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SUMMARY

Neuronal oscillations are suggested to play an important role in auditory working memory (WM), 

but their contribution to content-specific representations has remained unclear. Here, we measure 

magnetoencephalography during a retro-cueing task with parametric ripple-sound stimuli, which 

are spectrotemporally similar to speech but resist non-auditory memory strategies. Using machine 

learning analyses, with rigorous between-subject cross-validation and non-parametric permutation 

testing, we show that memorized sound content is strongly represented in phase-synchronization 

patterns between subregions of auditory and frontoparietal cortices. These phase-synchronization 

patterns predict the memorized sound content steadily across the studied maintenance period. In 

addition to connectivity-based representations, there are indices of more local, “activity silent” 

representations in auditory cortices, where the decoding accuracy of WM content significantly 

increases after task-irrelevant “impulse stimuli.” Our results demonstrate that synchronization 

patterns across auditory sensory and association areas orchestrate neuronal coding of auditory WM 

content. This connectivity-based coding scheme could also extend beyond the auditory domain.
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In brief

Mamashli et al. use machine learning analyses of human magnetoencephalography (MEG) 

recordings to study “working memory,” maintenance of information in mind over brief periods 

of time. Their results show that the human brain maintains working memory content in transient 

functional connectivity patterns across sensory and association areas.

INTRODUCTION

Auditory working memory (WM) refers to our capability to maintain and manipulate sound 

information in our minds over brief periods of time, which has co-evolved with the auditory­

vocal communication skills that set humans apart in the animal kingdom (Aboitiz, 2018). 

How neurons maintain information in WM and how different parts of the brain contribute 

to this process continue to be unresolved and debated questions, irrespective of stimulus 

modality (Constantinidis et al., 2018; Stokes, 2015; Xu, 2017). A specific complication 

in the auditory domain has been that many of the available WM tasks have been based 

on complex stimuli that allow or even facilitate non-auditory WM maintenance strategies 

(Kaiser et al., 2003, 2009; Lutzenberger et al., 2002), such as verbal rehearsal (Smith 

and Jonides, 1997). The fundamental mechanisms of how purely auditory attributes are 

maintained thus constitute one of the least understood aspects of human WM (Scott and 

Mishkin, 2016).
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WM research has long been influenced by a hypothesis that there is a dedicated area of 

prefrontal (PFC) or posterior parietal (PPC) cortices, which maintains information via the 

sustained firing of neurons (Fuster and Alexander, 1971; Goldman-Rakic, 2011; Smith and 

Jonides, 1999; Xu, 2017). However, it is becoming increasingly clear that activation patterns 

that carry the information of WM content occur at many areas of the brain (Christophel 

et al., 2017), ranging from early auditory or visual cortices to the highest cognitive areas 

(Bigelow et al., 2014; Christophel et al., 2012; Gottlieb et al., 1989; Grimault et al., 2009; 

Huang et al., 2016; Kumar et al., 2016; Linke et al., 2011; Ng et al., 2014; Scott et al., 

2014; Serences, 2016; Sreenivasan et al., 2014; Uluç et al., 2018; Wolff et al., 2020). Many 

current theories thus view WM as an emergent property of functionally interconnected brain 

areas that represent different sensory, perceptual, and cognitive stages of the task-relevant 

content (Christophel et al., 2017; Postle, 2006). However, although these distributed models 

are gaining wide support, relatively few studies have examined information content in 

interregional patterns of brain activity per se during WM maintenance (Salazar et al., 2012; 

Soreq et al., 2019).

An ideal way to examine the role of interregional functional connectivity patterns in 

human WM is to analyze interregional phase synchronization of neuronal oscillations 

estimated from magnetoencephalography (MEG) signals. In previous visual studies, indices 

of long-range synchronization effects that depend on task attributes such as the amount 

of maintained information, or “WM load,” have been reported both using human MEG 

(Daume et al., 2017; Palva et al., 2010; Sato et al., 2018) and non-human primate 

neurophysiology (Buschman et al., 2012; Salazar et al., 2012). At the same time, 

accumulating neurophysiological evidence suggests that functional collectivity of more local 

neuronal networks, mediated by bursts of neuronal oscillations that modulate and refresh 

synaptic plasticity, play a crucial role in supporting WM maintenance (Lundqvist et al., 

2016; Miller et al., 2018). However, whether phase synchronization across the broader 

network of brain areas involved in human WM carries information of its memory content is 

still uncertain.

Here, we tested the hypothesis that auditory WM content is encoded and maintained 

in transient changes of functional connectivity between brain areas involved in auditory 

perception and cognition. To this end, we examined frequency-specific changes in phase 

synchronization of neuronal oscillations using MEG, a non-invasive measure of synaptic 

currents in the human brain. Unlike EEG, MEG readily dissociates signals from the auditory 

cortices and frontocentral regions in the sensor space (Hamalainen et al., 1993), which 

significantly facilitates the cortical source estimation needed for our hypothesis testing. 

To ensure that the effects reflect purely auditory WM, we designed a task with dynamic 

ripple sound stimuli, which are spectrotemporally similar to human vocalizations but 

resist non-auditory memory strategies (Visscher et al., 2007). We developed a multivariate 

machine-learning pipeline to predict the ripple-sound content maintained in WM using the 

patterns of subregional functional connectivity as well as spectral and temporal brain activity 

measures. In addition, we tested for the existence of “activity silent” WM representations in 

auditory cortices (Mongillo et al., 2008; Stokes, 2015) by examining the content specificity 

of oscillatory power patterns elicited to task-irrelevant impulse stimuli (Rose et al., 2016; 

Wolff et al., 2015, 2017, 2020).
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RESULTS

Using machine learning, we show that phase synchronization patterns between subregions of 

auditory and frontoparietal cortices predict the content of auditory WM with high accuracy. 

In most of these functional connectivity patterns, the decoding accuracy of memory content 

remained stable across the studied maintenance period. Furthermore, the connections that 

revealed the WM content during the later stage of maintenance consisted of a subset of those 

found during the earlier part of maintenance. In addition to these connectivity-based results, 

we found indices of activity silent WM representations in auditory cortices, as suggested 

by enhanced decoding of memorized sound content from patterns of oscillatory power after 

task-irrelevant impulse sounds.

Behavioral performance

Auditory WM was examined using a “retro-cueing” paradigm, a strategy that helps control 

for the differing accounts of recent stimulus history (i.e., passive sensory memory) and 

actively maintained WM content (Kumar et al., 2016; Rose et al., 2016; Sprague et al., 2016; 

Uluç et al., 2018; Wolff et al., 2017) (Figure 1). The memory items consisted of six ripple 

velocities separated by 1.5 of their just noticeable differences (JNDs), which was determined 

in a separate session to control for individual differences in sound discrimination (Visscher 

et al., 2007). MEG data were measured from 20 participants while subjects were performing 

the WM task. All of the subjects were capable of performing the task according to the 

instruction. The mean proportion of correct responses was 0.84 (standard deviation = 0.1).

Auditory WM content-specific functional connectivity patterns

We selected six regions of interest (ROIs) based on the previous studies on auditory 

WM (Buchsbaum et al., 2005; Crottaz-Herbette et al., 2004; Huang et al., 2013; Kumar 

et al., 2016; Rodriguez-Jimenez et al., 2009; Uluç et al., 2018; Vallar et al., 1997), as 

specifically defined by using the Freesurfer Desikan parcellation (Desikan et al., 2006). 

These ROIs included the superior temporal cortex (STC; superior temporal and Heschl’s 

gyri combined) and inferior frontal gyrus (IFG), as well as the caudal middle frontal (CMF), 

lateral orbitofrontal (LOF), rostral middle frontal (RMF), precentral (PC), and supramarginal 

(SM; overlapping with intraparietal lobule [IPL]) areas in each hemisphere. Given that 

different parts of STC are sensitive to different spectrotemporal properties (Schönwiesner 

and Zatorre, 2009), we hypothesized that the memorized ripple-sound content is represented 

in the subregional phase-synchronization patterns between the auditory cortex and other 

ROIs. Therefore, we focused on the connections between STC and other ROIs to tap into 

the role of networks involving sensory cortices in WM. We developed an approach that uses 

sub-ROI functional connectivity patterns to predict the WM content with a linear support 

vector machine (SVM) classifier (Figure 2). As the functional connectivity measure, the 

imaginary part of the coherence (ImCoh) between sub-ROI pairs (Figure 2A) was used 

to minimize spurious connectivity due to the field spread effect (Nolte et al., 2004). We 

considered early (0.5–1.25 s from memory cue) and late (1.25–2 s) time windows in the 

maintenance period. The data from all of the subjects were merged together within the 

classification, which was cross-validated by permuting the data 100 times. This means 

training the model with data from 75% of the subjects and testing on the remaining data. 
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The statistical significance of the classification accuracy was determined by comparing 

the original accuracy with a null distribution created by using a randomized classifier by 

permuting the labels 500 times. To control for multiple comparisons, from each permutation, 

the maximum statistical value across the studied 60 connections (12 STC-ROI pairs in 5 

frequency bands) was assigned to this null distribution. To further test the validity of our 

results, we conducted a similar connectivity-based decoding analysis with the visual cortex 

area lateral occipital cortex (LOC) as the seed region (for further details of the statistical 

analyses, see STAR Methods).

During maintenance, decoding accuracies were significantly above chance level in 12 

frequency-specific connections within the early time window (Figure 3A) and in 8 

connections within the later time window (Figure 3B). Significant connectivity-based 

decoding results were found in both hemispheres at the alpha and gamma ranges, with 

the strongest effects emerging at the high gamma band in the right hemisphere (for details 

of the statistical inference, see STAR Methods). Importantly, all connections that revealed 

WM content within the late time window showed significant decoding results also within 

the early time window (labeled with an asterisk in Figure 3). In the right hemisphere, 

WM content was stably decodable from both time windows from the high gamma-band 

connection patterns between STC versus LOF, IFG, RMF, CMF, and PC, as well as from 

the alpha-band connection patterns between STC and IFG. In the left hemisphere, the 

WM content could be stably decoded from the alpha-band STC-PC and high gamma-band 

STC-SM connectivity patterns (Figure 3). In the control analysis with LOC as the seed, 

none of the estimated decoding accuracies was significantly above chance level (Figure 

4; for details of the statistical inference, see STAR Methods). The results of additional 

connectivity-based analyses, which decoded the stimulus content during the WM encoding, 

are presented in Figure S1. Examples of confusion matrices related to the decoding analyses 

during the maintenance period are shown in Figures S2 and S3.

To rule out power-related biases in our coherence estimates, we conducted another control 

analysis, in which the power values in each ROI were used as features in the SVM classifier 

(Figure 5A). As expected, in contrast to the connectivity-based analysis, the control analysis 

aiming to classify the memorized ripple-sound content based on oscillatory power patterns at 

the same five frequency ranges provided no significant results in any of the ROIs (for details 

of the statistical inference, see STAR Methods).

Probing the activity-silent WM traces in auditory cortex areas

Recent electroencephalography (EEG) studies suggest that task-irrelevant impulse stimuli 

help amplify the readout of neural memory traces from distributed brain activation patterns 

(Rose et al., 2016; Wolff et al., 2017, 2020). In addition to the connectivity -analysis, we 

therefore probed for activity silent WM representations in the auditory cortex by examining 

content-related changes of responses to task-irrelevant auditory impulse stimuli, which were 

unrelated to the stored attributes, per se: a 50-ms white-noise burst was randomly presented 

in 50% of the trials after 2.5 s into the delay period to induce a brief transient activation 

in auditory cortices (Figure 1). We then attempted to decode which of the six ripple sound 

items was maintained in WM from the frequency band x sub-ROI patterns of oscillatory 
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power in left and right STC, with versus without the impulse sound (Figure 5A). The 

effect of impulse sound was tested by using a linear mixed effect (LME) model with 

fixed effect factors “impulse sound” (with versus without) and the MEG frequency band 

center frequency, as well as the random effect of subject identity, using the MATLAB 

function fitlme (for details of the statistical inference, see STAR Methods). In support of 

our hypothesis, the content of auditory WM could be decoded significantly more accurately 

from STC from trials that included the impulse sound versus those not including the impulse 

sound (t187 = 4.0, pBonferroni = 0.001; Figure 5B). The best-fitting model furthermore 

suggested that the decoding accuracy generally increased as a function of the increasing 

MEG frequency band (t187 = 3.1, pBonferroni = 0.03; Figure 5B). This suggests that the 

impulse sound improves the decoding accuracy of WM content in STC areas that encompass 

the human auditory cortex.

We hypothesized that the readout of WM content would be enhanced by the impulse sound 

specifically in auditory cortices. However, in a confirmatory control analysis, we tested 

the effect of the impulse sound also in the frontal and parietal ROIs using a sub-ROI 

power pattern of spectral power in the five frequency bands (Figure 5A). We corrected for 

multiple comparisons with Bonferroni correction across 13 t-statistics. In contrast to the 

significant effects bilateral STCs, the impulse sound did not improve the decoding accuracy 

in our parietal and frontal ROIs. The analysis procedure is described in detail in the STAR 

Methods.

Power variation during maintenance

A recent study in auditory WM examined the sustained activity in different frequency bands 

and areas during the maintenance period using local field potential data (Kumar et al., 2021). 

We therefore investigated oscillatory power variation during maintenance in all ROIs. We 

found that the power during maintenance shows sustained activity in alpha, beta, and low 

gamma in early time periods, while at later time windows, this pattern is present in the high 

gamma band (Figures S4 and S5; for further details of the statistical inference, see STAR 

Methods).

Temporal pattern decoding

The auditory WM content could be classified significantly above chance level also from 

the temporal pattern of the MEG source activity during WM encoding (Figure S6), but no 

significant effects were found during maintenance. The details of the statistical analyses are 

presented in the STAR Methods.

Behavioral relevance of functional connectivity during WM maintenance

Our support vector regression (SVR) and permutation testing analyses suggest that each 

subject’s behavioral WM performance can be predicted based on high-frequency STC­

frontoparietal synchronization patterns, which in our main analysis contained information of 

WM content (see Figure S7). The details of statistical inference are described in the STAR 

Methods.
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Similarity between WM encoding and maintenance

Following the synaptic model of WM, we hypothesized that maintaining an item in auditory 

WM involves the same functional network that is used during encoding. To test this 

hypothesis, we trained a linear SVM classifier using the connectivity features of WM 

encoding and tested it with the connectivity pattern during WM maintenance. None of 

the connections were significantly above the chance level that was determined using the 

permutation method.

DISCUSSION

Our results provide evidence that parametric attributes of auditory WM content are 

represented in behaviorally relevant neuronal phase-synchronization patterns, which connect 

auditory areas of STC with inferior-lateral frontoparietal cortices. According to our 

machine-learning analyses, which used rigorous between-subject cross-validation and non­

parametric permutation testing, most of these connectivity-based WM representations 

remained stable across the studied maintenance period. Stable and significant connectivity­

based decoding results were found at the alpha and high gamma bands in both hemispheres, 

with the strongest WM content representations emerging at the high gamma band in the right 

hemisphere. These findings support a hypothesis that auditory WM content is maintained in 

long-range synchronization patterns of neuronal oscillations.

It has long been debated whether WM involves a dedicated storage region or whether the 

maintenance process is distributed across multiple brain areas and hierarchical levels (for 

reviews, see Christophel et al., 2017; Goldman-Rakic, 2011; Postle, 2006; Stokes, 2015; 

Xu, 2017). Our results provide an alternative perspective to this theoretical question: WM 

maintenance could be supported by a broader interregional connectivity architecture, in 

which each dynamic ripple sound memory is represented by a content-specific combination 

of functional connections across different aspects of auditory cortex, premotor cortex, and 

frontoparietal association areas. The content specificity of these connectivity patterns could 

be built upon an intrinsic connectivity topography in which the “best ripple velocity” differs 

across different subareas of the auditory cortex (Massoudi et al., 2015; Schönwiesner and 

Zatorre, 2009) and also across frontoparietal neurons that are connected to different parts of 

the auditory cortex (Fritz et al., 2010). This connectivity-based coding hypothesis receives 

indirect support from a recent fMRI study, according to which the content of human visual 

WM can be decoded more precisely from functional connectivity than local hemodynamic 

activation patterns (Soreq et al., 2019).

The theoretical idea that WM content could be represented in functional connectivity has 

been described previously at the level of a local network of nearby neuronal units (Barak and 

Tsodyks, 2014; Mongillo et al., 2008; Stokes, 2015). A candidate mechanism for such local 

connectivity-based effects is short-term synaptic plasticity (STSP): During encoding, the 

stimulus-driven activity temporarily changes the synaptic efficacy within the neural network, 

which leaves behind a temporary synaptic memory trace via STSP (Zucker and Regehr, 

2002). These STSP effects could then change the functional connectivity of the neural 

network and result in a transient item-specific circuit for the WM memoranda (Erickson 

et al., 2010; Stokes, 2015). It is possible such effects could also modulate the intrinsic 
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connectivity of larger-scale networks that are observable in MEG source estimates. In other 

words, the content specificity of large-scale functional connectivity, which we observed in 

the linear classifier analysis of MEG source estimates, could reflect an altered state of the 

underlying synaptic connections.

Content-specific interregional synchronization in WM could also be intuitively explained 

by the communication through coherence theory (Fries, 2005). According to this theory, 

frequency-specific coherence provides a mechanism for information transfer by phase­

aligning periods of excitability to maximize the opportunity for communication (Fries, 

2005). During WM encoding, the intrinsic oscillatory activity of groups of neurons, which 

are sensitive to the to-be-remembered auditory attributes, could become synchronized or 

“entrained.” During maintenance, the entrained (interregional) oscillatory activity could then 

increase the temporal coherence of activations that, for example, help periodically refresh 

synaptic traces of the maintained information (for a review, see Miller et al., 2018).

In auditory cortices, we found a significant increase in the decoding accuracy of the memory 

content after task-irrelevant impulse sounds, when compared to maintenance trials with 

no such impulse stimuli. This finding is broadly consistent with previous EEG studies of 

activity silent representations in visual (Rose et al., 2016; Ten Oever et al., 2020; Wolff 

et al., 2017, 2020) and auditory WM (Wolff et al., 2020). However, as the previous non­

invasive human studies were focused on the EEG electrode space analysis, the underlying 

sources of activity silent WM representations, and particularly the contribution of sensory 

areas, had remained ambiguous. Our MRI-constrained cortical MEG source analysis results 

thus significantly extend these previous findings by showing that activity silent WM 

maintenance takes place in the sensory areas of the human cortex as well.

In our connectivity-based decoding analyses, we found content-specific WM effects at alpha 

and high gamma ranges. Previous studies in both visual (Howard et al., 2003; Medendorp 

et al., 2007; Palva et al., 2010; Roux et al., 2012; van Vugt et al., 2010) and auditory 

domains (Kaiser et al., 2008; Lutzenberger et al., 2002) have suggested functional specificity 

of different oscillatory frequency ranges. In these studies, gamma band oscillations have 

often been associated with active maintenance of WM information (Roux and Uhlhaas, 

2014). Previous neurophysiological work suggests that gamma activity is closely linked 

to spiking patterns that carry information about WM memoranda (Lundqvist et al., 2016). 

Although often considered predominantly a local phenomenon (Fries et al., 2007), gamma­

range synchronization patterns occur also across longer distances (Buzsáki and Schomburg, 

2015), including between the primate PFC and sensory areas during active attention tasks 

(Gregoriou et al., 2009). In contrast, alpha-band activity has been linked to protecting WM 

items from non-relevant information (Roux and Uhlhaas, 2014). Our results suggest that 

these frequency-specific changes in functional connectivity show content-specific variability, 

which can be decoded using machine-learning techniques.

In conclusion, our results provide converging evidence that auditory WM information is 

maintained in patterns of functional connectivity between subregions of frontoparietal and 

temporal cortices. The content specificity of these connectivity-based WM representations 

fundamentally relies on sensory areas of the human auditory cortex. It is conceivable that the 
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principles of our connectivity-based perspective on the neural coding of WM extend beyond 

the auditory domain.

STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources should be directed to and 

will be fulfilled by the Lead Contact, Jyrki Ahveninen, jahveninen@mgh.harvard.edu.

Materials availability—This study did not generate new materials.

Data and code availability

• Deidentified MEG ImCoh data utilized in our connectivity-based analyses 

to yield our main results are available at https://dataverse.harvard.edu/citation?

persistentId=doi:10.7910/DVN/I307DS.

• Custom code utilized to generate our results is available at https://zenodo.org/

record/5112421.

• Any additional information required to reanalyze the data reported in this paper 

is available from the Lead Contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human participants—A total of 20 healthy adult participants with no self-reported 

hearing deficits and (corrected-to-) normal vision were included (age 22-39 years, 12 

women). The subjects’ capability to detect and discriminate the auditory stimuli were 

confirmed in a brief behavioral assessment before the MEG session. All procedures were 

approved by the Institutional Review Board of Massachusetts General Hospital. All subjects 

gave their informed consent before participating in the study.

METHOD DETAILS

Stimuli and WM task—The majority of previous studies on auditory WM use stimuli that 

allow non-auditory maintenance strategies. Here, to eliminate verbal and other non-auditory 

rehearsal strategies, we used moving ripple sounds, which are spectrotemporally similar to 

speech but not contaminated by semantic properties or perceptual categories (Visscher et 

al., 2007) (Figure 1A). An individualized set of 17 stimuli with different ripple velocities, 

separated by intervals of Δω = 0.5 × the just noticeable difference (JND) were generated 

for each subject in a separate behavioral session, to control for individual differences in 

sound discrimination (Visscher et al., 2007). The dynamic ripple sounds were generated by 

superimposing 20 sinusoids/octave ranging from f0 = 0.2 kHz to f = 1.6 kHz. Their intensity 

at any time and frequency was defined by s(g,t) = D0 + D cos[2π(ωt + Ωg)) + ψ], where g 

= log(f/f0), D is the modulation depth, and ψ is the phase of the ripple (duration = 1 s, Ω = 

1 cycles/octave). JND of ω was approximated as the minimally detectable base 2 logarithmic 

ripple-velocity interval within a range of 3-48 cycles/s based on an adaptive 2 down/1 up 

staircase algorithm. The sounds were delivered at a comfortable level via a headphone.
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A “retro-cueing” paradigm was utilized to control for the differing accounts of recent 

stimulus history and actively maintained WM content (Kumar et al., 2016; Rose et al., 2016; 

Sprague et al., 2016; Uluç et al., 2018; Wolff et al., 2017) (Figure 1B). The subject was first 

presented with two sound items in a row. A subsequent retro-cue indicated which of the two 

items was to be maintained in memory. Four seconds after the retro-cue, the subject heard a 

probe stimulus and was asked to press one button if the probe matched the relevant item and 

another button if not. In 50% of the trials, the probe matched the maintained item. In 50% 

of the remaining non-matching trials (25% of total count), the probe matched the irrelevant 

item, to confirm that subjects were maintaining only the relevant item. Notably, the subject 

was not informed that whereas the probes were selected from the entire individualized pool 

of 17 possible stimuli, the pairs of items consisted of only 6 possible classes. To increase the 

physical variability to minimize any long-term learning effects, there was also a half-JND 

offset between the possible relevant versus irrelevant item classes. Finally, in half of the 

trials, a task-irrelevant impulse stimulus, a 50-ms white-noise burst, was randomly presented 

2.5 s into the delay period. This impulse stimulus was utilized to tap into the hidden states of 

WM, as inspired by previous EEG studies (Rose et al., 2016; Wolff et al., 2017, 2020).

Structural MRI data acquisition and processing—T1-weighted anatomical images 

were obtained for combining anatomical and functional data using a multi-echo MPRAGE 

pulse sequence (TR = 2530 ms; 4 echoes with TEs = 1.69, 3.55, 5.41, 7.27 ms; 176 sagittal 

slices with 1 × 1 × 1 mm3 voxels, 256 × 256 mm2 matrix; flip angle = 7°) in a 3T Siemens 

Prisma whole-body MRI scanner (Siemens Medical Systems, Erlangen, Germany) using a 

64-channel head and neck coil. Cortical reconstruction and parcellations for each subject 

were generated using Freesurfer (Dale et al., 1999; Fischl et al., 1999). After correcting for 

topological defects, the cortical surfaces were triangulated with dense meshes with ~130 000 

vertices in each hemisphere. For visualization, the surfaces were inflated, thereby exposing 

the sulci (Dale et al., 1999).

MEG data acquisition—MEG data were acquired inside a magnetically shielded room 

(IMEDCO AG, Haegendorf, Switzerland) using a whole-head Vector-View MEG system 

(MEGIN Oy, Helsinki, Finland), comprised of 306 sensors arranged in 102 triplets of two 

orthogonal planar gradiometers and one magnetometer. The signals were filtered between 

0.1 and 200 Hz and sampled at 1000 Hz. The position and orientation of the head 

with respect to the MEG sensor array was recorded continuously with help of four head 

position indicator coils. To allow co-registration of the MEG and MRI data, the locations of 

three fiduciary points (nasion and pre-auricular points) that define a head-based coordinate 

system, a set of points from the head surface, and the sites of the four head position indicator 

coils were digitized using a Fastrak digitizer (Polhemus) integrated with the Vectorview 

system. MEG Data were recorded in four 24-minute runs, with 96 trials within each run. 

The ECG and electrooculography signals were recorded simultaneously to identify epochs 

containing heartbeats as well as vertical and horizontal eye movement and blink artifacts. 

During data acquisition, online averages were computed from artifact-free epochs to monitor 

data quality in real time. All offline analysis was based on the saved raw data. In addition, 

5 minutes of data from the room void of a subject were recorded before each experimental 

session for noise estimation purposes.
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MEG data preprocessing—MEG data were spatially filtered using the signal space 

separation method (SSS, Elekta-Neuromag Maxfilter software) to suppress noise generated 

by sources outside the brain (Taulu et al., 2004). The SSS method also corrects for head 

motion between and within runs (Taulu et al., 2004). Cardiac and ocular artifacts were 

removed by signal space projection (SSP) (Khan et al., 2018; Mamashli et al., 2019b). Data 

were visually browsed and sufficient number of SSP (between 1-4) were selected separately 

to remove cardiac and ocular artifacts. The data were filtered between 0.5 and 140 Hz and 

downsampled to 500 Hz.

Each task trial was epoched for encoding and maintenance period: (a) Encoding from 

−500ms to 1 s after the first sound item and the second sound items (i.e., resulting in two 

epochs per task trial); (b) Maintenance from 0 to 2.5 s after the memory cue; (c) Impulse 

sound period from −0.5 s to 1.5 s after onset of the impulse sound or the corresponding time 

point in trials with no impulse sounds. Epochs were rejected if the peak-to-peak amplitude 

during the epochs exceeded 1000 fT and 3000 fT/cm in any of the magnetometer and 

gradiometer channels, respectively. On average, we had 115 ± 15 epochs for encoding and 

58 ± 7 epochs for maintenance for each ripple-velocity condition. One subject was excluded 

due to excessive motion noise, resulting in 19 subjects in total. Two additional subjects 

were excluded from the connectivity analysis because of an insufficient number of epochs to 

provide a sufficient signal to noise ratio for coherence analyses.

Source estimation—The geometry of each participant’s cortical surface was 

reconstructed from the 3D structural MRI data using FreeSurfer software (https://

surfer.nmr.mgh.harvard.edu). The cortical surface was decimated to a grid of 10242 dipoles 

per hemisphere, corresponding to a spacing of approximately 5 mm between adjacent 

source locations in the cortex. The MEG forward solution was computed using a single­

compartment boundary-element model (BEM) assuming the shape of the intracranial space. 

The watershed algorithm was used to generate the inner skull surface triangulations from 

the T1-weighted MRIs of each participant. The cortical current distribution was estimated 

using minimum-norm estimate (MNE) software (http://www.nmr.mgh.harvard.edu/martinos/

userInfo/data/sofMNE.php) (Gramfort et al., 2014) and assuming the orientation of the 

source to be fixed perpendicular to the cortical mesh. The noise-covariance matrix used to 

calculate the inverse operator was estimated from data collected without a subject present. 

To reduce the bias of the MNEs toward superficial currents, we used depth weighting (Lin et 

al., 2006).

Inter-subject cortical surface registration for group analysis—Each participant’s 

inflated cortical surface was registered to an average cortical representation (fsaverage in 

FreeSurfer) by optimally aligning individual sulcal-gyral patterns (Fischl et al., 1999).

Region of interest (ROI) identification and analysis—We selected the ROIs based 

on the Freesurfer Desikan parcellation (Desikan et al., 2006), as guided by previous studies 

human auditory WM (Buchsbaum et al., 2005; Crottaz-Herbette et al., 2004; Huang et 

al., 2013; Kumar et al., 2016; Rodriguez-Jimenez et al., 2009; Uluç et al., 2018; Vallar et 

al., 1997). The combination of Heschl’s and superior temporal gyri was utilized to model 

auditory cortical WM processes (jointly labeled as STC). The other ROIs include the inferior 
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frontal gyrus (IFG; pars opercularis, triangularis, and orbitalis), as well as the caudal middle 

frontal (CMF), lateral orbitofrontal (LOF), rostral middle frontal (RMF), precentral (PC), 

and supramarginal (SM) areas. An automatic routine was utilized to break each larger 

ROI into smaller, approximately equally sized sub-ROIs (Mamashli et al., 2019a). The 

purpose of this procedure was to increase the spatial specificity of our subsequent analyses 

of spatio-spectrotemporal WM activation patterns, as well as to deal with potential signal 

cancellations due to the sulcus geometry (Mamashli et al., 2019a). Furthermore, dividing 

each ROI into sub-ROI approach would allow us to account for the sensitivity of different 

parts of STC to different spectrotemporal properties (Schönwiesner and Zatorre, 2009) and 

testing our hypothesis of sound content-specific representation in the STC-ROI sub-regional 

phase-synchronization patterns.

Sub-ROI time series extraction—Epochs were extracted for all vertices within each 

sub-ROI using inverse operator. The time series were averaged across the vertices within 

every sub-ROI, with the waveform signs of sources aligned on the basis of surface-normal 

orientations to avoid phase cancellations. This results in a two-dimensional (2D) time-series 

matrix of epochs by time for each sub-ROI (Mamashli et al., 2018, 2019a).

Time-frequency decomposition—The 2D time series was convolved with a dictionary 

of complex Morlet wavelets (each spanning seven cycles), resulting in three-dimensional 

complex spectra epoch-time-frequency matrix: Sk t, f ∈ ℝK × T × F , K is number of 

epochs, T is time points and F is frequency bins.

Functional connectivity computation—The coherence between each sub-ROI pair 

(Ii, Jj) in ROII and ROIJ (I = 1, 2 and J = 1, …, 6), was computed for all frequencies 

between 3 Hz and 120 Hz across each 1/4th of the total epochs. Functional connectivity was 

estimated for all intra-hemispheric connections with right STC and left STC (I = 1, 2): In 

summary, we had 6 STC-ROI connections in right hemisphere and 6 STC-ROI connections 

in left hemisphere. We used the imaginary part of the coherence (ImCoh) to minimize 

spurious connectivity due to field spread effect (Nolte et al., 2004). To maintain a constant 

signal-to-noise ratio across conditions, the number of epochs per condition per participant 

was fixed at the minimum number of accepted epochs that we had for each condition and 

participant. The connectivity analysis was not done for the impulse sound responses, as the 

impulse sound was present only in 50% of the epochs, which rendered the number of epochs 

too small to provide a sufficient signal to noise ratio of the coherence estimation.

Power computation

A. MVPA analysis: Power spectrum (no temporal resolution) was estimated using 

multi-taper approach implemented for single epochs in MNE-Python software 

from 3 to 120 Hz for each sub-ROI. For each subject, the minimum number 

of epochs across conditions was considered to control for signal to noise 

ratio across conditions. Power spectrum was averaged into four groups for 

each condition. This allowed for four-fold cross validation in the subsequent 

multivariate pattern analysis (MVPA).
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B. Power variation during maintenance: Temporally resolved power values were 

averaged across 6-ripple velocity memorization during maintenance. Averaged 

power changes in the post stimulus interval (0 to 2 s) were estimated as 

relative change from the baseline interval (−400 to −200ms). Power values were 

averaged within each of the five studied frequency bands.

Machine learning analysis—MVPA have been successfully used to decode neural 

activity using MEG signal patterns (Haxby et al., 2014; King and Dehaene, 2014; 

Mohsenzadeh et al., 2018). We used MVPA to decode the six ripple sounds classes from 

MEG signal patterns during WM processing. Following our hypothesis, we used STC-ROI 

connectivity patterns and sub-regional power pattern within each ROI as our features.

A. STC-ROI Connectivity Pattern: Connectivity pattern was extracted for both WM 

maintenance period and WM encoding period separately. In WM maintenance, 

we considered two time windows: early (0.5 to 1.25 s) and late (1.25 – 2 

s) to allow us to investigate the stability of connectivity-based WM coding 

across the maintenance period. ImCoh values between each sub-ROI pair were 

averaged within each time window separately in each frequency band. In WM 

encoding ImCoh were averaged from 0-1 s. The frequency range used for 

each frequency bands were as follows: Theta: 3-7 Hz, Alpha: 8-12 Hz, Beta: 

13-30 Hz, Low Gamma: 31-60 Hz and High Gamma: 61-120 Hz (Figure 

2A). The STC-to-ROI connectivity matrix consisted of NSTC×NROI, (NSTC: 

Number of sub-ROIs in STC, NROI: Number of sub-ROIs in ROI) sub-ROI 

pair connections, giving NSTC×NROI = T features for each frequency band 

(Figure 2B). The number of sub-ROIs in left and right STC were Nleft STC = 

12 and Nright STC = 13 respectively. The numbers of sub-ROIs in other ROIs 

are in Table S1. We used support vector machine (SVM) implemented in libsvm 

(Chang and Lin, 2011) and provided in the COSMOMVPA package (http://

www.cosmomvpa.org/) (Oosterhof et al., 2016) in MATLAB. SVM is widely 

used in comparable neuroimaging studies because of its suitability for analyses 

with relatively small number of samples (< 10,000). Another advantage of linear 

SVM over other suitable classifiers, such as linear discriminant analysis, is the 

regularization parameter (known as C in the equation), which helps to adjust 

or penalize for the large number of features when estimating the cost function 

in the optimization process (Chang and Lin, 2011). SVM can be described 

as a hyperplane that separates the classes as best as possible. Specifically, we 

trained a SVM classifier with linear kernel and cost equal to one (C = 1). To 

increase the impact of the analysis to larger population, we merged the data 

from all subjects together and performed the classification across the subjects. 

In total, we had 306×T dataset for training and tested on 102×T dataset and 

did cross validation by permuting the whole data 100 times and replicating the 

classification process. Accuracy of the classifier as performance measures was 

averaged across 100 cross-validations. We also looked at the confusion matrix 

that was averaged across 100 cross-validation. This process was done for each 

STC-ROI connection and each frequency band. Therefore, we performed 60 (5 

frequency bands X 12 connections) classifications procedure.
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B. ROI Power Pattern: We extracted sub-regional power pattern in WM encoding 

and WM maintenance separately. We used frequency specific power pattern 

within each frequency band (theta, alpha, beta, low gamma, and high gamma) 

in each ROI to decode the relevant ripple velocity class (out of six). The 

frequencies were selected logarithmically between 3 to 120 Hz with total 73 

frequency bins. Therefore, there were N×M = H features (N number of sub-ROI 

within each ROI and M frequency bins within frequency band, M = 5 in theta 

and alpha, M = 18 in beta, M = 20 in low gamma and M = 21 in high gamma). 

Power values within each sub-ROI were averaged across each 1/4th of the epochs 

for each condition (Figure 5a) that allows four-fold cross validation (trained on 

18×H data and tested in 6×H data, repeated 4 times) within each subject. The 

classifier was SVM with a “radial basis function” kernel as implemented in 

scikit-learn (Pedregosa et al., 2011) with default parameters; C = 1 and gamma 

is 1
H × σ2 P

, in which P stands for power. The idea for this analysis was to (i) 

understand the effect of impulse sound in auditory cortex. Thus, we focused on 

the bilateral STC frequency specific power pattern and compared the decoding 

accuracies during the last 1.5 s of maintenance, across the trials with and without 

the impulse sound. (ii) Identify potential confounding effects in the MVPA 

connectivity analysis (Lowet et al., 2016) tested across all ROIs.

C. Cortical Activation Temporal Decoding: We used the time course activation 

within each vertex in the whole cortex for decoding the represented ripple 

velocity during WM encoding and maintenance (Figure S6). We also compared 

the time-course decoding accuracies during the last 1.5 s of maintenance, across 

the trials with and without the impulse sound. We used the same time interval 

as the connectivity in both WM maintenance (0.5-2 s) and encoding (0-1 s) 

data. The data were band pass filtered from 0.5-12 Hz. During WM encoding, 

we had 500 samples and during maintenance 750 samples data both before and 

after impulse sound. We used principal component analysis (PCA) to reduce 

the number of temporal features from 750 and 500 time points to 100 principal 

components that explained 99% of the variance of the data. The input data to the 

classifier was Ntrials×100 principal components for each subject. SVM classifier 

with radial basis function kernel was used with default value of C = 1, gamma 

= 1
H × σ2 PC

, in which PC is the principal components, and 10-fold cross 

validations. We used equal number of trials across the conditions within each 

subject.

Similarity pattern between WM encoding and maintenance—MVPA STC-ROI 

Connectivity pattern: To test whether there were similarities in WM encoding and 

maintenance, we used a multivariate approach. We tested whether the connectivity pattern of 

the 6-ripple velocity memorized in “WM encoding” is able to predict the ripple velocity 

class in “WM maintenance.” To this end, we trained a linear SVM model with WM 

encoding connectivity pattern as features and tested with WM maintenance connectivity 
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pattern with 4-fold cross validation and non-overlapping runs, as implemented across all 

connections and all frequency bands within each subject.

Behavioral relevance of functional connectivity during WM maintenance—In 

previous studies, direct correlations between MVPA decoding accuracy and behavioral 

WM performance have often been relatively scarce (Christophel et al., 2018; Kumar et 

al., 2016; Uluç et al., 2018), or they have emerged only in simpler tasks than that used 

in the present study (Bettencourt and Xu, 2016; Ester et al., 2013). These difficulties in 

finding direct correlations between MVPA and behavioral WM measures may stem from 

both cognitive (the additional contribution of recall/matching, decision making processes) 

and neuroimaging signal-processing (e.g., individual variable SNR) confounds. An inherent 

property of our between-subject connectivity-based SVM analysis, further, is that it outputs 

only group-level decoding accuracies, which limits correlation analyses to the variability 

of behavioral performance. Here, to examine the behavioral relevance of our connectivity­

based measures, we therefore adapted a different strategy: The relationship between each 

subject’s proportion correct responses and functional connectivity patters was analyzed 

during the early (0.5 to 1.25 s) and late (1.25 – 2 s) maintenance time windows using 

a support vector regression (SVR) implemented in libsvm (Chang and Lin, 2011) and 

provided in the COSMOMVPA package (http://www.cosmomvpa.org/) in MATLAB.

Specifically, ImCoh values between each sub-ROI pair were averaged within each time 

window separately in the same frequency ranges that were utilized in the content-decoding 

analysis, including Theta (3-7 Hz), Alpha (8-12 Hz), Beta (13-30 Hz), Low Gamma 

(31-60 Hz), and High Gamma (61-120 Hz). Each subjects STC-to-ROI connectivity matrix 

consisted of NSTC×NROI sub-ROI pair connections (NSTC is the number of sub-ROIs 

in STC, NROI refers to those in the other ROI; see Table S1) giving NSTC×NROI = T 
features for each of the four subsamples and frequency band. The run-specific sub-ROI pair 

connectivity matrices were concatenated across subjects: The initial input data to our SVR, 

which used a linear kernel and cost equal to one (C = 1)), thus was (Nruns×Nsubjects×T = 

68×T. However, in each of our four cross-validation folds, the 51×T initial training set was 

subjected to a principal component analysis (PCA) to reduce its connectivity features to the 

number of principal components (PC) that explained 95% of the variance of the data. The 

resulting PCA coefficients were, subsequently, used to multiply the remaining test data, to 

yield a matching NPC of features across the 17 subjects having a sufficient number of epochs 

for the connectivity analysis. The prediction accuracy was defined based on the root mean 

square error of the predicted versus the actual proportion correct values (RMSE).

QUANTIFICATION AND STATISTICAL ANALYSIS

A. MVPA Connectivity analysis: We used nonparametric permutation approach 

to test the significance of the accuracy values. First, we created 500 unique 

permutations of the true labels of the classifier. A null distribution of the 

accuracy was generated using the training data with randomized item-content 

labels. This null distribution helped us determine the classification accuracies 

that emerge by chance with 6-classes. The null distribution was generated 

for each connection and frequency bands separately. To correct for multiple 
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comparisons across all connections and frequency bands (total 60), we used 

maximum statistics. We took the maximum value of the null distribution across 

all 60 tests which provided a final null-distribution. To assign a p value for each 

connection, the original accuracy value (found from a classifier with true labels) 

was compared with this null-distribution.

B. MVPA Power analysis: Similar to MVPA connectivity we followed a 

permutation approach. We generated a null distribution of accuracies with a 

classifier with randomized labels. We replicated this process for each subject 

and averaged the values. This was done separately for each frequency band. 

Lastly, we took the maximum across 5 frequency bands to correct for multiple 

comparisons. In addition, to compare decoding accuracies from with and without 

the impulse sound, we used LME modeling, as implemented using the MATLAB 

functions fitlme. The best fitting model was selected in a stepwise fashion by 

using likelihood ratio tests (compare.m): The complexity of the model was 

increased starting from the simplest possible model, which contained only the 

intercept and the random effect of subject identity, toward the full factorial model 

(containing all possible main effects and interactions) until we reached a point 

where no significant improvement was achieved. In addition to the random effect 

of subject identity and intercept, the LME analysis considered the fixed effects 

of Impulse Sound (impulse sound versus no impulse sound), the MEG Frequency 

Band (represented by each band’s center frequency) that was transformed by 

base-2 logarithm before the analysis. For the practical implementation, the 

accuracy values were rescaled by subtracting 1/6. We corrected for multiple 

comparisons by applying Bonferroni correction across 13 t statistics.

C. Power variation during maintenance: threshold-free clustering was applied with 

one-sample t test as the test statistics and 500 permutations across 19 subjects.

D. Cortical activation temporal decoding: To assess statistical significances, we used 

cluster-based statistics with 1,000 permutations, initial alpha value of 0.05 and 

one-sample t test as test statistics comparing the decoding accuracy against the 

chance level of 1/6 in whole cortex across all subjects (n = 19). Cluster-based 

statistics is a nonparametric, permutation-based method (Maris and Oostenveld, 

2007) that inherently corrects for multiple comparisons. The cluster statistics 

was used to compare the decoding accuracy against the chance level during WM 

encoding, WM maintenance, and impulse sound response.

E. Behavioral relevance of functional connectivity during WM maintenance: 

The RMSE values averaged across the four folds were compared to a null 

distribution, which was accumulated by repeating the same SVR procedure in 

1000 permutations with training-set labels (i.e., proportion correct values) being 

randomly shuffled within each subsample. To manage the multiple comparisons 

problem, from each permutation, we selected the minimum RMSE across all 

sub-ROI frequency connectivity pairs, across the early and late time windows, to 

be entered into the null distribution. The alpha was set to p < 0.05 (two tails): the 

sub-ROI frequency connectivity patterns whose RMSE value was smaller than in 
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97.5% of those in the combined null distribution during both the early and late 

time window were deemed as statistically significant predictors of the behavioral 

performance.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• How neurons in human brain store transient working memories (WMs) is 

debated

• We hypothesize that interregional phase synchronization supports WM 

maintenance

• We decode auditory memories from magnetoencephalograms to test this 

hypothesis

• Synchronization patterns across sensory and higher areas reveal content held 

in WM
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Figure 1. Auditory stimuli and WM tasks
(A) Time-frequency representations of 2 moving ripple sounds, modulated across time 

(ripple velocity, ω cycles/s) and frequency (Ω cycles/octave).

(B) Trial design. After an alerting cue, subjects heard 2 ripple sound stimuli (i.e., memory 

items) in a row. A brief visual cue then followed, to instruct which of the previous items was 

to be actively memorized for a period of 4 s. After hearing the probe, the subject was asked 

to press one button (“yes”) if the probe matched the relevant item and another(“no”) if it did 

not. In half of the trials, a brief broadband auditory noise burst called “impulse stimulus” 

was presented during the maintenance period, to help decode item-specific activations.
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Figure 2. Schematic of multivariate pattern analysis (MVPA) using the connectivity pattern 
between 2 examples of ROIs
We used an automatic routine to break each large ROI into smaller, approximately equal-size 

sub-ROIs (Mamashli et al., 2019a) to increase the spatial specificity, allowing us to capture 

the spatio-spectral WM activation variability.

(A) Imaginary coherence (ImCoh) was estimated between 9 × 13 sub-ROIs pairs within STC 

and IFG across each ¼ of the total number of epochs. An example of the ImCoh is shown at 

right. The ImCoh were averaged in early (0.5–1.25 s) and late (1.25–2 s from memory cue) 

time windows and each frequency band.

(B) The ImCoh value of each sub-ROI pair was used to generate the connectivity matrix. 

The connectivity pattern matrix was then converted to a vector (e.g., here consisting of 9 

× 13 = 117 features) to classify the 6 sound classes. We then combined all subjects’ data, 

fed them into a linear support vector machine, trained the model on the data from 75% of 

the subjects and tested it on the remaining subjects. For cross-validation, we permuted the 

data 100 times and replicated the classification. The accuracy was used as the performance 

metric. The related confusion matrices are in Figures S2 and S3. For further details of the 

method, see STAR Methods.
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Figure 3. Evidence for connectivity-based auditory WM representations
Decoding accuracy in the connectivity-based decoding analysis at the 5 studied frequency 

bands during (A) the earlier (0.5–1.25 s) and (B) the later (1.25–2 s) WM maintenance time 

windows. The left panel shows the null distributions of maximum statistics for each time 

window, created using classifiers with randomized stimulus-item labels. The thresholds of 

significance are marked with vertical dashed lines. The center panel shows the decoding 

accuracy values for each connection and frequency within each time window. Those above 

the threshold (horizontal dashed line) were deemed statistically significant. The connections 

with the most stable decoding accuracy, revealing the WM content both during the early 

(A) and later (B) time windows, are labeled with an asterisk. The rightmost panel shows 

the anatomical connections that showed significant decoding accuracy in at least 1 of the 

frequency bands.

For further details of the analysis, see the subsections Method details and Quantification and 

statistical analysis in the STAR Methods.
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Figure 4. No significant effects were observed in a control analysis, which used connectivity 
patterns to the visual cortex area LOC for decoding the memorized sound content
(A) Earlier time window (0.5–1.25 s) of WM maintenance.

(B) Later time window (1.25–2 s) of WM maintenance. The left panel shows the null 

distributions of maximum statistics for each time window, created using a classifier with 

randomized sound-content labels. The dashed lines show the critical values (i.e., the 

threshold) of statistical significance for each time window. The center panels show the 

accuracy values for each connection and each frequency, none of which were statistically 

significant. The rightmost panel displays the location of the LOC seed and other ROIs.

For further details of the analysis, see the subsections Method details and Quantification and 

statistical analysis in the STAR Methods.
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Figure 5. MVPA using oscillatory power and impulse sound effect
(A) Schematic display of MVPA using STC oscillatory power to decode activity-silent WM 

representations in auditory areas. Single-epoch power was estimated within each sub-ROI 

and then averaged across ¼ of the epochs within frequency bin. At each separate frequency 

band, the bilateral STC power pattern included 25 sub-ROIs (i.e., 12 in right-STC and 

13 in left-STC), which were entered into a band-specific SVM classifier with 4-fold cross­

validation.

(B) MVPA decoding accuracy at 5 frequency bands in theta, alpha, beta, low, and high 

gamma bands in response to impulse and no-impulse sound. According to our linear mixed­

effects model, the decoding accuracy was significantly enhanced by the impulse sound. The 

error bars show the standard error of the mean.

For further details of the analysis, see the subsections Method details and Quantification and 

statistical analysis in the STAR Methods.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

MEG connectivity data This study https://dataverse.harvard.edu/citation?persistentId=doi:10.7910/DVN/
I307DS

Software and algorithms

MNE Gramfort et al., 2014 https://www.nmr.mgh.harvard.edu/martinos/userInfo/data/sofMNE.php

FreeSurfer Dale et al., 1999; Fischl et al., 1999 https://surfer.nmr.mgh.harvard.edu/

libsvm Chang and Lin, 2011 https://www.csie.ntu.edu.tw/~cjlin/libsvm/

COSMOMVPA Oosterhof et al., 2016 http://www.cosmomvpa.org/

Custom code This study https://zenodo.org/record/5112421
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