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SUMMARY

Sigma-1 receptors (Sig-1Rs) are integral ER mem-
brane proteins. They bind diverse ligands, including
psychoactive drugs, and regulate many signaling
proteins, including the inositol 1,4,5-trisphosphate
receptors (IP3Rs) that release Ca2+ from the ER. The
endogenous ligands of Sig-1Rs are unknown. Phos-
pholipase D (PLD) cleaves phosphatidylcholine to
choline and phosphatidic acid (PA), with PA assumed
to mediate all downstream signaling. We show that
choline is also an intracellular messenger. Choline
binds to Sig-1Rs, it mimics other Sig-1R agonists by
potentiating Ca2+ signals evoked by IP3Rs, and it is
deactivated by metabolism. Receptors, by stimu-
lating PLC and PLD, deliver two signals to IP3Rs: IP3

activates IP3Rs, and choline potentiates their activity
through Sig-1Rs. Choline is also produced at synap-
ses by degradation of acetylcholine. Choline uptake
by transporters activates Sig-1Rs and potentiates
Ca2+ signals. We conclude that choline is an endoge-
nous agonist of Sig-1Rs linking extracellular stimuli,
and perhaps synaptic activity, to Ca2+ signals.

INTRODUCTION

The Sigma-1 receptor (Sig-1R) is a small integral membrane pro-

tein expressed mainly in the endoplasmic reticulum (ER) and

concentrated at the dynamic contacts between mitochondria

and ER, the mitochondria-associated ER membrane domains

(MAMs) (Schmidt et al., 2016; Smith and Su, 2017; Su et al.,

2016). Sig-1R was thought to have two transmembrane domains

(TMDs), with its N and C termini in the ER lumen (Aydar et al.,

2002; Hayashi and Su, 2007). This topology was consistent

with evidence that BiP, an ER luminal chaperone protein, binds

to theC-terminal domain of Sig-1R (Hayashi and Su, 2007). How-
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ever, a crystal structure of Sig-1R challenges these observations

because it identified only a single TMD within each subunit of a

trimeric complex, and it placed the C-terminal region on the

cytosolic side of the ER membrane (Alon et al., 2017; Schmidt

et al., 2016).

Sig-1Rs are abundant in brain, but they are also expressed in

other tissues (Smith and Su, 2017). They are implicated in many

pathologies, including depression, anxiety, amyotrophic lateral

sclerosis and other neurodegenerative diseases, drug addiction,

neuropathic pain, and cancers (Gueguinou et al., 2017; Su et al.,

2016; Watanabe et al., 2016). Sig-1Rs bind an unusually diverse

array of ligands, most of which are amines. These include antide-

pressants (e.g., fluoxetine), antipsychotics (e.g., haloperidol),

and drugs of abuse (e.g., cocaine and methamphetamine)

(Maurice and Su, 2009;Walker et al., 1990). Sig-1Rs also interact

with many different signaling proteins. Within the ER, these

proteins include inositol 1,4,5-trisphosphate receptors (IP3Rs)

(Hayashi and Su, 2007) and STIM1, the Ca2+ sensor for store-

operated Ca2+ entry (Srivats et al., 2016). At the plasma mem-

brane (PM), Sig-1Rs regulate a variety of receptors and ion

channels (Su et al., 2016).

Althoughmany ligands of Sig-1Rs have opposing effects, their

diversity and the many proteins that interact with Sig-1Rs

confound attempts to classify ligands consistently as agonists

or antagonists across all bioassays (Schmidt et al., 2016; Yano

et al., 2018). A more fundamental distinction may be whether

ligands stabilize oligomeric (antagonists) or monomeric forms

(agonists) of Sig-1R (Gromek et al., 2014; Mishra et al., 2015;

Ossa et al., 2017; Schmidt et al., 2016; Yano et al., 2018). Hence,

agonists by releasing Sig-1Rs from large oligomeric complexes

may free Sig-1Rs to interact with client proteins (Figure 1A).

Several endogenous molecules, including steroids (Monnet

and Maurice, 2006) (notably progesterone), various sphingoli-

pids (Ramachandran et al., 2009), and N,N-dimethyltryptamine

(DMT) (Fontanilla et al., 2009), bind to Sig-1Rs and regulate

some of their activities. It is unclear whether any of these ligands

mediate endogenous regulation of Sig-1Rs, and none has been

shown to link extracellular stimuli to regulation of Sig-1Rs.
commons.org/licenses/by/4.0/).
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Figure 1. Choline Is an Agonist of Sig-1Rs

(A) Clusters of Sig-1Rs anchored at MAMs are

thought to dissociate into monomers when they

bind a Sig-1R agonist, freeing Sig-1Rs to interact

with their targets, within and beyond MAMs. The

targets include IP3Rs.

(B) Specific binding of [3H](+)-pentazocine (5 nM)

in the presence of choline and related compounds

using membranes from Neuro-2A cells stably

expressing Sig-1R-GFP (mean ± SEM; n = 5,

with 3 replicates for each). Specific binding of
3H-pentazocine was 90% ± 3% of total binding

(mean ± SEM; n = 3) for membranes from

cells overexpressing Sig-1R, and 13% ± 5% for

mock-transfected cells.

(C) Choline metabolism (structures from http://

www.hmdb.ca).

(D) NG108-15 cells were incubated (2 hr, 37�C)
with PRE-084 (25 mM) or BD1047 (25 mM), and

then, in the continuous presence of the Sig-1R

ligands, loaded with Fluo-8 by incubation with

Fluo-8 AM in HEPES-buffered saline (HBS)

(30 min, 20�C, with a further 30 min to allow de-

esterification of Fluo-8). BAPTA (2.5 mM) was then

added to chelate extracellular Ca2+ before addi-

tion of bradykinin (10 mM). Results show typical

responses as means of 3 replicates.

(E) Summary results (mean ± SEM; n = 5, each

with 3 replicates) show peak increases in [Ca2+]i
(D[Ca2+]i) evoked by bradykinin. *p < 0.05 for

maximal responses relative to control, one-way

ANOVA with Dunnett’s test.

(F) Pooled results (mean ± SEM; n = 20; as per-

centages of matched control response) for all

bradykinin concentrations. The asterisk (*) de-

notes 95% confidence intervals that exclude

100%.

See also Figure S1A.
Many extracellular stimuli evoke increases in the intracellular

free [Ca2+] ([Ca2+]i) through receptors that stimulate phospholi-

pase C (PLC), leading to formation of IP3 and release of Ca2+

from the ER through IP3Rs. Sig-1Rs have been reported to

both potentiate the Ca2+ signals evoked by these receptors by

increasing the IP3 sensitivity of IP3Rs (Hayashi et al., 2000;

Hong et al., 2004; Wu and Bowen, 2008) and to increase the ef-

ficiency of Ca2+ transfer from ER to mitochondria through IP3Rs

(Hayashi and Su, 2007; Shioda et al., 2012).

Here, we demonstrate that agonists of G-protein-coupled re-

ceptors (GPCRs) that stimulate PLC and an increase in [Ca2+]i,

also stimulate phospholipase D (PLD).We show that choline pro-

duced by PLD is an endogenous agonist of Sig-1Rs, and that it

thereby potentiates Ca2+ signals evoked by IP3Rs. Each of the

immediate products of choline metabolism, phosphocholine,

acetylcholine, and betaine, is inactive. Hence, GPCRs signal to

IP3Rs through two parallel pathways that converge to provide

coincident stimulation of IP3Rs. In addition, choline uptake by

specific transporters allows extracellular choline to stimulate

Sig-1Rs and potentiate IP3-evoked Ca2+ signals. We conclude

that choline is an endogenous agonist of Sig-1Rs that links

both cell signaling pathways (through PLD) and the activity of

cholinergic synapses (through choline uptake) to regulation of

IP3-evoked Ca2+ signals.
RESULTS

Choline Binds to Sig-1Rs and Potentiates IP3-Evoked
Ca2+ Signals
Most high-affinity ligands of Sig-1Rs comprise a tertiary amine

flanked by a short acyl chain and hydrophobic moieties (Glen-

non, 2005; Ossa et al., 2017). Endogenous agonists are unlikely

to have such high affinity because they must rapidly associate

with and dissociate from Sig-1Rs if they are to acutely regulate

them. We considered whether choline, a quaternary amine with

an acyl chain but no hydrophobic moieties, might be an endog-

enous agonist of Sig-1Rs.

(+)-Pentazocine is a high-affinity, selective ligand of Sig-1Rs

(equilibrium dissociation constant, Kd = 5.5 nM) (de Costa et al.,

1989). Specific binding of [3H](+)-pentazocine tomembranes pre-

pared from Neuro-2A cells stably expressing Sig-1R was

completely displaced by choline (Ki = 525 mM; pKi = 3.28 ± 0.16;

h = 1.07 ± 0.2; mean ± SEM; n = 5; where pKi is the negative log

of the Kd, and h is the Hill coefficient) (Figure 1B). Phosphocholine,

the major product of choline metabolism in most cells (Figure 1C)

(Corbin and Zeisel, 2012), did not displace specific [3H](+)-pentaz-

ocine from Sig-1Rs, and the other immediate products of choline

metabolism, betaine (Ki = 1.32 mM; pKi = 2.88 ± 0.23; h = 1.40 ±

0.35; n = 5) and acetylcholine (Ki �12 mM; n = 5), were less
Cell Reports 26, 330–337, January 8, 2019 331

http://www.hmdb.ca
http://www.hmdb.ca


Figure 2. Choline Potentiates IP3-Evoked

Ca2+ Release by Stimulating Sig-1Rs

(A) Ca2+ signals recorded from Fura-2-loaded

NG108-15 cells after microinjection (�1% cell

volume) of IP3 (pipette concentration, 0.5 mM),

(+)SKF-10047 (SKF, 100 mM), or choline (100 mM).

Results (n = 6 cells) show untransfected cells or

after transfection with scrambled shRNA or Sig-1R

shRNA, each tagged with red fluorescent protein

(RFP).

(B) Summary (mean ± SD; n = 6) shows peak

[Ca2+]i. *p < 0.05, ANOVA with Bonferroni test,

relative to matched stimuli in untransfected cells.

The effects of pre-incubating cells with BD1047

(25 mM, 15 min) are also shown.

(C) Similar analysis of the effects of microinjected

IP3 (pipette concentration, 0.5 mM) or acetylcho-

line, betaine, or phosphocholine (pipette concen-

tration, 100 mM for each), alone or in combination.

(D) Summary (mean ± SD; n = 6) shows peak

[Ca2+]i. *p < 0.05, ANOVA with Bonferroni test,

relative to IP3 alone.

(E) Western blot (WB) of Sig-1R after transfection

of NG108-15 cells with scrambled or Sig-1R

shRNA, each tagged with RFP. Tagged shRNAs

were used to allow identification of transfected

cells in microinjection experiments. Hence, WB

from cell populations probably over-estimates

Sig-1R expression in functional analyses of micro-

injected cells treated with Sig-1R shRNA. Sig-1R

expression was reduced to 50% ± 12% of control

levels by the shRNA treatment (mean ± SD; n = 3).

(F)WB showing detectable expression of Sig-1R in

MCF7 cells only after transfection with Sig-1R-

GFP. Typical of 4 blots. Mr markers (kDa) are

shown.

(G) Ca2+ signals recorded from Fura-2-loaded

MCF7 cells after microinjection as described for

(C). Results (n = 6 cells) are from control cells or

after transfection with GFP or Sig-1R-GFP.

(H) Summary (mean ± SD; n = 6) results show

[DCa2+]i. *p < 0.05 for maximal responses relative

to matched untransfected cells, one-way ANOVA

with Dunnett’s test.

See also Figures S1B and S1C.
effective than choline. This is consistent with choline binding with

greater affinity than its metabolites to the same site as known ag-

onists and antagonists of Sig-1Rs.

Subsequent experiments explore the interactions of choline

with Sig-1Rs in NG108-15 cells. These neuroblastoma-glioma

hybrid cells retain many properties of neurons, including respon-

siveness to neurotransmitters, and the ability to synthesize and

release acetylcholine (Hamprecht et al., 1985); they express

endogenous Sig-1Rs, and their bradykinin receptors stimulate

PLC and Ca2+ release from the ER through IP3Rs (Fig-

ure S1A). The bradykinin-evoked Ca2+ signals were enhanced

by pre-incubation with a Sig-1R agonist (PRE-084) and attenu-
332 Cell Reports 26, 330–337, January 8, 2019
ated by an antagonist (BD1047) (Figures

1D–1F). Microinjection of NG108-15 cells

with IP3 evoked a transient increase in

[Ca2+]i, whereas microinjection of choline
or the Sig-1R agonist, (+)SKF-10047, had no effect. However,

co-injection of choline or (+)SKF-10047 with IP3 potentiated

the IP3-evoked Ca2+ signals (Figures 2A and 2B). When applied

to intact cells, neither choline nor other Sig-1R ligands signifi-

cantly affected the Ca2+ content of the intracellular stores (Fig-

ures S1B and S1C). The potentiation of IP3-evoked Ca2+ release

by choline was blocked by pre-incubation with the Sig-1R antag-

onist, BD1047 (Figure 2B). Neither betaine, phosphocholine,

nor acetylcholine mimicked the effects of microinjected choline

(Figures 2C and 2D).

Treatment of NG108-15 cells with appropriate short hairpin

RNA (shRNA) reduced expression of Sig-1R (Figure 2E) and



Figure 3. Sig-1R and PLD Contribute to

Ca2+ Signals Evoked by Agonists of GPCRs

(A) Typical pseudocolor images show peak Ca2+

signals (F340/F380) evoked by ATP (50 mM) in Fura-

2-loaded NG108-15 cells transfected with control

shRNA or shRNA to PLD1 and PLD2, or Sig-1R,

each taggedwith RFP. Calibration code (F340/F380)

and scale bar (20 mm) apply to all panels.

(B) Time course of response to ATP (bar; n = 6).

(C) Summary (mean ± SD; n = 6) shows D[Ca2+]i
evoked by ATP. *p < 0.05, ANOVA with Bonferroni

test, relative to untransfected cells.

(D) D[Ca2+]i evoked by bradykinin in populations of

NG108-15 cells. Histogram (which shares the y

axis) compares responses to bradykinin (10 mM)

after treatment with scrambled or Sig-1R shRNA.

Results are means ± SEM; n = 3 with duplicate

determinations. *p < 0.05, Student’s t test.

(E) WB shows effects of indicated shRNA, each

tagged with RFP, on expression of PLD1 and

PLD2 in NG108-15 cells. Mr markers (kDa) are

shown. Results, typical of 3 WBs, underestimate

knockdowns in the cells used for Ca2+ measure-

ments, which used only cells shown to be trans-

fected by expression of RFP (see A).

(F and G) Intracellular concentrations of choline (F)

and IP3 (G) during stimulation of NG108-15 cells

with ATP (50 mM, bar) show the effects of shRNA

for PLD1 and PLD2. Results show means ± SD;

n = 6.

(H) GPCRs that activate PLC and phospholipase D

(PLD) initiate two parallel signaling pathways that

converge at IP3Rs. IP3 from PLC directly activates

IP3R. Choline from PLD activates Sig-1R, which

potentiates IP3-evoked Ca2+ release.
abolished the potentiating effects of choline and (+)SKF-10047,

without affecting responses to IP3 alone (Figures 2A and 2B).

In MCF7 breast cancer cells, Sig-1R expression was scarcely

detectable (Figure 2F) (Wu and Bowen, 2008). In these cells,

neither microinjected choline nor (+)SKF-10047 potentiated

IP3-evoked Ca2+ signals, but the signals were potentiated after

expression of Sig-1R-GFP (Figures 2F–2H). These results estab-

lish that choline, by activating Sig-1Rs, potentiates IP3-evoked

Ca2+ release.

Sig-1Rs Contribute to Ca2+ Signals Evoked by GPCRs
Extracellular ATP stimulates PLC through P2Y6 receptors in

NG108-15 cells (Sak et al., 2001). Loss of Sig-1Rs in NG108-
Cell
15 cells (by shRNA) reduced the ampli-

tude of the Ca2+ signals evoked by maxi-

mally effective concentrations of ATP

(Figures 3A–3C) or bradykinin (Figure 3D).

We next considered whether the contri-

bution of Sig-1Rs to the Ca2+ signals

evoked by GPCRs might be mediated

by choline. Both mammalian isoforms of

PLD (PLD1 and PLD2) are almost ubiqui-

tously expressed enzymes that hydrolyse

phosphatidylcholine (PC) to phosphatidic

acid (PA) and choline. PLDs are regulated
by many signals, including those that stimulate PLC and protein

kinase C (PKC) (Selvy et al., 2011).

The basal choline concentration in NG108-15 cells

(144 ± 7 mM) was similar to values reported for other cells

(100–400 mM) (Pelech and Vance, 1984). Stimulation of

NG108-15 cells with extracellular ATP increased the intracel-

lular concentrations of both choline and IP3. Knockdown of

PLD1 and PLD2 expression using shRNA (Figure 3E) pre-

vented the increase in choline concentration without affecting

IP3 production (Figures 3F and 3G). Furthermore, the ATP-

evoked Ca2+ signals were similarly and substantially attenu-

ated by loss of Sig-1R or loss of PLDs (Figures 3A–3C). The

results so far demonstrate that GPCRs, by stimulating both
Reports 26, 330–337, January 8, 2019 333



Figure 4. CTL1-Mediated Choline Uptake

Potentiates IP3-Evoked Ca2+ Signals

(A) NG108-15 cells were incubated in HBS alone

or with 3 mM choline for the indicated times

before adding bradykinin (1 mM) and immediately

recording the increase in [Ca2+]i. Results (mean ±

SEM; n = 3 with duplicate determinations) show

D[Ca2+]i evoked by bradykinin.

(B) Summary results (mean ± SEM; n = 3)

show bradykinin-evoked D[Ca2+]i after incuba-

tion with the indicated choline concentrations

(105 min).

(C) WB showing effects of the indicated siRNA

(for CTL1) or shRNA (for Sig-1R) and their scram-

bled counterparts on expression of CTL1 and

Sig-1R in NG108-15 cells. Mr markers (kDa) are

shown.

(D) Summary results (mean ± SD; n = 5) show

CTL1 expression in cells treated with the indicated

siRNA expressed as a percentage of the matched

cells treated with scrambled siRNA.

(E) Summary results (mean ± SEM; n = 5 plates

with 2 replicates) show the effects of 10 mM

choline on bradykinin-evoked Ca2+ signals.

*p < 0.05, **p < 0.01, one-way ANOVA with Dun-

nett’s test, relative to control (B and E).

(F) Ca2+-mobilizing GPCRs stimulate PLC and

PLD, with consequent formation of IP3 and

choline. Although we have not resolved how

GPCRs stimulate PLD in NG108-15 cells, signals

evoked by both PLC and parallel pathways

are known to stimulate PLD. IP3 stimulates IP3R,

while choline binds to Sig-1Rs, causing them

to potentiate IP3R activity. Metabolism of IP3

and choline terminates their signaling. Hence,

GPCRs regulate IP3Rs through two parallel,

but converging, pathways. Import of extracellular

choline by transporters, including the widely

expressed CTL1, can also deliver choline to

Sig-1Rs.

(G) Acetylcholine (ACh) released at cholinergic

terminals can activate post- and pre-synaptic

receptors, before its rapid hydrolysis to choline

by acetylcholinesterase (AChE). Hence, synaptic

activity is rapidly followed by a substantial local

increase in choline concentration. Transporters (red circles) in the cholinergic terminal (CHT1) and neighboring cells (CTL1-5 and OCT) can import the

choline, which will then stimulate Sig-1Rs, providing cells with a paracrine reporter of recent synaptic activity.

See also Figure S2.
PLC and PLD, generate parallel signals, IP3 and choline,

which converge to stimulate Ca2+ release through IP3Rs

(Figure 3H).

Choline Uptake Regulates Ca2+ Signals
Synthesis of acetylcholine within cholinergic nerve terminals

requires choline uptake by a high-affinity, Na+-dependent

transporter (CHT1 [choline high-affinity transporter 1]) ex-

pressed mostly at cholinergic terminals (Haga, 2014; Sarter

and Parikh, 2005). Additional Na+-independent transporters

mediate low-affinity choline uptake (OCTs [organic cation

transporters]); and the widely expressed choline transporter-

like proteins (CTL1-5, encoded by SLC44A1-5) mediate

high-affinity uptake outside cholinergic terminals (Haga,

2014; Machová et al., 2009; Yamada et al., 2011). NG108-15
334 Cell Reports 26, 330–337, January 8, 2019
cells are capable of high-affinity choline uptake and they ex-

press CTL1, but not CHT1 (Machová et al., 2009), consistent

with evidence that CTL1 is expressed in neurons and glia

(Traiffort et al., 2013).

Incubation of NG108-15 cells with choline caused a time-

dependent increase in the amplitude of the Ca2+ signals

subsequently evoked by bradykinin (Figure 4A). The effect

was minimally affected by removing the extracellular choline

immediately before stimulation with bradykinin (Figure S2),

suggesting that choline potentiates Ca2+ signals after its

transport into cells. Potentiation of bradykinin-evoked Ca2+

signals by extracellular choline was substantially attenuated

by loss of Sig-1R (shRNA) or CTL1 (small interfering RNA

[siRNA]), but unaffected by scrambled shRNA or siRNA (Fig-

ures 4C–4E).



DISCUSSION

Sig-1Rs respond to many diverse drugs, including some that are

commonly abused or used clinically, but it is unclear whether

endogenous agonists regulate Sig-1Rs (Maurice and Su,

2009). Here, we provide evidence that choline (Figure 1C), best

known as a precursor for synthesis of acetylcholine and PC,

the most abundant membrane phospholipid in mammalian cells,

is an endogenous agonist of Sig-1Rs. We show that choline

meets the three essential criteria of an intracellular messenger,

namely it is produced in response to extracellular stimuli, it exerts

a specific intracellular action, and it is endogenously deacti-

vated. We conclude that choline is an intracellular messenger

linking GPCRs, through Sig-1Rs, to Ca2+ release from intracel-

lular stores (Figure 4F).

Choline mimicked known Sig-1R agonists by competing with

(+)-pentazocine for binding to Sig-1Rs (Figure 1B) and by poten-

tiating the Ca2+ signals evoked by receptors that stimulate IP3

formation (Figures 2A, 2B, and 2D). The immediate metabolites

of choline were ineffective (Figures 2C and 2D). The effect of

choline on Ca2+ signals was attenuated when Sig-1R expression

was reduced (Figures 2A, 2B, and 2E); and in cells without Sig-

1Rs, expression of Sig-1R endowed the cells with sensitivity to

choline (Figures 2F–2H). The Ca2+ signals evoked by GPCRs

that stimulate formation of IP3 were attenuated when Sig-1R

expression was reduced (Figures 3A–3D). ATP, which stimulates

PLC through P2Y6 receptors in NG108-15 cells (Sak et al., 2001),

rapidly evoked formation of IP3 and choline, but only the latter

required PLDs (Figures 3F and 3G). Furthermore, the ATP-

evoked Ca2+ signals were similarly attenuated by loss of PLDs

or Sig-1Rs (Figure 3C). Bradykinin-evoked Ca2+ signals were

likewise attenuated by loss of Sig-1Rs (Figure 3D).

Many GPCRs that stimulate PLC also activate PLD, and most

agonists that activate PLD also stimulate PLC. However, the

links between GPCRs and stimulation of mammalian PLD differ

between cell types, and the stimulatory signals, which include

PKC, Ca2+, small GTPases (rho and ADP-ribosylation factor

[Arf]), phosphatidylinositol 4,5-bisphosphate, and phosphatidyli-

nositol 3,4,5-trisphosphate, can be generated by PLC or parallel

pathways (Exton, 1999; Selvy et al., 2011). Hitherto, signaling

downstream of PLD has been thought to arise entirely, directly

or indirectly, from PA (Selvy et al., 2011). We suggest that the

other product of PLD activity, namely choline, is also an impor-

tant intracellular messenger that regulates Sig-1Rs and thereby

IP3-evoked Ca2+ release (Figures 3H and 4G). Our estimate of

the intracellular choline concentration in NG108-15 cells after

GPCR activation (�900 mM) (Figure 3F) is similar to that required

for binding to Sig-1Rs (Ki = 525 mM) (Figure 1B). The low affinity of

choline, relative to the many ligands used to establish structure-

affinity relationship for Sig-1R (Glennon et al., 1992), is important

because it will allow Sig-1R to respond rapidly to acute changes

in intracellular choline concentration.We conclude that choline is

an endogenous agonist of Sig-1Rs, a consequence of which in-

cludes potentiation of IP3-evoked Ca2+ release (Figure 3H).

Choline is an essential nutrient that cells import through trans-

porters from plasma, where the choline concentration is typically

5–10 mM, although it varies with diet (Sarter and Parikh, 2005). At

cholinergic synapses, the choline concentration may be much
higher (�1 mM) after synaptic activity, when acetylcholine

is rapidly hydrolysed by acetylcholinesterase (Figure 4G). Our

results show that extracellular choline, at concentrations encom-

passing likely synaptic concentrations, potentiates GPCR-

evoked Ca2+ signals. The potentiation requires both Sig1R and

the choline transporter, CTL1 (Figures 4A–4E and S2). These ob-

servations suggest an additional signaling role, whereby

changes in extracellular choline concentration might regulate

Sig-1Rs and thereby Ca2+ signaling. Such a mechanism might

be particularly effective at cholinergic synapses of neuromus-

cular junctions or within the autonomic nervous system (Pic-

ciotto et al., 2012), where rapid transient increases in choline

concentration follow synaptic activity. Choline might then deter-

mine the sensitivity of adjacent neurons or glia to PLC-coupled

GPCRs (Figure 4G), consistent with many reported interactions

between Sig-1Rs and cholinergic transmission (van Waarde

et al., 2011). Hence, choline, as an endogenous agonist of Sig-

1Rs, may be both an intracellular messenger linking GPCRs

through PLD to Sig-1Rs (Figure 4F); and a paracrine signal at

cholinergic synapses linking synaptic activity, through choline

transporters, to Sig-1R regulation in nearby cells (Figure 4G).

We conclude that choline is an endogenous agonist of Sig-

1Rs. Although we examined the consequences of activating

Sig-1Rs only in the context of IP3-evoked Ca2+ signals, it is likely

that choline, like other agonists of Sig-1Rs, also promotes inter-

action of Sig-1Rs with other signaling proteins. We propose that

choline may be delivered to Sig-1Rs as a paracrine reporter of

activity at cholinergic synapses through choline transporters,

or as an intracellular messenger from PLD activated by GPCRs

(Figures 4F and 4G). The GPCRs that stimulate both PLC and

PLD thereby send parallel signals to IP3Rs: IP3 directly activates

IP3Rs, while choline stimulates Sig-1Rs, which potentiate IP3R

activity. IP3Rs thereby function as coincidence detectors, inte-

grating signals from IP3 and Sig-1Rs (Figures 3G and 4F).
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT OR RESOURCE SOURCE IDENTIFIER

Antibodies

Donkey anti-rabbit IgG-HRP (1:5000) Santa Cruz Biotechnology Inc, Dallas, TX Cat# sc-2313

Goat anti-mouse IgG-HRP (1:2000) Santa Cruz Biotechnology Cat# sc-2005

IRDye 800CW-conjugated goat anti-rabbit IgG (1:10,000) LI-COR, Lincoln, NE Cat# 926-32211

IRDye 680-conjugated goat anti-mouse IgG (1:10,000) LI-COR Cat# 926-32220

Rabbit anti-Sig-1R (1:200) OriGene, Rockville, MD Cat# TA302033

Rabbit anti-Sig-1R (2 mg/mL) AbCam, Cambridge, UK Cat# 53852

Mouse anti-GFP (1:2000) OriGene Cat# TA150041

Mouse anti-PLD1 (1:200) Santa Cruz Biotechnology Cat# sc-25512

Mouse anti-PLD2 (3 mg/mL) Abnova Corporation, Taipei, Taiwan Cat# H00005338

Rabbit anti-b-actin (1:2000) Santa Cruz Biotechnology Cat# sc-1616

Mouse anti-b-actin (1:1000) Cell Signaling Technology, Boston, MA Cat# 8H10D10

Mouse anti-b-actin (1:10,000) Sigma-Aldrich, St. Louis, MO Cat# A5441

Rabbit anti-CTL1 (1:500) ThermoFisher, Basingstoke, UK Cat# AB_2556158

Chemicals, Peptides, and Recombinant Proteins

Acetylcholine chloride Chem-IMPEX International, Wood Dale, IL Cat# 00770

Acetylcholine chloride Sigma-Aldrich Cat# A6625

ATP Sigma-Aldrich Cat# A9187

BAPTA Molekula, Dorset, UK Cat# 20358510

Betaine hydrochloride Sigma-Aldrich Cat# 61962

BD1047 dihydrobromide Tocris, Abingdon, UK Cat# 0956

Bradykinin acetate salt Sigma-Aldrich Cat# B3259

Bovine serum albumin (BSA) Europa Bioproducts Ltd, Cambridge, UK Cat# EQBAH64

Choline chloride Sigma-Aldrich Cat# C7017

cOmpleteTM protease inhibitor cocktail Sigma-Aldrich Cat# 4693116001

Dimethyl sulfoxide (DMSO) Sigma-Aldrich Cat# D2650

DMEM/F-12, GlutaMAX medium ThermoFisher Cat# 31331028

ECL Prime GE Healthcare, Little Chalfont, UK Cat# RPN2232

Fluo-8 AM AAT Bioquest, Cambridge, UK Cat# 21802

Fetal bovine serum (FBS) Sigma-Aldrich Cat# F7524, batch 094M3341

Fura-2 AM AAT Bioquest Cat# 21020

ThermoFisher Cat# F1221

G-418 ThermoFisher Cat# 10131027

Glucose ThermoFisher Cat# 10141520

Haloperidol Sigma-Aldrich Cat# H1512

Hank’s balanced salt solution (HBSS) ThermoFisher Cat# 21-023-CV

HEPES Merck Millipore Cat# 391338

Ionomycin Apollo Scientific, Stockport, UK Cat# 56092-81-0

Lipofectamine ThermoFisher Cat# 18324012

Lipofectamine RNAiMax ThermoFisher Cat# 13778150

Odyssey blocking buffer LI-COR Cat# 927-50000

Opti-MEM I ThermoFisher Cat# 11058-021

[3H]-(+)-Pentazocine (26.9 Ci/mmol) Perkin-Elmer, Richmond, CA Cat# NET10560250UC

PRE-084 hydrochloride Tocris Cat# 0589

(Continued on next page)

e1 Cell Reports 26, 330–337.e1–e4, January 8, 2019



Continued

REAGENT OR RESOURCE SOURCE IDENTIFIER

Phosphocholine chloride Tokyo Chemical Industry, Japan Cat# P0834

Pluronic F127 Sigma-Aldrich Cat# P2443

Polyethyleneimine Sigma-Aldrich Cat# P3143

RPMI medium ThermoFisher Cat# MT10041CM

(+)SKF-10047 hydrochloride Tocris Cat# 1079

Sodium fluoride Sigma-Aldrich Cat# S7920

Sodium orthovanadate Sigma-Aldrich Cat# S6508

TurboFectin 8.0 OriGene Cat# TF81001

Tris base ThermoFisher Cat# BP152-1

Triton X-100 Sigma-Aldrich Cat# T8787

Tween-20 Sigma-Aldrich Cat# T5927

Critical Commercial Assays

BCA protein assay kit (Pierce) ThermoFisher Cat# 23225

Choline assay kit BioVision, Mountain View, CA Cat# K615-100

IP3 assay kit DiscoveRx, Fremont, CA Cat# 90-0037

Experimental Models: Cell Lines

NG108-15 cells American Type Culture Collection

(ATCC), Manassas, VA

Cat# ATCC HB-12317

MCF7 cells ATCC Cat# ATCC HTB-22

Neuro-2A cells ATCC Cat# ATCC CCL-131

Recombinant DNA

Human Sig-1R-GFP in pCMV6-AC-GFP OriGene Cat# RG201206

RFP-tagged shRNA (HuSH, 29-mer shRNA in

pRFP-C-RS) against human Sig-1R [GAGTAT

GTGCTGCTCTTCGGCACCGCCTT]

OriGene Cat# TF311012

FI344041

RFP-tagged shRNA (HuSH, 29-mer shRNA in

pRFP-C-RS) against rat PLD1 [GCCTCTATCG

CCAACTTCACCGCCGTAAT]

OriGene Cat# TF711124

FI744500

RFP-tagged shRNA (HuSH, 29-mer shRNA in

pRFP-C-RS) against rat PLD2 [GGAGACTGG

ACATTATGCTCAAGAGGAAG]

OriGene Cat# TF711696

FI746786

RFP-tagged scrambled shRNA (HuSH, 29-mer

scrambled shRNA in pRFP-C-RS)

OriGene Cat# TF311012

TR30015

Silencer siRNA (3 different 21-bp siRNA) against

rat CTL1 (SLC44A1)

ThermoFisher Cat# 192756

Cat# 192757

Cat# 55087

Control Silencer siRNA ThermoFisher Cat# AM4611

Software and Algorithms

Prism 5, version 5 GraphPad, La Jolla https://www.graphpad.com/

GeneTools, version 4 Syngene, Cambridge, UK https://www.syngene.com/

Odyssey, version 3 LI-COR https://www.licor.com/

SoftMax Pro, version 7 Molecular Devices, San Jose, CA https://www.moleculardevices.com/

NIS-Elements AR 3.1 Nikon, Melville, NY https://www.nikon.com/
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Colin W.

Taylor (cwt1000@cam.ac.uk).
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

The NG108-15 cell line (ATCC) is a somatic hybrid derived from amouse neuroblastoma and rat glioma. NG108-15 cells were grown

in DMEM/F12 with 10% fetal bovine serum (FBS). MCF7 cells (ATCC) were derived from a humanmetastatic mammary tumor. These

cells were grown in RPMI with 10% FBS. Neuro-2A cells (ATCC), which were used only for heterologous expression of Sig-1R-GFP

for radioligand binding analyses, were derived from a mouse neuroblastoma. Neuro-2A cells were grown in DMEM containing 10%

FBS, and further supplemented with G-418 (100 mg/mL) for the cells stably expressing Sig-1R-GFP. We have not established the sex

of the animals from which NG108-15 and Neuro-2A cells were derived. All cells were grown in humidified air at 37�C with 5% CO2.

Cells were passaged when they reached around 80% confluence. The authenticity of the cell lines was not confirmed, but screening

established that all cells were free of mycoplasma.

METHOD DETAILS

Transfection of Cells
Cells were transiently transfected using either TurboFectin 8.0 or electroporation. For the former, plasmid DNA was added to

TurboFectin 8.0 in OptiMEM I (TurboFectin:DNA, 3:1), incubated (15-30 min, 20�C), and the complex was then added to cells in

6-well plates (1-1.5 mg DNA/well) in complete medium, and incubated for 24-48 h. For electroporation, cells (80%–90% confluent

in a T75 flask) were scraped into culture medium, centrifuged (150 xg, 5 min), and resuspended in Opti-MEM I (2 3 106 cells/mL).

Cells (500 mL) were transferred to electroporation cuvettes (800 mL, 4-mm gap; Eppendorf, Hamburg, Germany) with plasmid

DNA (5-10 mg/cuvette) and the cells were subjected to electroporation using a GenePulser Xcell (BioRad, 200-250V, 700-900 mF,

18-20 ms). Transfected cells were plated in Opti-MEM I in 6-well plates, FBS (10%) was added after 4 h, and the medium was

replaced after 24 h.

Neuro-2A cells stably expressing Sig-1R-GFP were generated by transfecting cells with plasmid encoding human Sig-1R-GFP

using Lipofectamine. Cells were grown in medium containing G418 (400 mg/mL), and after 2 weeks resistant colonies were selected

and propagated. Stable cell lines with intermediate levels of Sig-1R-GFP expression (determined by fluorescence microscopy) were

identified and then maintained in DMEM supplemented with FCS (10%) and G418 (100 mg/mL).

For expression of human Sig-1R-GFP, cells grown in 6-well plates were transfected with 1-1.5 mg DNA/well. To reduce expression

of Sig-1R or PLDs, RFP-tagged shRNA constructs were used. Each set of constructs included four different 29-mer targeting shRNA

in a pRFP-C-RS plasmid. Using methods reported previously (Brailoiu et al., 2016), we used western blotting to assess the ability of

each individual construct to reduce expression of its target protein (Sig-1R, PLD1 or PLD2). Themost effective shRNA construct from

each set was used for the experiments described here. The constructs were used individually for Sig-1R knockdown (2 mg/mL) or as a

pair for knockdown of PLD1 andPLD2 (1 mg/mL of each). The same scrambled RFP-shRNA construct (2 mg/mL) was used as a control

for all shRNA analyses.

Lipofectamine RNAiMax was used to transfect cells simultaneously with three different siRNAs against CTL1 (50 nM of each)

to reduce CTL1 expression. A siRNA with no known target in mammalian genomes (150 nM) was used as a control for the siRNA

experiments (Silencer control, ThermoFisher). Cells were used 24-48 h after transfection.

Radioligand Binding
Membranes were prepared from Neuro-2A cells stably expressing Sig-1R-GFP (Wu and Bowen, 2008). Cells (�1.73 108) were har-

vested (500 xg, 5min) in phosphate-buffered saline (PBS) containing EGTA (1mM), homogenized in coldmedium (10mL; 50mMTris-

HCl, 320 mM sucrose, 2 mM EDTA, 5 mMMgCl2, pH 7.4), centrifuged (50,000 xg, 4�C, 10 min), the pellet was then resuspended by

homogenization (2mg protein/mL) in bindingmedium (50mMTris-HCl, 1mMEDTA, 3mMMgCl2, pH 7.4) and stored at�80�C. Bind-
ing assays (final volume 500 mL) were performed in glass tubes with binding medium containing BSA (5 mg/mL), [3H](+)-pentazocine

(5 nM, 26.9 Ci/mmol), competing ligands and membranes (100 mg). After 1 h at 30�C, bound ligand was recovered by rapid filtration

throughWhatman GF/C filters pre-soaked in polyethyleneimine (0.1%, 2 h), the filters were washed twice, and their radioactivity was

determined by liquid scintillation counting. Non-specific binding was determined in the presence of 5 mM haloperidol.

Western Blotting
Lysates were prepared from cells 48 h after transfection. Cells were collected (150 xg, 5 min) and lysed (1 h, 4�C) in medium

comprising: NaCl (50 mM), Tris (20 mM), Mg acetate (10 mM), Triton X-100 (1%, v/v), cOmplete protease inhibitor mixture, Na ortho-

vanadate (1 mM) and Na fluoride (5 mM), pH 7.3. After centrifugation (14,000 xg, 15 min), the supernatant was collected and its pro-

tein concentration determined using a BCA assay kit. Cell lysates, which were used immediately or after storage at�80�C, were sub-

ject to SDS-PAGE using Mini-PROTEAN TGX 4%–20% gels (BioRad, Hercules, CA) or NuPAGE 4%–12% Bis-Tris gels (Invitrogen,

Paisley, UK). Proteins were transferred to Odyssey nitrocellulose membranes (LI-COR Biosciences) or PVDF membranes (iBlot,

Invitrogen). Membranes were washed and blocked (1 h, 20�C) with Odyssey blocking buffer or TBST (137 mM NaCl, 20 mM Tris,

0.1% Tween-20, pH 7.6) supplemented with 5% (w/v) BSA. Membranes were incubated (12 h, 4�C) with primary antibodies in

TBST and 1% BSA, washed with TBST (3 3 5 min), incubated with secondary antibodies in TBST and 1% BSA (1 h, 20�C), and
then washed with TBST. Bands were visualized by infrared emission (LI-COR Infrared Imager, resolution 169 mm, intensity 4.5-6)
e3 Cell Reports 26, 330–337.e1–e4, January 8, 2019



or by incubation with HRP-conjugated secondary antibodies (1 h), followed by washing and detection with ECL Prime. Densitometric

analysis used Odyssey or GeneTools software, or ImageJ (NIH, Bethesda, USA). The antibodies used and their dilutions are listed in

the Key Resources Table.

Microinjection and Analysis of Ca2+ Signals in Single Cells
For measurements of [Ca2+]i in single Fura-2-loaded cells grown on glass coverslips (#1.5, 25-mm diameter, Warner Instruments),

cells were incubated with Fura-2 AM (5 mM, 45 min, 20�C) in Hanks’ balanced salt solution (HBSS), washed 3 times, and incubated

for a further 45 min before experiments (Brailoiu et al., 2009). Fluorescence images (alternate excitation at 340 and 380 nm; emission

at 510 nm) were acquired at 0.25 Hz using an inverted Nikon Eclipse Ti microscopewith a Perfect Focus System and aCoolSnap HQ2

CCD camera (Photometrics Scientific). Images were acquired and analyzed using NIS-Elements AR 3.1 software (Nikon). After

correction for background, determined from an area outside the cell, fluorescence ratios (F340/F380) were calibrated to [Ca2+]i (Gryn-

kiewicz et al., 1985). Injections were performed using Femtotips II, InjectMan N I2 and FemtoJet systems (Eppendorf) (Brailoiu et al.,

2009). Pipettes were back-filled with intracellular solution (110 mM KCl, 10 mM NaCl, 20 mM HEPES, pH 7.2) (Guse et al., 1997) and

appropriate drugs. The injection time was 0.4 s at 60 hPa with a compensation pressure of 20 hPa in order to inject �1% of the cell

volume.

Measurement of Ca2+ Signals in Cell Populations
For measurements of [Ca2+]i in cell populations, confluent cultures of cells in 96-well plates were loaded with Fluo-8 by incubation

with Fluo-8 AM (2 mM, 30 min, 20�C) in HEPES-buffered saline (HBS) supplemented with 0.02% pluronic acid. The medium was then

replacedwith HBS, and after 30min at 20�C to allow de-esterification of the indicator, fluorescence was recorded using a FlexStation

III plate-reader (MDS Analytical Devices, Wokingham, UK) (Konieczny et al., 2017; Tovey et al., 2006). Fluorescence was captured

and processed using SoftMax Pro software. All measurements were performed in HBS at 20�C. HBS comprised: 135 mM NaCl,

5.9 mM KCl, 1.2 mMMgCl2, 1.5 mM CaCl2, 11.5 mM glucose, 11.6 mM HEPES, pH 7.3. Fluorescence was recorded at 1.44 s inter-

vals, with excitation at 485 nm and emission at 525 nm. The minimal (Fmin, Ca
2+-free indicator) and maximal (Fmax, Ca

2+-saturated

indicator) fluorescence values were determined from several parallel wells in each plate after addition of Triton X-100 (0.1%) with

either BAPTA (10 mM, for Fmin) or CaCl2 (10 mM, for Fmax). Fluorescence values (F) were then calibrated to [Ca2+]i from:

�
Ca2+

�
i
=KD 3

F� Fmin

Fmax � F

The KD of fluo-8 was assumed to be 389 nM.

Measurements of Intracellular IP3 and Choline Concentrations
NG108-15 cells (1010 cells) in HBSS (0.5 mL, 20�C) were stimulated with ATP and the reaction was terminated by addition of cold

HClO4 (1 mL, 0.75 M). After centrifugation (2000 3 g, 5 min, 4�C), the supernatant was removed, PBS (270 mL) was added, and

the mixture was sonicated. After centrifugation (15,000 3 g, 10 min), assay kits were used to determine the amounts of choline

(BioVision Inc.) and IP3 (DiscoveRx) in the supernatant, according to the manufacturer’s instructions. A volume of 2.5 pL for an

NG108-15 cell (Rouzaire-Dubois and Dubois, 1997) was used to calculate intracellular concentrations of IP3 and choline.

QUANTIFICATION AND STATISTICAL ANALYSIS

For analyses of radioligand binding results, each equilibrium competition-binding curve was fitted to a logistic equation (GraphPad

Prism, version 5), from which the half-maximal inhibitory concentration (IC50) and Hill coefficient (h) were determined. The IC50 value,

[3H](+)-pentazocine concentration (5 nM) and Kd of (+)pentazocine for Sig-1R (5.5 nM) (de Costa et al., 1989) were used to calculate Ki

values (Ki is the Kd determined by equilibrium competition binding) (Cheng and Prusoff, 1973). The negative logarithms of these

individual Ki values (pKi) were pooled for statistical analysis. All results are presented as means ± SD or SEM, as appropriate,

from n independent analyses. ANOVA, followed by Dunnett’s, Bonferroni or Tukey tests, was used to evaluate differences between

groups (GraphPad Prism, version 5). p < 0.05 was considered significant. The tests used are reported in the figure legends.
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