., 2006). The above studies
indicate that inflammatory reaction and immune response may
play vital roles in BHV calcification processes.

BHV implantation necessarily induces foreign body reactions.
Foreign body reaction is an immune-mediated reaction to
implanted materials where a cascade of inflammatory events
results in granuloma and fibrous encapsulation (Veiseh and
Vegas, 2019). Different from other biomaterials, the implanted
BHV does not form a visible fibrous capsule under high shear
forces and complex haemodynamic profile, but allows non-
specific protein adsorption (Shen et al., 2001; Sakaue et al.,
2018) and inflammatory cells infiltrating (Kostyunin A. et al.,
2020). Host plasma proteins adsorption leads to a series of
subsequent effects including complement system and platelet
activation, coagulation cascade, and cell adherence (Zhu et al.,
2019). Moreover, Antonio et al. (Frasca et al., 2020) have found
that human serum albumin and glycation infiltration lead to BHV
tissue matrix disruption and change the biomechanical properties
of valve leaflets. In detail, glycation end products not only alter
collagen fiber interactions, potentially causing leaflet stiffening,
but result in modulation of cell phenotypes and instigation of
inflammation via glycation product-mediated receptor signaling
(Frasca et al., 2020).

Subsequently, monocyte/macrophages are recruited by the
layer of protein adsorbed onto the valve surface. Through the
electron microscopy visualization of calcified BHV, Alexander
et al. (Kostyunin A. et al., 2020) have elaborately illustrated a
multi-step process that monocyte infiltration followed by a
macrophage-driven ECM disintegration. Monocytes/
macrophages roll and then adhere to the surface of BHV,
tearing the ECM proteins by invadopodia. Moreover, (neo)
vascularization facilitates the migration of macrophages and
other immune cells and alters microenvironmental pH as well
as bring available mineral ions (Kitagawa et al., 2015; Kostyunin
A. et al., 2020; Katsi et al., 2021). Infiltrated macrophages
concentrate the cytoplasmic granules at the leading edge of the
cells and release proteolytic enzymes, such as matrix
metalloproteinases (MMP) (Simionescu et al., 1996;
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Simionescu et al., 2003), and plasminogen (Sakaue et al., 2018),
leading to degradation and delamination of the ECM (Kostyunin
A. et al., 2020). MMP-2 and MMP-9 were markedly elevated in
the calcified BHV tissues, compared to the noncalcified BHV.
MMPs could degrade partially GLUT-fixed collagen and
particularly large amounts of elastin. Furthermore, MMPs play
a vital role in the promotion of inflammatory, fibrotic, and
osteogenic genes overexpression (Matilla et al., 2020). In
addition, plasminogen was strongly stained in CD68-positive
macrophages among calcified BHV (Sakaue et al., 2018). To
our knowledge, plasminogen, acting as a potent
proinflammatory mediator, contributes to the induction of
cytokines and intracellular signaling events and stimulates the
activation of macrophages (Shen et al., 2012). Under these
circumstances, the strong MMP-dependent proteolysis and the
fibrinolytic system can cleave most ECM proteins (Kostyunin A.
E. et al., 2020).

Besides, macrophages also secret calcium-binding proteins,
such as osteopontin and osteonectin, which are adapted for
engendering BHV calcification. Osteonectin, also known as
BM-40 or SPARC (secreted protein acidic and rich in
cysteine) (Wang et al., 2006), has a considerable high affinity
to calcium (Busch et al., 2000). Osteonectin also modulates cell
function by interacting with cell-surface receptors,
metalloproteinases, growth factors, and other bioeffector
molecules, involved in tissue remodeling, repair, development,
and cell turnover (Bradshaw and Sage, 2001; Zhu et al., 2020).
Given to macrophage-derived matrix vesicles contribute to
microcalcification in atherosclerotic plaques (New et al., 2013),
macrophages may also secrete extracellular vesicles capable of
inducing BHV mineralization.

Xenoantigens are the primary cause of provoking adaptive
immune reactions after BHV implantation. Although GLUT
fixation and other pretreatments minimize the immunological
determinants of bioprosthetic leaflet tissue to avoid xenograft
rejection, the hurdle still exists because the immunogenicity of
such tissue is not sufficiently abolished, especially carbohydrate
antigens. It is well-established that the alpha-gal epitope is the
dominant mediator in discordant xenoimplants (Naso et al.,
2013; Kim et al., 2015; Li, 2019). In this regard, Gal-knockout
BHV represented a novel and potentially useful strategy for
reducing BHV calcification (Lila et al., 2010; Park et al., 2010;
McGregor et al., 2013). The additional two immunogenic
carbohydrate antigens that have been identified are
N-glycolylneuramic acid (Neu5Gc) antigen (Lee et al., 2016;
Reuven et al., 2016) and the Sid blood group antigen (Sda)
(Li, 2019). Apart from carbohydrate antigens, Katherine et al.
(Gates et al., 2019) have identified 19 specific protein antigens
from GLUT fixed bovine pericardial heart valves that stimulate
the graft-specific humoral immune response in patients.
Intriguingly, they found calcium-binding proteins were the
most highly over-represented biological function of antigens,
but such antibody-binding effect of those proteins on BHV
calcification is yet to be elucidated.

In the humoral response triggered by unmasked xenoantigens,
pre-existing antibodies play a vital role in the opsonization of
inflammatory cells to recruitment and proliferation,

phagocytosis, efferocytosis, etc, thereby distinctly facilitating
the overall immune response. Inflammatory cells, such as
neutrophils and macrophages, adhesion onto BHV tissue
surface and subsequently infiltrate into the leaflets, releasing
stored MMPs (Ground et al., 2021). Similarly, cellular
immunity participates in BHV calcification. Histological
studies of BHV removed from patients showed leukocytes
destroying collagen fibers, with crystalline material present on
their surfaces, suggesting it may have been acting as a nidus for
calcification (Stein et al., 1988). Regardless, humoral or cellular
immunity would decidedly undermine the integrity of valve,
leading to exposure to calcification site or increasement in
calcification composition.

5.2.2 Oxidative Stress
It is well known that reactive oxygen and nitrogen species (ROS/
RNS) have a potentially severe impact on both host and implanted
biomaterials. ROS/RNS are continuously generated as normal by-
products of cell metabolism and act as signaling molecules at lower
concentrations controlling cell proliferation and differentiation in
many cell types (Manolagas, 2010). But the excessive productions
of ROS/RNS participate in numerous pathogenesis of diseases
including cancer, inflammatory disorders, and metabolic
diseases, leading to DNA, proteins, and carbohydrates damage,
denoted as oxidative distress (Sies and Jones, 2020), Christian et al.
(2014) have analyzed fifteen clinical failed BHV using mass
spectrometry and found that levels of ortho-tyrosine, meta-
tyrosine, and dityrosine conspicuously increase among failed
BHV. Furthermore, 3-Chlorotyrosine, an oxidized amino acid
formed by myeloperoxidase-catalyzed chlorinating oxidants, was
correlated with BHV calcification (Lee et al., 2017). GLUT treated
bovine pericardium modified with the antioxidant, 3-(4-hydroxy-
3,5-di-tert-butylphenyl) propyl amine (DBP), showed significant
reducing degree of calcification after implanted in the subdermal
area of a rat model (Christian et al., 2015). And after exposed to
H2O2 and FeSO4 to mimick the action of oxidative distress, GLUT
treated bovine pericardium was detected with loss of GLUT
crosslinking and morphology changes (Christian et al., 2015).
Collectively, oxidative stress, causes collagen breakdown and a
uniform susceptibility to collagenase for valve tissue, particularly
via hydroxyl radical and tyrosyl radical mediated pathways, bring
about BHV calcification.

5.2.3 Metabolic Disorders
Several studies have indicated that BHV calcification is an
atherosclerotic-like process. Namely, several factors involved in
the pathogenesis of atherosclerosis and calcific aortic valve
disease were also implicated in BHV calcification, especially
lipid-driven factors (Wang et al., 2021a). Clinical researchers
have stated that after BHV implanted, plasma levels of total-
cholesterol, low-density lipoprotein-cholesterol (LDL),
apolipoprotein B (ApoB), oxidized low-density lipoprotein
(ox-LDL) were notably higher among patients with SVD than
those without SVD (Mahjoub et al., 2013; Nsaibia et al., 2016;
Nsaibia et al., 2018), and ApoB/ApoA-I ratio (Mahjoub et al.,
2013) and OxLDL/HDL ratio (Nsaibia et al., 2016) could be
considered as strong independent predictors of BHV failure.

Frontiers in Pharmacology | www.frontiersin.org June 2022 | Volume 13 | Article 9098016

Wen et al. Bioprosthetic Heart Valve Calcification Mechanisms

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


Taken together these findings all emphasize the pivotal role of
lipid-mediated mechanism for BHV failure and calcification.
Immunohistochemistry staining of failed BHV showed that
ox-LDL was present in the fibrosa layer of BHV and
surrounded by CD68-positive macrophages (Shetty et al.,
2009). The crux of the lipid-mediated BHV degrading and
calcification lies in the in situ formation of ox-LDL and
subsequent activation of macrophages. After BHV
implantation, high levels of circulating LDL deposit in the
valve tissue where LDL is oxidized to ox-LDL. Ox-LDL is
being phagocytosed by macrophages resulting in polarization
and foam cell formation, and further retained by GAGs that
infiltrated macrophages generate (Plakkal Ayyappan et al., 2016).

Despite lacking an in-depth understanding, some studies
attempt to explain the lipid-mediated inflammatory mechanisms
involved in BHV calcification. Shetty and colleagues deemed ox-
LDL were bound and internalized by macrophages through CD36
(Shetty et al., 2009), a scavenger receptor with the highest affinity
for ox-LDL (Miller et al., 2011). Activated lipid-laden macrophages
form pseudopods, as well as produce cytokines and MMP9, finally
resulting in weakening and calcification of the leaflet matrix.
Additionally, elevated activity of lipoprotein-associated
phospholipase A2 (Lp-PLA2) both in plasma and failed BHV
tissues give support to the hypothesis that Lp-PLA2 takes part in
BHV calcification (Mahmut et al., 2014; Mahmut et al., 2016). The
primary source of Lp-PLA2might be tissuemacrophages instead of
circulating leucocytes (Ferguson et al., 2012). Ox-LDL can
upregulate Lp-PLA2 expression in monocytes/macrophages
through the PI3K and p38 MAPK pathway (Wang et al., 2010).
Lp-PLA2 rapidly cleaves oxidized phosphatidylcholine molecules
produced during the oxidation of LDL, generating the soluble
proinflammatory and lyso-phosphatidylcholine (Wilensky and
Macphee, 2009), while the latter is a strong candidate for
osteogenic stimuli (Vickers et al., 2010). Another function of
ox-LDL is to induce the expression of PCSK9 in macrophages
and stimulate Toll-like receptors (TLRs) (Nsaibia et al., 2018),
promoting an osteogenic inflammatory response by activating the
NF-κB pathway (Tang et al., 2012;Wang et al., 2021b). Collectively,
ox-LDL is a substantial contributor to BHV calcification.

In addition to lipid disorder, metabolic syndrome (MS), also
known as syndrome X, insulin resistance, etc, is an aggregate of
clinical conditions characterized by central and abdominal
obesity, systemic hypertension, and insulin resistance
(McCracken et al., 2018). Previous research suggested MS is a
strong independent predictor of bioprosthetic valve degeneration
(Briand et al., 2006). And patients with type 2 diabetes mellitus
undergoing bioprosthetic valve implantation are more susceptible
to BHV calcification (Lorusso et al., 2012). Currently, the
metabolic mechanisms responsible for BHV calcification are
poorly defined, but oxidative stress secondary to diabetes
mellitus is hypothetically involved in BHV calcification (Cote
et al., 2010).

5.2.4 Platelets and Subclinical Thrombosis
Bioprosthetic valve thrombosis is a rare but life-threatening
complication that causes prosthetic valve obstruction (Brown
et al., 2012). However, subclinical leaflet thrombosis occurred

frequently, as it was detected in 12% of patients after BHV
implanted (Chakravarty et al., 2017). Recently, literature
illustrates that subclinical leaflet thrombosis is associated with
BHV calcification. Cartlidge et al. (2019) observed a close
spatial interaction of calcification with leaflet thrombosis and
suggested thrombosis may be a potential upstream trigger for
calcification.

Von Willebrand Factor (vWF) is the primary mediator of
thrombosis, interacting with platelets. vWF is deactivated and
cleaved by thrombospondin type-1 motif family and then
maintained at a low concentration in the blood under high wall
shear stress conditions in patients with aortic stenosis (Van Belle
et al., 2019). Once the shear stress level was corrected after surgery,
the concentration of vWF increased instantaneously (Sedaghat et al.,
2017). The acute release of vWF promotes thrombus formation in
vivo. Physiologically, the interaction of plasma VWFwith platelets is
induced by subendothelial collagen. In fact, the confluent endothelial
layer is entirely lost in commercial BHV, so collagen type I, which is
the main ECM component, is directly exposed to activate vWF. The
formation of subclinical leaflet thrombosis induces inflammatory
responses, valve fibrosis, and calcification.Moreover, a steep increase
in calcium levels was shown on platelets when they were in contact
with type 1 Collagen, possibly by activating calcium channels via
phospholipase C and inositol 1,4,5 trisphosphate (Asselin et al., 1997;
Roberts et al., 2004). The analysis above may help explain the
relationship between thrombosis and calcification.

6 POTENTIAL DRUG THERAPY

Although BHV has been the mainstay of prosthetic valve
substitutes for valve replacement surgery, mechanisms and
pathogenetic factors of BHV calcification still being far from a
clear elucidation of their nature, impeding the development of
drug intervention to prevent or slow the process of BHV
calcification.

No clinical drug targeting BHV calcification is currently available,
however, statin treatment, both rosuvastatin, and atorvastatin could
significantly diminish BHV calcification (Lorusso et al., 2010; Lee
et al., 2019). In a rat subdermal implantationmodel, Sak Lee et al. (Lee
et al., 2019) suggested that rosuvastatin attenuated BHV calcification
associated though interleukin-6 and bonemorphogenetic protein two
downturns. Similarly, atorvastatin changes the global extent of
inflammatory infiltrates but the proportions of the single
inflammatory subsets, contributing to reduction of BHV
calcification, either in terms of microcalcification or global calcium
content (Lorusso et al., 2010). Some researchers showed that statin
treatment is associated with significantly less BHV calcification and
improved long-term outcomes (Antonini-Canterin et al., 2003; Sasaki
et al., 2021). Yet, in one observational study by Kulik and colleagues,
early lipid-lowering therapy did not lower BHV calcification (Kulik
et al., 2010). Overall, statin treatment may be an effective therapeutic
means after BHV implantation but requires more high-level evidence
to support.

According to the linkages between immune response and
BHV calcification, immunosuppressive therapy represented a
potential candidate to delay BHV calcification and failure,
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especially for young patients. A study reported that the calcific
degree of BHV in patients who had been given steroid treatment
for aortitis was decreased (Eishi et al., 1996). Rabbit anti-
thymocyte globulin (ATG) is a polyclonal IgG preparation
used for induction treatment of immunosuppression used in
malignancies, graft-versus-host disease, and autoimmune
diseases, to decrease early rejection (Mohty, 2007). ATG
treatment may induce long-lasting anti-Neu5Gc IgG responses
with immune memory (Couvrat-Desvergnes et al., 2015; Amon
et al., 2017). These researches reveal a potential therapeutic
strategy for preventing BHV calcification, and ATG treatment
immediately following surgery deserves more molecular
mechanism research and clinically relevant trial in the future.
However, due to the many side effects of immunosuppressive
therapy, it should be carefully considered.

Currently, Oral anticoagulation for the first 3 months after
surgical implantation of BHV is recommended according to the
European Society of Cardiology/the European Association for
Cardio-Thoracic Surgery and American College of Cardiology/
American Heart Association Guidelines (Otto et al., 2021b;
Vahanian et al., 2021). Since subclinical leaflet thrombosis may be
a cause of BHV calcification, another possible treatment option could
be considered is prolonged, even life-long use of anticoagulant drugs.
But in such a way, the uppermost advantage of BHV over MHV
would be weakened. So how long it is justified for anticoagulant
treatment after BHV implantation merits further discussion.

Given the well-recognized association between end-stage renal
disease, diabetes mellitus, hyperparathyroidism and BHV calcification,
aggressive treatment should be applied. Notably, sevelamer
hydrochloride, a phosphate binder used to treat hyperphosphatemia
in patients with chronic kidney disease, has been showing the ability to
decrease BHV calcification (Meng et al., 2021).

7 CONCLUSION AND OUTLOOK

In the past few decades, BHV possess significant advantages by
alleviating the need for anticoagulation treatment and their
exquisite hemodynamic properties after constant updating and
optimization. However, the limited durability mainly due to SVD
remains a challenging barrier to widen the scope of usage.
Calcification is the most frequent presentation and the core
pathophysiological process of SVD. Uncovering the basic
mechanisms of BHV calcification is an essential prerequisite to
address issues that currently exist.

Mechanisms of BHV calcification are described in detail in the
current review (Figure 3). In summary, residual cell debris after
GLUT treatment and degeneration of ECM components are
absolute necessities for BHV calcification. We also highlight the
value of inflammatory reaction and immune response, oxidative
stress, formation of ox-LDL, and subclinical leaflet thrombosis in the
pathogenesis of BHV calcification. As alluded to above, just a few
studies focusing on the pharmacological strategies of BHV
calcification have been conducted, either animal or clinical
studies. Currently, the potential therapies include lipid-lowering
therapy, immunosuppressive therapy and aggressive treatment for
comorbidities.

Basic research and explorations to obtain a better
understanding of BHV calcification are still in their infancy.
There are still a number of unknowns which require further
exploration and discussion. First of all, the mechanisms leading
to increased immune cells infiltration, and how this effect
correlates with BHV calcification are unclear. As such, this
should be a focus of subsequent research. Secondly, current
known main cell types of pathological process in calcific aortic
valve disease have been described in detail (Xu et al., 2020), but
whether other cells than immune cells involved in BHV
calcification still remains a certain. To shed more light on
the mechanisms of BHV calcification, further studies will be
dedicated to the unraveling of cell-type atlas and intercellular
interactions. Thirdly, Screening for more effective drugs to
prevent or delay BHV calcification warrants further research.
In conclusion, the increasing demand for BHV implantation
mandates enhanced the investment in BHV calcification
research and the transition from bench to bedside.
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FIGURE 3 | Risk factors and mechanisms of BHV calcification.
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