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Gene expression regulation is gated by promoter methylation states modulating transcription factor binding. The known
DNA methylation/unmethylation mechanisms are sequence unspecific, but different cells with the same genome have
different methylomes. Thus, additional processes bringing specificity to the methylation/unmethylation mechanisms are
required. Searching for such processes, we demonstrated that CpG methylation states are influenced by the sequence
context surrounding the CpGs. We used such a property to develop a CpG methylation motif discovery algorithm. The
newly discovered motifs reveal ‘‘methylation/unmethylation factors’’ that could recruit the ‘‘methylation/unmethylation
machinery’’ to the loci specified by the motifs. Our methylation motif discovery algorithm provides a synergistic ap-
proach to the differently methylated region algorithms. Since our algorithm searches for commonly methylated regions
inside the same sample, it requires only a single sample to operate. The motifs that were found discriminate between
hypomethylated and hypermethylated regions. The hypomethylation-associated motifs have a high CG content, their
targets appear in conserved regions near transcription start sites, they tend to co-occur within transcription factor binding
sites, they are involved in breaking the H3K4me3/H3K27me3 bivalent balance, and they transit the enhancers from
repressive H3K27me3 to active H3K27ac during ES cell differentiation. The new methylation motifs characterize the
pluripotent state shared between ES and iPS cells. Additionally, we found a collection of motifs associated with the somatic
memory inherited by the iPS from the initial fibroblast cells, thus revealing the existence of epigenetic somatic memory on
a fine methylation scale.

[Supplemental material is available for this article.]

Genetic network regulation is driven by transcription factors (TFs)

binding to gene target promoters gated by promoter methylation.

If the TF binding site (TFBS) surroundings are methylated, the TF

cannot bind and the gene will not be expressed. Thus, the pro-

moter methylation is an on/off bistable ‘‘digital’’ switch that allows

(in the unmethylated state) the TFs to exert a fine-tuned ‘‘analog-

ical’’ regulation. To model and simulate genetic networks, we need

to know the TFBSs and the susceptibility of the DNA loci residing

inside the promoters to be methylated or unmethylated.

Numerous techniques have been developed to predict

TFBSs (Elnitski et al. 2006; Levitsky et al. 2007; von Rohr et al.

2007) and TF binding motifs (TFBMs) (Müller-Molina et al.

2012). However, few studies have attempted to predict DNA

methylation patterns. DNA methylation occurs at C5 cytosine

positions, mainly in CpG loci. Some research has focused on

CpG islands (Ficz et al. 2011) and on predicting their methyla-

tion using computational approaches (Das et al. 2006). Genome-

wide methylation next-generation sequencing (NGS) has shown

that CpG islands are usually unmethylated (Deaton and Bird

2011; Meissner 2011) and methylation alterations in cancer

occur neither in promoters, nor in CpG islands, but in sequences

up to 2 kb called CpG island shores (Doi et al. 2009; Irizarry et al.

2009). With some exceptions (Bhasin et al. 2005; Bock et al. 2006),

research on CpG methylation prediction outside the aforemen-

tioned regions is scarce.

Assuming that CpG methylation and CpG sequence con-

text function independently of each other, uniform distribution of

methylated CpGs across the different clones in bisulfite lollipop

diagrams might be expected. Nevertheless, such diagrams fre-

quently show CpG columns with methylation distributions de-

parting from the expected average (Fig. 1A). We referred to the

significantly low- and high-methylated CpGs as methylation-

resistant and methylation-prone CpGs, respectively. We hypothe-

sized that such departures are due to the influence of the DNA

sequence surrounding the CpG on the recruitment and interac-

tion of methylation/unmethylation agents and their CpG targets.

The MethDB database (Grunau et al. 2001) collects methylation

information for more than 20,000 CpGs. We observed the same

trend in MethDB as in Figure 1A, but MethDB data are insufficient

to predict reliable methylation patterns. After all, the human ge-

nome has over 28 million CpGs. We benefited from the plethora of
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data from NGS methylomics surveys compiling an NGS meth-

ylomics collection that comprises a high percentage of CpGs with

high coverage (Table 1). In this way, we collected enough data to

verify our hypothesis that CpG methylation depends on the se-

quence context and we developed a computational method to dis-

cover CpG methylation motifs (CpGMMs).We expect that the DNA

methylation differences revealed by the CpGMMs at the CpG level

are biologically relevant since they could work as recognition sites

for the agents that perform DNA methylation and demethylation.

Actually, it has already been found (Mohn and Schübeler 2009;

Lienert et al. 2011) that the methylation changes due to single CpG

mutations have biological effects.

The capacity for proliferation and pluripotency make embry-

onic stem (ES) cells promising candidates for regenerative medicine

and drug screening applications. However, due to technical and

ethical issues, human ES cell experiments are restricted. Cellular

reprogramming (Takahashi and Yamanaka 2006) converts uni-

potent (Okita et al. 2007) or multipotent cells (Kim et al. 2009) into

pluripotent cells called induced pluripotent stem (iPS) cells. Al-

though reprogramming is almost a laboratory routine these days,

its molecular mechanism is poorly understood and is assumed to

be based on the stochastic crosstalk between genetic and epige-

netic networks (Artyomov et al. 2010). Concerns remain about the

extent to which iPS cells resemble ES cells (Kim et al. 2010, 2011),

even though transcriptomics experiments show small differences

(Boué et al. 2010). A lot of research has gone into searching the so-

called somatic memory (Polo et al. 2010). Such a memory would be

the fingerprint of the iPS cell’s somatic origin. Transcriptomics

characterization of iPS cells reveals very little memory (Kim et al.

2008, 2009). However, on a methylomics level, some fingerprints

of such a memory remain (Laurent et al. 2010; Bock et al. 2011;

Lister et al. 2011; Ruiz et al. 2012).

Figure 1. DNA methylation patterns are nonuniformly distributed and are influenced by their DNA context. (A) Analysis of the methylation state of
nestin (NES) second intron enhancer region. The lollipop diagram in the top panel shows the observed 58.6% global methylation (Han et al. 2009). Such
methylation is nonuniformly distributed along CpG ‘‘columns.’’ There are CpG ‘‘columns’’ with higher and lower probability to be methylated. In
simulations with a uniform distribution of the methylation states, we can observe lollipop diagrams such as the one shown in the bottom panel, with the
same methylation percentage as the one experimentally observed, but with nonpreferential ‘‘column’’ methylation distributions. (B) Heatmaps of the
frequencies of the similarity of the methylation between the two DNA strands versus the similarity of the sequence of the two DNA strands for each CpG
word. (C ) Violin plots of the frequencies of the methylation similarity between the two DNA strands for low (#0.1) and high ($0.9) sequence similarity
between the two DNA strands. The similarities are calculated genome wide, and their frequencies are represented in log10 scale by gray color bars.
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To validate our hypothesis that CpG methylation depends on

the sequence context surrounding the CpG, we analyzed the cor-

relation between methylation and sequence similarity in the two

DNA strands. We used NGS data from human fibroblasts (FBs), and

ES and iPS cells from different laboratories (Table 1). Then we

searched for sequences with similar methylation, and developed

an algorithm for CpGMM discovery that groups such sequences

into clusters based on the similarity of both sequence and meth-

ylation. For each cell type, we created two types of clusters: one

for sequences that are resistant to being methylated, and another

for sequences prone to being methylated. We built representative

motifs of the cluster members. Such representatives are the

CpGMMs, and we tested their capability to discriminate between

methylated and unmethylated regions using a scanning approach.

To characterize and validate the CpGMMs, we integrated and cor-

related the CpGMM targets with TFBSs, histone marks, and tran-

scriptomics information. We took advantage of the properties of

the CpGMMs to analyze pluripotent cells and to disclose the

crosstalk between DNA methylation and TFs in genetic networks.

Our method allowed us to obtain CpGMMs specific to the plu-

ripotent state shared by iPS and ES cells and to discover repro-

gramming somatic memory CpGMMs.

Results

The extreme methylation states are conserved across different
cell types and define cell type-specific methylation profiles

To obtain the DNA methylomes specific to the different cell types,

we filtered out the cell line noise, producing a ‘‘conserved’’ DNA

methylome for each cell type. The filter is intended for preserving

the CpGs with low methylation fluctuations across the different

cell lines (Supplemental Methods). The scatter plots of the positive

DNA strand of the conserved methylomes of each cell type are

depicted in Supplemental Figure S1a. High-density methylation

regions are revealed in the corner of each panel of Supplemental

Figure S1a. These regions show a higher contrast compared with

nonconserved CpGs (Supplemental Fig. S1b), where the methyla-

tion values appear scattered across the whole methylation range.

This conveys that the variability among cell lines of the same cell

type happens mainly in the middle range methylation, while the

extreme methylation states (hypo- and hypermethylation) are

conserved. Thus, the middle range methylation state either has

an intrinsic biological variability or is more difficult to be de-

termined by NGS-based methylomics. Therefore, we focused on

the stable methylation cases (very low or very high methylation).

Additionally, Supplemental Figure S1a (iPS vs. ES cells) shows that

iPS and ES have similar methylomes with two common signatures

in the corners of the first diagonal—one concentrated at a very low

methylation level, and another denser one at a very high methyl-

ation level. This feature portrays a common pluripotency methyl-

ation signature. Some low-density traces appear in the second

diagonal corners, revealing a methylation somatic memory finger-

print. Interestingly, such regions vanish at the transcriptomics

level (Supplemental Fig. S1c). The iPS–ES transcriptomics scatter

plot shows that although some differently expressed genes appear

slightly scattered around the diagonal, well-defined differently

behaving regions, as in the corresponding panels in the same col-

umn in Supplemental Figure S1, a and b, do not exist. In summary,

the somatic memory effect is more pronounced at the methylomics

level than at the transcriptomics level.

Nonshared methylomics regions appear in the second di-

agonal corners when comparing ES or iPS with FB (FB vs. ES cells and

iPS vs. FB) (see Supplemental Fig. S1a). These regions correspond to

high methylation in pluripotent cells and low methylation in FBs,

thus marking a distinct signature between the FB and pluripotent

methylation profiles. We obtained similar results from the analysis

of the methylation data of the negative strand.

The methylation variability between the two DNA strands
is higher for nonpalindromic sequences

The lollipop diagram in Figure 1A illustrates a typical example

(Han et al. 2009) of a promoter with several CpGs showing a trend

to be methylation resistant and others to be methylation prone. To

analyze to what extent this is a common feature, we benefited from

the two DNA strands’ methylation information provided by NGS.

If the methylation/unmethylation mechanisms can discriminate

between CpG occurring in different sequence contexts, these

mechanisms will produce a more variable methylation distribu-

tion in CpG loci having different sequences in both strands

(different sequence context) than in loci with similar sequences

in both strands (palindromes) (algorithm description is provided

in the Methods section). The results from this analysis are shown

in Figure 1, B and C. Since DNA sequences are made of four dif-

ferent nucleotides, the expected similarity between a sequence in

a DNA strand and the opposite sequence in the pairing strand is

0.25 (one potential mismatch among four different bases). This is

reflected in the heatmaps (Fig. 1B) by the higher density around

the 0.25 sequence similarity region. Irrespective of the cell type

(FB, iPS, or ES cells), higher sequence similarity corresponds to

lower variation in the methylation similarity (Fig. 1C), thus re-

vealing that the methylation/unmethylation machinery recognizes

the CpGs appearing in different sequence contexts (one context for

Table 1. DNA methylome data sets

Biological sample Cell type Passage number Library Number of reads CG coverage Reference

IMR90 FB – Single 1,830,075,826 84.92% Lister et al. (2009)
FF FB 21 Single 829,077,268 88.97% Lister et al. (2011)
ADS-iPSC iPS 15 Paired 1,322,574,755 88.39% Lister et al. (2011)
FF iPSC 6.9 iPS 33 Single 480,427,613 87.00% Lister et al. (2011)
FF iPSC 19.7 iPS 34 Single 474,112,329 86.23% Lister et al. (2011)
FF iPSC 19.11 iPS 32 Single 405,858,438 84.67% Lister et al. (2011)
IMR90-iPSC iPS 65 Single 442,626,970 86.97% Lister et al. (2011)
H9 ES 42 Single 456,414,029 86.96% Lister et al. (2011)
H1 ES 25–27 Single 1,118,907,995 83.12% Lister et al. (2009)
H9-Laurent ES – Paired 626,379,188 62.35% Laurent et al. (2010)
HSF1 ES – Single 2,063,178,999 31.30% Chodavarapu et al. (2010)

(ADS) adipose-derived stem cells; (FB) fibroblast; (FF) foreskin fibroblasts; (IMR90) fetal lung fibroblasts.
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each DNA strand) as different. These re-

sults demonstrate the context dependency

of the CpG methylation. Thus, the level of

resolution at which the sequence speci-

ficity of the methylation takes place is re-

duced from the length of CpG islands or

CpG island shores to the level of in-

dividual CpGs.

The CpGMM discovery algorithm
discloses CpGMMs that discriminate
between methylation-resistant
and methylation-prone loci

We have demonstrated that the CpG

methylation state depends on the CpG

sequence genomic context. Additionally,

similar sequences have similar methyla-

tion ratios for the same cell type. This

feature is more profound for longer and

thus more specific CpG sequences (Sup-

plemental Fig. S2e). To characterize the

genomic context that drives the CpG

methylation state, we developed a DNA

methylation motif search algorithm (for

a detailed description of the algorithm, see

Methods) (Supplemental Fig. S5). To assess

the discrimination capability of the

CpGMMs, we used a binding energy

scanning paradigm that provides us with

a framework to search for the regions

where the DNA methylation motifs have

the best match. For each motif, the scan-

ning method produces two matching dis-

tributions, one for low- and another for

high-methylation regions. Their statistically significant dissimilar-

ity is addressed with two checks. Two examples of matching dis-

criminative distributions are depicted in Supplemental Figure S2,

one for a methylation-prone (Supplemental Fig. S2c) and another

for a methylation-resistant (Supplemental Fig. S2d) CpGMM. By us-

ing a bootstrapping method (Efron and Tibshirani 1993), we found

that 78% of the CpGMMs are stable (Supplemental Fig. S2g,h). A

comprehensive list of annotated motifs with their corresponding

scanned distributions, two quality scores, their gene targets, and the

associated gene ontologies can be downloaded from Supplemental

Material and from our web server at http://computational-biology.

mpi-muenster.mpg.de/publications/MethylationMotifs/. These meth-

ylation-prone and methylation-resistant CpGMMs can discrimi-

nate between methylation-prone and methylation-resistant regions,

validating their capacity to distinguish between the two region

types.

Pluripotent cells share specific methylation-resistant CpGMMs

The collection of CpGMMs obtained through the CpGMM discov-

ery algorithm is classified according to cell type-specific CpGMMs

as described in the Supplemental Methods. Figure 2 depicts the

Pearson correlation distributions for the pairwise comparisons of

the three cell-type pools. We found (Fig. 2A, upper panel) that

a collection of highly correlated, methylation-resistant CpGMMs is

shared between the pluripotent cell lines (ES and iPS). Contrarily,

fewer shared motifs appear when comparing pluripotent cell lines

with FB (Fig. 2A, middle and bottom panels). These results indicate

the existence of pluripotency-specific, methylation-resistant

CpGMMs. Interestingly, Figure 2B shows equal distributions be-

tween all the cell types for the methylation-prone CpGMMs, in-

dicating that there are less candidates for specific pluripotent

methylation-prone CpGMMs. We used these correlations (Sup-

plemental Methods) to calculate the number of CpGMM clusters

of each cell type and the number of their intersections. The

numbers for the merged DNA strands are shown in the Venn di-

agrams in Figure 2, C and D. The Venn diagrams for the positive

and negative strands are shown in Supplemental Figure S3. We

found 3999 (Fig. 2C) methylation-resistant and 840 (Fig. 2D)

methylation-prone CpGMMs specific to pluripotent cells (the

whole collection of CpGMMs is provided on our web server). From

such motifs, we found 119 pluripotent methylation-resistant

CpGMMs and 13 pluripotent methylation-prone CpGMMs, tar-

geting at least one pluripotent gene from a list of 17 human pluri-

potency markers (Table 2). A selection of them is listed in Table 3.

The collection of pluripotency-specific CpGMMs (provided on our

web server) is useful to understand the epigenomic component

of the pluripotency network that arises from the crosstalk be-

tween methylation-resistant CpGMMs and TFs (see Fig. 7C,D).

CpGMMs reveal iPS epigenetic somatic memory

The CpGMM discovery algorithm developed here provides a tool

to analyze the somatic memory at the methylomics level. For such

Figure 2. Methylation-resistant CpGMMs are more abundant and are highly correlated among
pluripotent populations. Histograms of the Pearson correlation coefficients of pairwise pools of different
cell types for methylation-resistant (A) and methylation-prone (B) CpGMMs. Vertical lines mark the low
and high correlation boundaries. Venn diagram of the numbers of methylation-resistant (C ) and
methylation-prone (D) CpGMM clusters in each cell type. ES CpGMM regions are marked in white, iPSs
in gray, and fibroblasts in black. The numbers enclosed by the circular segments are the numbers of cell
type-specific motifs.
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analysis, we pooled the collection of CpGMMs from all the cell

lines into three cell-type categories. We searched for two types of

somatic memory. One type is reflected in the persistent somatic

CpGMMs that, while present in FBs and iPS, are absent in ES

cells. The other type includes the absent

somatic CpGMMs that, while absent in

both FBs and iPS, show up in ES cells. This

memory is reflected by the ES-specific

CpGMMs.

The collection of somatic memory

CpGMMs due to CpGMMs persistent in

iPS and absent in ES cells is provided on

our web server. Table 4 presents the so-

matic memory due to CpGMMs persis-

tent in iPS with enrichment of at least

one FB marker. We used 23 FB markers

from Yu et al. (2007). We found a clear

methylomics fingerprint of the somatic

reprogramming memory, with 480 and

608 (Fig. 2C,D) CpGMMs that remain in

iPS cells after cellular reprogramming

and that are inherited from the initial

FB populations, and three and 46 (Fig.

2C,D) CpGMMs characteristic of ES cells

that iPS cells have not managed to gen-

erate. The number of somatic memory

CpGMMs with enrichment of at least

one corresponding marker is given in

Table 2. There are eight methylation-

prone CpGMMs targeting FB markers

and somatic memory markers, while 19

methylation-resistant CpGMMs target

somatic memory markers.

The methylation-resistant CpGMMs
are CG enriched and their targets
occur in highly conserved regions
near TSSs

The four nucleotides are differently dis-

tributed among the methylation-resistant

and methylation-prone CpGMMs (Fig.

3A). The methylation-resistant motifs are

specially enriched by guanines and, to

a lesser extent, by cytosines, while they are

depleted of adenines and thymines. Thus,

they are CG enriched, but the methyla-

tion-prone motifs have a homogeneous

nucleotide composition. Wilcoxon-Mann-

Whitney two-sample tests for each of the four nucleotides show

that the difference of the distributions between methylation-

resistant and methylation-prone CpGMMs is statistically signif-

icant (P = 0.0). To understand the biological meaning of the

Table 2. Number of somatic memory and pluripotency-specific CpGMMs with enrichment of at least one corresponding marker

Type of CpGMM Methylation-resistant CpGMMs Methylation-prone CpGMMs Number of corresponding markers

Somatic
memory

Persistent in
iPS (FB specific)

3/480 (FAM19A5, DPP6, PTPRT) 0/608 Nine reprogramming-associated epigenetic
signature genes (Ruiz et al. 2012)

16/480 8/608 23 FB markers (Yu et al. 2007)
Absent in iPS

(ES specific)
0/3 0/46

17 ES cell markers (Yu et al. 2007)
Pluripotency specific 119/3999 13/840

The number after the backslash (/ ) is the number of CpGMMs in each category. The number before the backslash is the number of CpGMM targets in the
promoters of each corresponding marker.

Table 3. Selection of CpGMMs specific to pluripotent populations

(S) DNA strand in which the motif is found. (N) Number of gene targets of the motifs. A short collection
of motif target genes is listed in the last column. The pluripotent genes are underlined.
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CpGMMs, we looked for common features shared by their tar-

gets. First, we checked the loci evolutionary conservation and

found that the methylation-resistant CpGMMs loci are consider-

ably more conserved than the methylation-prone CpGMM loci.

Indeed, whereas the abundance of the conservation score of the

methylation-prone CpGMM targets decreases steadily, the meth-

ylation-resistant CpGMM targets have a peak of high abundance

around the 1.0 conservation score (Fig. 3B). Under the DNA-se-

quence conservation-function paradigm, this result points to the

functional role of the methylation-resistant CpGMMs. The

CpGMM target distributions (Fig. 3C) show that the methylation-

resistant CpGMMs targets are mainly located around the TSSs,

whereas the methylation-prone CpGMMs targets are depleted

around the TSSs, and uniformly distributed in the upstream-ex-

tended promoter region. These results pinpoint a potential role

of the methylation-resistant CpGMMs in controlling gene

transcription.

Methylation-resistant CpGMM targets
inside CpG islands regulate
pluripotent cells, whereas
differentiated cells are regulated
outside CpG islands

A plethora of publications on methyla-

tion center their studies around CpG is-

lands (Das et al. 2006; Fang et al. 2006;

Bird 2011). To provide an unbiased view,

we departed from such constraints, an-

alyzing the DNA methylation state

independently of the CpG island local-

ization. We found that, indeed, ;47%

of CpGMM targets occur outside CpG

islands (Fig. 4A), thus confirming the

importance of the outside CpG island

regions. There is a very distinct distri-

bution of CpGMM targets between

FBs and pluripotent cells (Fig. 4A). ES

cells have a high percentage (72%) of

CpGMM targets in CpG islands, in-

dicating that the ES cell’s regulation is

controlled by methylation switches

inside CpG islands. FBs, on the con-

trary, have 39% of CpGMM targets in

CpG islands, and thus are mainly reg-

ulated by CpG-poor regions. The

CpGMM targets inside CpG islands are

dominated by methylation-resistant

CpGMMs, again with a very distinct

distribution between FBs and pluripo-

tent cells (Fig. 4B). Eighty-six percent of

the CpGMM targets in ES cells corre-

spond to methylation-resistant motifs;

in FBs the percentage is reduced to

66%, indicating that the methylation-

resistant CpGMMs could direct DNA-

methylation-mediated repression dur-

ing lineage specification as observed in

different studies (Mohn and Schübeler

2009). Figure 4C shows that the meth-

ylation-resistant CpGMM targets oc-

cupy higher CG content regions in the

CpG islands than the methylation-

prone, concording with the high CG content found in the

methylation-resistant CpGMMs (Fig. 3A).

The methylation-resistant CpGMM targets break
the H3K4me3/H3K27me3 bivalent balance and shift
the enhancers from repressive H3K27me3 to active
H3K27ac during ES cell differentiation

We analyzed the co-occurrence of the ES and FB CpGMM targets

with 12 histone marks and CTCF binding sites from the ENCODE

Project (The ENCODE Project Consortium 2011). The co-occurrence

algorithm description is provided in the Supplemental Methods and

in Supplemental Figure S6. We found that in general (Fig. 5A), the

cell methylation-prone CpGMMs are less correlated with histone

marks than the methylation-resistant CpGMMs in both ES cells and

in FBs. This shows that the methylation-resistant CpGMM targets

require a more finely tuned regulation than the methylation-

Table 4. Selection of somatic memory CpGMMs persistent in iPS cells

(S) DNA strand in which the motif is found. (N) Number of gene targets of the motifs. A short
collection of motif target genes is listed in the last column. The specific fibroblast genes are
underlined.
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prone ones, because once a region is methylated it is not neces-

sary to exert further regulation. We found three types of correlation

(Fig. 5A). The first type corresponds to low correlated repressive

H3K36me3 and active transcription (H4K20me1, H3K9me3,

H3K4me1) marks with CpGMM targets independent of the cell

or the CpGMM type. The second type corresponds to marks

(H3K27me3, CTCF, EZH2, H3K9ac, H3K27ac, H2AFZ) of higher

correlation with methylation-resistant than with methylation-

prone CpGMMs. For these marks, interestingly, the transition of

enhancers from the inactive to the active state during ES cell

differentiation tagged by the change of H3K27 from the re-

pressive H3K27me3 to the active H3K27ac (Creyghton et al. 2010;

Rada-Iglesias et al. 2011) is accompanied by the depletion of

H3K27me3 and enrichment of H3K27ac methylation-resistant

CpGMM targets from ES cell to FBs (Fig. 5C). The last type is

formed by the active transcription marks (H3K4me2, H3K79me2,

H3K4me3) (Sims and Reinberg 2006; Koch et al. 2007; Steger et al.

2008) that have the highest correlation with CpGMM targets,

independently of the cell or the CpGMM type.

To clarify the distinctive role of the correlation of CpGMMs

with histone marks in pluripotent and somatic cells, for each

histone mark signal of FB and ES cells we split the loci between

methylation-resistant and methylation-prone CpGMM targets,

calculated their co-occurrence (Supplemental Fig. S6), averaged

the signals of both methylation types, and depicted the difference

of the resistant- minus the prone-associated signals of FB versus ES

cells (Fig. 5B). In general, there was a strong correlation of the dif-

ferences between FB and ES cells in the H3K9ac, H2AFZ, CTCF,

H3K4me2, H3K79me2, H4K20me1, H3K36me3, and H3K9me3

marks. The least positively correlated cases are EZH2, H3K27ac,

Figure 3. General discriminative features between all the methylation-
resistant and methylation-prone CpGMMs. Histograms of (A) the 4 nt
distributions across the discovered CpGMMs; (B) the conservation of all
the CpGMM targets, where the sequence conservation scores were taken
from primates phastCons 46-way (see Supplemental Material; Siepel et al.
2005); and (C ) the distances of all the CpGMM targets to the TSSs. The
methylation-resistant features are in gray; the methylation-prone, in
black. Vertical lines mark the position of the median.

Figure 4. Correlation of methylation-resistant and methylation-prone
CpGMM targets with CpG islands for each cell type. Percentage of
CpGMM targets of each cell type that lie inside CpG islands (A) and
methylation-resistant and methylation-prone CpGMM targets of each cell
type that lie inside CpG islands (B). The methylation-resistant per-
centages are in gray, the methylation-prone in black, and the merged
ones in white. The rightmost bars correspond to the mean across all the
populations. (C ) Histograms of the CG content of the CpGMM targets
inside CpG islands for the pool of all samples (ALL), fibroblast (FB), iPS,
and ES. The dashed and gray vertical lines mark the positions of the
mean of the methylation-resistant and methylation-prone distribu-
tions, respectively.
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Figure 5. Correlation between ES cell CpGMM loci targets and histone mark signals. (A) Heatmap of the mean signal of the co-occurrences of histone
marks with methylation-prone (MP) and methylation-resistant (MR) ES cell CpGMM targets that share loci (calculated as in Supplemental Fig. S6) with ES
and fibroblast histone marks. The labeled rectangles mark the three types of correlation patterns. The gray color bar shows the color codification of the
mean signal. (B) Scatter plot of the differences of resistant minus prone averages of histone mark signals’ co-occurrences with ES cell CpGMM targets in
fibroblasts versus ES cells. (C ) Histograms of CpGMM targets co-occurring with the H3K4me3, H3K27me3, and H3K27ac histone marks. Only the signals
with a score of at least 250 are plotted. The frequencies associated with methylation-resistant and methylation-prone CpGMM targets are in gray and
black, respectively.
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H3K27me3, and H3K4me3. EZH2 is the catalytic subunit of the

polycomb repressive complex (PRC2) that trimethylates lysine 27

of histone 3 (H3K27me3), which then recruits PRC1 to modify

chromatin in order to enforce gene silencing (Margueron and

Reinberg 2011). We observed that the release of polycomb re-

pression during ES cell differentiation is associated with a smaller

imbalance of methylation-resistant minus methylation-prone

CpGMM targets in FBs. H3K27ac and H3K27me3 are involved in

the enhancer activation during ES cell differentiation (Creyghton

et al. 2010; Rada-Iglesias et al. 2011), which is also associated with

a smaller imbalance of methylation-resistant minus methylation-

prone CpGMM targets in FBs (Fig. 5C). Only H3K4me1 has a small

negative correlation for quite weak signals. Remarkably, the

CpGMM targets exactly reflect the bivalent domain property of

H3K4me3 and H3K27me3, which makes the cell linage promoter

poised (Bernstein et al. 2006). Figure 5C shows that H3K4me3 acts

as a balance, and overlaps equally with methylation-prone and

methylation-resistant CpGMM targets, while H3K27me3 un-

balances the H3K4me3 effect and overlaps dominantly with the

methylation-resistant CpGMM targets to repress the activation of

H3K4me3. After differentiation from FBs, this balance is no longer

needed. Therefore, the H3K27me3 signal in the FBs methylation-

resistant CpGMM targets disappears, and the activation mark

H3K4me3 can do its job for expression of the cell-lineage-specific

genes.

Crosstalk between CpGMMs and CTCFs reflected in gene
expression regulation

Based on the promoter CpGMM composition, we classified the

genes into three groups: the first with only methylation-resistant

CpGMMs in their promoters; the second with only methylation-

prone CpGMMs and the third with a mixed, bivalent composition

of CpGMMs. For the genes with bivalent CpGMM composition,

we found many more CTCF binding sites in the regions embraced

by methylation-resistant and methylation-prone CpGMMs than

expected by chance. In FBs, 66% of such regions have at least one

CTCF when the expected value is 5%; this overrepresentation is

similar to that in ES cells (64% of the regions between methylation-

resistant and methylation-prone CpGMMs have at least one CTCF

when the expected value is 4%). These results complement the ob-

servation from Figure 5A, showing that CTCF binding sites do not

interfere with homogeneous methylation-resistant or methylation-

prone CpGMM regions.

To check whether the CTCF binding sites insulate methyla-

tion-resistant and methylation-prone CpGMM regions, we mea-

sured the distance from the methylation-resistant and methyla-

tion-prone CpGMM regions to the CTCF binding sites. We found

that the methylation-resistant CpGMMs loci appear very close to

CTCF sites (Fig. 6A), whereas the methylation-prone CpGMM loci

are more dispersed. To check whether such CTCF–CpGMM con-

Figure 6. Discriminative features of mixed promoters containing bivalent and monovalent CpGMMs in ES cells. (A) Histograms of the distances of
methylation-resistant CpGMM targets (gray), and methylation-prone CpGMM targets (black), to the in-between CTCF for promoters simultaneously
containing methylation-resistant and methylation-prone CpGMMs. The vertical lines show mean values of the distances to CTCF of methylation-resistant
and methylation-prone CpGMM loci. (B) Histogram of the expression of genes with only methylation-resistant (light gray) and methylation-prone (gray)
CpGMMs. (C ) Histogram of the expression of all genes (light gray) and genes with promoters simultaneously containing methylation-resistant and
methylation-prone CpGMMs (gray). The black vertical lines show the gene expression threshold. The numbers inside boxes are the percentages of
expressed genes. (D) Heatmap of the percentage of expressed genes with mixed and unmixed structures of methylation-resistant and methylation-prone
CpGMMs 1kb upstream of the TSS. The corresponding genomic structure with positions relative to the TSS (marked with an arrow) of the methylation-
resistant and methylation-prone CpGMMs and CTCF binding is represented beside each heatmap cell.
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figurations have a regulatory counterpart, we analyzed their cor-

relation with gene expression. For the nonmixed promoter case,

we found that genes with only methylation-resistant CpGMMs

promoters are expressed more than those with only methylation-

prone CpGMMs (Fig. 6B; Supplemental Fig. S4b), thus validating

the putative functional regulatory role of the two motif types. The

genes with mixed CpGMM patterns have a higher expression than

the total (Fig. 6C; Supplemental Fig. S4c), indicating that the ex-

pression of mixed promoter genes could be driven by the meth-

ylation-resistant CpGMMs. To analyze whether the CTCF loci in-

fluence the way the CpGMMs drive gene expression, we calculated

the transcriptomics distributions of the genes with methylation-

resistant CpGMMs close to TSSs. We split the distributions into

containing and not containing CTCF binding sites between

methylation-resistant and methylation-prone CpGMMs. And we

repeated the same CTCF splitting analysis for only methylation-

prone (Supplemental Fig. S4e,g) and only methylation-resistant

(Supplemental Fig. S4d,f) CpGMMs close to TSSs in ES cells and

FBs, respectively. We summarized the analysis, estimating the

percentage of genes expressed in each case and depicting the re-

sults in the heatmap with the promoter structure models for ES

cells (Fig. 6D) and FBs (Supplemental Fig. S4h).

The promoters with methylation-resistant CpGMMs close to

TSSs have a higher expression than those with methylation-prone

CpGMMs close to TSSs. This effect is even stronger in the ES cells

(Fig. 6D), which express more genes than FBs (Supplemental Fig.

S4h). These results also show that for the genes with methylation-

resistant CpGMM loci near the TSS, expression is independent of

neighboring CTCF binding sites, thus revealing that when a gene

has methylation-resistant CpGMMs near the TSS, there is a small

chance for the CTCF to exert its insulation function. Interestingly,

for promoters with methylation-prone CpGMMs near TSSs, the

existence of close CTCFs significantly increases gene expression. In

this case, the CTCFs exert their insulator role, not allowing po-

tential repressors to bind to the methylation-resistant CpGMMs.

On the one side, these results validate the putative role of the

CpGMMs identified by our method. The promoters with methyla-

tion-resistant CpGMMs have a higher expression than those with

methylation-prone CpGMMs. On the other side, they disclose

the crosstalk between CpGMMs and CTCFs in the gene regulation

process, showing that the CTCFs near methylation-prone CpGMMs

close to TSS modulate the repressor effect of the methylation-prone

CpGMMs.

The methylation-resistant CpGMM targets have a higher trend
than the methylation-prone to co-occur within TFBSs

We hypothesized that the CpGMMs can be used by some DNA

sequence-specific binding proteins to recruit the ‘‘methylation/

unmethylation machinery’’ to specific loci. The TFs are high-

potential recruiting candidates because of their DNA sequence

recognition capability. To compare CpGMMs and TFBMs, we

designed a technique based on detecting co-occurrences between

the targets of the two types of motifs (Supplemental Methods).

We found that 38% of the methylation-resistant CpGMMs co-occur

with TFBSs, whereas only 3% of methylation-prone CpGMMs do

(Fig. 7B). This enrichment of methylation-resistant CpGMMs con-

curs with the findings that TFs binding to CpG-rich promoters tend

to keep them unmethylated (Lienert et al. 2011). A selection of

methylation-resistant CpGMMs co-occurring with TFBSs, with the

corresponding TFs is given in Table 5. We found the SP1 TFBM to be

associated with the TFBSs that co-occur with methylation-resistant

CpGMMs targets. It is already known that SP1 is essential for pro-

tecting CpG islands from de novo DNA methylation (Brandeis et al.

1994; Macleod et al. 1994; Bird 2011). The pluripotency level cor-

responds to a larger number of CpGMM targets that co-occur within

TFBSs (Fig. 7A). The CpGMMs targets within TFBSs correspond

mainly with methylation-resistant CpGMMs (Fig. 7B). These results,

together with the conservation of the methylation-resistant

CpGMM targets (Fig. 3B) and their enrichment around the TSSs

(Fig. 3C) indicate that the methylation-resistant CpGMMs interact

with gene transcription regulation.

A pluripotent network arises from the crosstalk between
methylation-resistant CpGMMs and TFs

To understand the reprogramming mechanism, we searched for

CpGMM targets using the Berg–von Hippel method (see Methods)

(Berg and Von Hippel 1987) in the promoters of pluripotent markers.

We found numerous cases of methylation-resistant CpGMMs that

simultaneously target the pluripotent marker promoters with a sta-

tistically significant enrichment (P < 0.05). Since the methylation-

resistant CpGMM loci have a high correlation of co-occupancy with

TFBS (Fig. 7B), we searched for the TFs that share loci with meth-

ylation-resistant CpGMMs, filtering out the lowly expressed TFs in

ES cells—those with fragments per kilobase of exon per million

fragments mapped (FPKM) are <4.5. Thus we found two networks:

In one (Fig. 7C), formed by ESRRB, KLF2, and SOX2, KLF2 plays a

central role, being simultaneously targeted by two methylation-

resistant CpGMMs. On the other side, YY1, targeting ESRRB may

direct histone deacetylases and histone acetyltransferases to the

promoter in order to activate or repress them (Coull et al. 2000;

He and Margolis 2002). The other network (Fig. 7D) is formed by

SALL4 and FGF4. These networks are important to elucidate the

upstream effectors of the pluripotent genes that control their

expression and to understand the reprogramming mechanisms.

The methylation-resistant CpGMMs of these networks have the

high CG-content composition already revealed in the nucleotide

composition analyses (Fig. 3A).

Discussion
This work was prompted by the observation that some CpGs in

methylation lollipop diagrams tend to be methylation-resistant or

methylation-prone. This phenomenon is not static. Depending on

the cell type and the environmental conditions, the methylation

state of any CpG can be driven to total unmethylation or full

methylation. Thus, the methylation-prone and methylation-

resistant CpGs are instantaneous ‘‘photographs’’ of a probabilistic

process, in which each CpG, depending on its sequence context,

has a variable susceptibility to be methylated or unmethylated.

Mammalian DNA methylation is driven by DNA methyltransferases

(DNMTs) that perform de novo methylation (DNMT3A and

DNMT3B) and maintain it (DNMT1). DNA demethylation occurs

through a passive or through poorly understood active mecha-

nisms (Wu and Zhang 2010), where 5-hydroxymethylcytosine

could act as a temporary state (Guo et al. 2011). These mecha-

nisms are DNA sequence unspecific. However, DNA methylation

is a cell type-specific process, as it regulates gene expression of

the different cell lineages. It is paradoxical to reconcile a DNA

sequence-unspecific mechanism with cell type-specific events.

If the cell types of an individual were isogenic, the sequence-

unspecific mechanism would be unable to discriminate among

them, and all the cells would have the same methylome, which is

Luu et al.
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false. Our finding of cell type-specific CpGMMs (Fig. 2) sets the

ground for such a mechanism. Thus, we hypothesize that ad-

ditional mechanisms exist that provide specificity to the en-

zymes modifying the DNA methylation state. Such mechanisms

could be based on DNA sequence-specific binders interacting

with methylation/unmethylation enzymes and recruiting them

to specific DNA loci. This would be similar to the gene-tran-

scription mechanism, in which DNA sequence-specific TFs re-

cruit the transcription machinery to the promoter locus of the

genes to be transcribed. Thus, ‘‘methylation/unmethylation

factors’’ (MUFs) might exist which are not necessarily different

from the TFs.

We found a significant percentage of methylation-resistant

CpGMMs co-binding with TFs (Fig. 7A,B), and many similar to

TFBMs (web server) (Table 2), such as the SP1 motif. Thus, some TFs

could play a dual role, recruiting the transcription machinery

when acting as TFs, and recruiting the methylation/unmethylation

machinery when acting as MUFs. Such behavior is, for example,

observed in cancer cells (Croce et al. 2002; Carbone et al. 2006) or in

the repression capability of DAXX via DNA methyltransferase

Figure 7. Crosstalk between CpGMMs and TFs. Percentages of CpGMM targets of each cell type (A) and methylation-resistant and methylation-
prone CpGMM targets of each cell type (B) that co-occupy TFBSs. The methylation-resistant percentages are in gray, the methylation-prone in
black, and the merged ones in white. The rightmost bars correspond to the mean across all populations. (C,D) Pluripotent networks arising from the crosstalk
between CpGMMs and TFs. The CpGMMs are those whose loci targets have significant enrichment of pluripotent genes. The small circles indicate the
positions of the methylation-resistant CpGMM target loci. The ellipses over the CpGMMs enclose the names of the TFs expressed >4.5 FPKM and whose
TFBMs resemble (Pearson correlation $0.85) the CpGMM. The horizontal bars represent the promoters of the CpGMM targets. The light gray region of the
bar represents the gene promoter itself; the black part represents a small portion of the coding region; and the beginning of each horizontal arrow marks the
TSSs.
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recruitment (Puto and Reed 2008). CpGMMs could be signals

recognized by specific MUFs that in turn recruit the methylation/

unmethylation machinery near the CpG loci. Different cell types

can express specific MUFs inducing diverse methylation states to

the same CpG loci. Thus, the CpG context provides specificity to

discriminate between the different CpGs of the same cell type

(Fig. 1B), and MUFs expressed by each cell type provide specificity

to discriminate between the same CpG words appearing in dif-

ferent cellular contexts.

We found that the methylation-resistant CpGMMs are in

crosstalk with TFs in gene expression regulation (Fig. 7). Such

crosstalk could be explained by at least two mechanisms. One was

proposed by Schübeler’s group (Lienert et al. 2011), where the TFs

binding to DNA regions protect them from being methylated.

Another mechanism might be that the methylation-resistant

CpGMMs signal the TFs to recruit DNA sequence-specific unmeth-

ylation machinery. Both mechanisms might not be exclusive and

might apply cooperatively. For example,

the reprogramming process needs a DNA

methylation sequence-specific mechanism

that recognizes fibroblast DNA specific se-

quences methylated in the promoters of

pluripotent genes such as POU5F1 (OCT4)

or NANOG (Takahashi and Yamanaka

2006). This mechanism recruits the

unmethylation machinery to unmeth-

ylate them in the reprogrammed iPS cells.

Thus, the unmethylation recruitment

mechanism seems more suitable to ex-

plain the unmethylation of specific pro-

moter regions of pluripotent genes during

the reprogramming than the methylation

protection. Subsequently, it is possible

that some TFs bind to the promoters of the

pluripotent genes in iPS cells and keep

them unmethylated.

In general, the different cell line

CpGMMs are reproducible for each cell

type; however, methylation-resistant

CpGMMs are more reproducible in plurip-

otent cells, and methylation-prone ones

are more reproducible in FBs (Supplemen-

tal Fig. S2f). This could indicate that plu-

ripotency requires a tighter maintenance

of unmethylation of specific regions.

The results produced by our algo-

rithms are complementary to those ob-

tained with DMR search methods. DMR

methods analyze the same locus in different

samples, searching for differentially meth-

ylated loci (Zhang et al. 2011), and require

at least two samples. Our method searches

for loci that in different regions have similar

methylation, thus providing CpGMMs

without the necessity of control samples.

The controls are the different methylation

states of different loci of the same sample.

DMR search approaches are useful to

characterize methylomes produced under

different experimental conditions, but

understanding the methylation mecha-

nism from DMRs is complicated. DMR

search approaches need to set in advance the region length, and

usually operate with iso-length regions across the genome. These

features hinder them from detecting methylomics signatures at

a single CpG level. Inversely, the CpGMM discovery method is

a region length-adaptive system that adjusts its results depending

on the degree of similarity among different genomic regions. The

CpGMM discovery method performs a complementary meth-

ylomics analysis that in synergy with DMRs can help us better

understand the methylation/unmethylation mechanism.

The algorithms developed and the CpGMMs found here are

useful tools to investigate the sequence specificity of the DNA

methylation/unmethylation process and for searching potential

MUFs. They open up the door for understanding the methylation

readout mechanism. Once potential CpGMMs are disclosed, the

proteins that have a binding specificity for such motifs remain to

be found. The search for DNA methylation aberration patterns in

cancer cells is another potential application of the method.

Table 5. Selection of methylation-resistant CpGMMs that co-occur with TFBSs

(S) DNA strand in which the motif is found.
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Pluripotent methylomics profiles (Supplemental Fig. S1a,b)

show higher variability than pluripotent transcriptomics profiles

(Supplemental Fig. S1c). The methylomics variability is reflected

in the different number of motifs found in each data set (Fig.

2C,D). Moreover, it indicates that methylomics profiles are

more sensible to detected variations between reprogrammed

cells than transcriptomics profiles. Thus, methylomics could be

more suitable than transcriptomics methods for understanding

the cellular reprogramming mechanism and disclosing the somatic

memory.

One of the aims of our study is to find insights into the re-

programming mechanism. Therefore, we search for CpGMMs that

could be associated to the methylation/unmethylation mecha-

nisms. We used the CpGMM discovery method for exploring the

somatic memory. We found a clear methylomics fingerprint of the

somatic memory associated with a collection of methylation-

resistant (Fig. 2C) and methylation-prone (Fig. 2D) CpGMMs. In-

terestingly, the somatic memory found by Ruiz et al. (2012) based

on differentially methylated CpG sites (DMSs) identified a repro-

gramming-specific epigenetic signature composed of nine aber-

rantly methylated genes. Though our approach, which is based on

CpGMMs, scrutinizes the somatic memory from a different per-

spective, our results are in line with theirs. Three (FAM19A5, DPP6,

and PTPRT) out of nine genes co-occur with four somatic memory

CpGMMs. Thus, we speculate that demethylation is strongly re-

membered in contrast to de novo methylation. These results differ

from those obtained with the DMR search (Bock et al. 2011)

which detected very few somatic memory regions. One of the

reasons for such a discrepancy is that the DMR-based method

cannot disclose such small hot spots due to noise filtering. Our

technique filters out the noise by averaging similar methylation

signals emerging in multiple regions with a similar sequence dis-

persed across the whole genome, and not by averaging through

windowing the methylation signal over a specific area. Our tech-

nique takes a step forward in relating the somatic memory with the

way that some specific DNA sequences are recognized to become

more or less methylated during reprogramming.

Methods

Data collection, mapping, and annotation
The general features of the DNA methylomes used for different cell
lines of FB, iPS, and ES are described in Table 1. The raw data (fastq
files) of each methylome were downloaded from the European
Nucleotide Archive (ENA) (http://www.ebi.ac.uk/ena/home) and
processed with the procedure described in detail in the Supple-
mental Methods.

Generation of ‘‘conserved’’ DNA methylome for each cell type

The methylomes of different cell lines from the same cell type are
grouped. Then all the CpGs are aligned based on the cytosine ge-
nomic positions. Thus, we define a CpG site as conserved when the
methylation ratios across all the cell lines are low fluctuating. The
methylation ratios fluctuation significance analysis is described in
Supplemental Methods.

Analysis of sequence and methylation similarity between
the two DNA strands

We define the methylation dissimilarity MetDis(CpGi) of the
methylation in each CpG locus i (i marks the cytosine position) of
the two DNA strands as the absolute difference between the

methylation ratios of the cytosines at the positive MR(CpG+) and
negative MR(CpG�) strands:

MetDis CpGi

� �
¼ MR CpGþi

� �
�MR CpG�i

� ��� ��: ð1Þ

Since the methylation ratios are determined in the range [0 1],
we can define the methylation similarity MetSim as

MetSim CpGi

� �
¼1�MetDis CpGi

� �
: ð2Þ

We define the sequence similarity SeqSim(CpGi
w) of length w

sequences at a locus i, as the match between the sequences of length
w in the positive CpGi

w+ and negative CpGi
w� strands centered in the

CpG of each loci i, normalized by the sequence length w,

SeqSim CpGw
i

� �
¼

+
w

j

match CpGwþ
i jð Þ;CpGw�

i jð Þ
� �

w
; ð3Þ

where CpGi
w+( j) and CpGi

w�( j) are the nucleotides at position j of
the CpG sequences at the genomic position i of the positive and
negative strands, respectively. The sequence match is the
Hamming distance between each nucleotide in the positive
strand, and the paired nucleotide in the negative strand. This
similarity is a measurement of the degree of palindromy of the
sequence. We applied Equations 1–3 for 12 # w # 52, with a step
of 2 (1 nt in both directions outward of the central CpG, whose
length is also accounted for in the sequence length) and
depicted the methylation similarity versus the sequence simi-
larity using heatmaps that represent the dot density on a gray
color scale.

Discriminative CpGMM discovery algorithm

The algorithm is based on the compilation of CpG word dictio-
naries: one collected from low-methylated, and another from high-
methylated regions. Each CpG word can have a different length w.
To avoid small words inside big ones, we designed a fusion pro-
cedure of CpG words. After fusion, the words are clustered with
a hierarchical algorithm. All the sequences inside a cluster are de-
fined as a cluster prototype, whose matrix of nucleotide frequencies
defines a CpGMM.

The motifs with the capability to discriminate between low-
and high-methylated regions are selected with a scanning method
based on a binding energy analogy. We applied the following
pipeline to both DNA strands. In order to avoid cumbersome no-
tations, we describe the procedure for the positive strand. The
method workflow is depicted in Supplemental Figure S5.

Compilation of CpG word dictionaries

As shown in the Supplemental Information file, the minimal wmin =

12 and maximal wmax = 44 CpG word lengths were based on the
results depicted in Supplemental Figure S2a. For all the genomic
CpGs, and for lengths wmin # w # wmax, with a step of 2, we collected
the sequence centered in each CpG (the central CpG is included in
the w length). This procedure generates a CpG-centered word
genomic dictionary harboring all sequences of length w centered
in each CpG. The repeated sequences are grouped into unique
ones. We call their repetition numbers FCpGw frequency of the se-
quence of length w. Hence, we generate a set of unique CpGw se-
quences of different lengths w. We assume that similar sequences
have similar methylation ratios MRCpGw. Therefore, we assigned to
each unique sequence the average of the methylation ratios of the
CpGs from the same unique group. We denote this step as a unique
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sequence search step. A final scanning analysis selects the CpGMMs
that discriminate between methylation-prone and methylation-
resistant regions. Next, to reduce the noise we implemented a filter
step. The unique sequences are filtered by their frequencies. Only
unique patterns with frequencies of three or more are retained
based on the calculation shown in the Supplemental Information
file. To check whether the assumption that similar sequences have
similar methylation ratios MRCpGw, for each CpG word of length w,
we discretized the CpG methylation ratios into three categories
according to the method described by Stadler et al. (2011): 0.0 #

MRCpGw < 0.1 for unmethylated sites (UMSs), 0.1 # MRCpGw < 0.5
for low-methylated sites (LMSs), and 0.5 # MRCpGw # 1.0 for high-
methylated sites (HMSs). Then, for each CpG word, we count its
membership percentage to one of the three categories. If the per-
centage is >90%, we assign a 1 to that word, and a 0, if it is <90%.
Finally calculate the percentage of ones in relation to the total
number of CpG words.

Fusion of CpG word dictionaries

During the dictionary compilations, the sequences are extended
in both directions outward from the central CpG. Therefore, some
sequences of length w could appear inside sequences of length
w + 2. Hence, we designed a sequence fusion method that avoids
shorter submotifs centered inside longer ones. This method is
implemented in an iterative way, starting from the shortest length
wmin. Thus, for each length w, if a sequence CpGw is included in the
center of a sequence CpGw+2 of length w + 2, the shorter sequence is
fused inside the longer one. The methylation ratio of the new se-
quence is updated as the weight averaged methylated ratios of the
fused sequences:

MR
update

CpGwþ2 ¼
FCpGw MRCpGw þ FCpGwþ2 MRCpGwþ2

FCpGw þ FCpGwþ2

:

Before the sequence fusion step, each unique sequence
CpGw+2 has an associated scalar frequency FCpGw+2 that imputes the
same frequency to all sequence nucleotides. After the fusion, to
keep track of the individual frequency position in the fused se-
quence, the scalar frequency is converted into a frequency vector
FCpGw+2 of length w + 2, which stores for each nucleotide position j
its respective frequency. Thus, for the central common positions in
the sequence CpGw+2, the vectorial frequencies are FCpGw+2(j) =

FCpGw+2(j) + FCpGw(j � 1). The peripheral positions preserve the
original frequencies of the longer sequence. The scalar frequency
of the new sequence is updated as the sum of the scalar frequencies
of the fused sequences Fupdate

CpGw+2 = FCpGw + FCpGw+2. After fusion,
the shorter sequence CpGw is eliminated from the dictionary.
The fusion method iterates till reaching the longest sequence
length wmax, fusing whenever possible shorter sequences cen-
tered in the central CpG into the longer sequences. An example
of the distribution of the number of CpG words before and
after fusion with respect to their length for the highly meth-
ylated CpGs of the negative strand is depicted in Supplemental
Figure S2a.

Motif discovery through hierarchical clustering

After the fusion step, the information associated with each CpG
word i of length w of each dictionary is integrated into a position
occurrence matrix POMi

w of dimension (4 3 w) that collects in every
column j the frequency FCpGw(j), and stores it in the row indexed by
the nucleotide in the position j of the sequence CpGi

w(j). Initially,
the POMi

w column has only a non-null value. For each length w, all
the POMs are grouped with a hierarchical clustering algorithm, us-

ing the cosine metric calculated with Equation 4 and the complete
linkage method.

distðPOMw
i ; POMw

j Þ¼1�
POMw

i � ðPOMw
j Þ

T

POMw
i

�� ��
2
�kPOMw

j k2

: ð4Þ

Before calculating the distances, the (4 3 3 w) bidimensional
matrices are vectorized into 4w length vectors. The cut-off pa-
rameter for the cluster distance was set to 0.75. This parameter is
learned from the ADS-iPSC promoter methylome data set, using
the silhouettes algorithm (Crooks et al. 2004), in-house imple-
mented in Python. We performed 1001 cutoffs of the hierarchical
clustering from 0 # cutoff # 1, with a step of 0.001. As a final
cutoff, we chose the one (0.75) that maximizes the average sil-
houette width. For each cluster c, all the sequences are merged into
a new averaged POMc

w that represents the motif cluster.

Selection of the motifs with discrimination capability based
on a binding energy scanning method

With the given potential discriminative methylation motif sets,
one for methylation prone and the other for methylation resistant,
we searched for motifs that specifically discriminate between high-
and low-methylated CpGs. For this purpose, we took advantage of
the analogy of the TF-DNA binding energy, using the Berg–von
Hippel method (Berg and Von Hippel 1987). Based on this analogy,
we treat the methylation motif as TFBM, and consider that a
methylation motif has a good match with a genomic region center
in a CpG, if the ‘‘virtual’’ binding energy estimated by the Berg–
von Hippel method is high. To perform such an energy calculation,
first we normalize the POMs, creating the so-called position weight
matrices (PWMs):

PWMw i; jð Þ ¼ POMw i; jð Þ

+
4

k

POMw k; jð Þ
:

Thus, all the motifs PWMw are scanned as in a typical TFBS
search (Sarkar et al. 2008) against each CpG sequence of the
methylation-prone and methylation-resistant sets, using the
binding energy equation of the Berg–von Hippel method,

matchingScore PWMw;CpGwð Þ¼+
w

i

ln
PWMw CpGw ið Þ;ið Þþb

max PWMw :; ið Þð Þþb

� �
; ð5Þ

where b = 0.00001. The addition of b is necessary to avoid division
by zero. The specific value of b was chosen after empirical study to
maximize the score dynamic range. CpGw is the CpG word of
length w centered in the genomic CpG locus. For better compu-
tational performance, we used a different but equivalent im-
plementation of Equation 5. Higher matching score corresponds to
more specific similarity of the motif with the target sequence. We
split the matching scores for each motif into two distributions, one
for high and another for low methylation regions. Next, we checked
whether the motif can discriminate between the two distributions
using the Kolmogorov–Smirnov test (KStest) for two samples (with
the stats package of scipy) with a significance level a = 0.00001. The
motifs passing this test are retained and subjected to a second filter
with a double objective. On one hand, the filter estimates the
minimal matching score (threshold of the right tail) that has to have
a potential target DNA sequence to be ‘‘bound’’ by the motif. The
thresholds Tr of the right tails are computed with the equation

Tr¼min mþ sl; uð Þ; ð6Þ

Luu et al.

2026 Genome Research
www.genome.org



where u is the threshold of the right tail of the matching score
distribution (methylation-prone distribution, if the underlying
motif is a potential methylation-prone CpGMM), m is the matching
score distribution mean, s is the matching score distribution stan-
dard deviation, and l is set to two, based on an empirical study. On
the other hand, considering as true targets the sequences that pass
the filter (6), to strengthen the discriminating capabilities of the
motif, we select only those with a false discovery rate (FDR) # 0.05,

FDR¼ FalsePositive

FalsePositiveþTruePositive
; ð7Þ

where FalsePositive is the number of scores $u in the methylation-
resistant distribution if the underlying motif is a potential meth-
ylation-prone CpGMM, TruePositive is the number of scores $u in
the methylation-prone distribution if the underlying motif is
a potential methylation-prone CpGMM. We use the right tail (high
matching score) of the two distributions. The selected motifs are
represented as motif logos, using WebLogo 3.0 (Crooks et al. 2004).
All the found motifs were annotated with the gene ontology of
their corresponding targets using the R-bioconductor package
GOstat (Falcon and Gentleman 2007). To assess the stability of the
motif discovery, we performed a bootstrapping with 100 time
samplings with replacement over the ADS-iPSC methylomics
data. We used the percentage of CpGMMs that are recovered in at
least half of the bootstrapping samples as an estimation of the
CpGMM stability.

Search of cell type-specific and somatic memory CpGMMs

For all the methylation motifs in each pair of cell types (ES/FB/iPS),
we computed the Pearson correlation:

r PWMi;PWMj

� 	
¼

PWMi � PWMi

� �
� PWMj � PWMj

� �T

PWMi � PWMi

�� ��
2
� PWMj � PWMj

�� ��
2

; ð8Þ

where PWMi and PWMj are PWMs of the cell type i and j, re-
spectively. When the two PWMs have different lengths, e.g., if
length(PWMi) > length(PWMj), we substitute, in the Pearson cor-
relation (8), the longest matrix PWMi by the overlapped central
block of the PWMi matrix with the same length as the shorter
matrix PWMj (additional details are described in the Supplemental
Methods).

Nucleotide enrichment analysis of CpGMMs

The four types of nucleotides for each methylation-resistant and
methylation-prone CpGMM are counted and normalized with the
motif length. The Wilcoxon-Mann-Whitney test is applied for
each pair distribution of methylation-prone/-resistant CpGMMs of
the same nucleotide to find the significantly different enrichments
with a significance level a = 0.01.

Analysis of conservation and colocalization of CpGMM targets
with genetic loci

For the CpGMM conservation analysis, all targets of methyla-
tion-resistant and methylation-prone CpGMMs are mapped to
the phastCons46way conservation track in primates (Siepel et al.
2005). From that file we get the conservation score for each nucle-
otide position. For the analysis of colocalization of CpGMM targets
near TSSs, the distances from all targets of methylation-resistant
and methylation-prone CpGMMs to the corresponding TSS are
computed. All target genes and TSSs annotation are taken from the
UCSC Genome Browser RefSeq hg19. For the analysis of colocaliza-

tion of CpGMM targets with CpG islands, we downloaded the con-
served CpG islands’ annotation from the UCSC Genome Browser.
We counted for each cell type, the number of targets of methyl-
ation-resistant and methylation-prone CpGMMs occurring inside
or outside CpG islands. For the analysis of colocalization of CpGMM
targets with TFBSs, we downloaded the conserved TFBS from the
UCSC Genome Browser. We developed the algorithm for searching
TFs that shares binding sites with the CpGMMs described in the
Supplemental Methods. For the colocalization of CpGMM targets
with histone marks, we downloaded the 12 histone marks’ broad
peak signals from the ENCODE Project (The ENCODE Project
Consortium 2011) for ES cells (H1) and FBs (NHLF), and we de-
veloped the CpGMM target histone marks colocalization algorithm
described in the Supplemental Methods.

Correlation analysis between CpGMM targets, CTCF, and gene
expression

The transcriptomics RNA-seq data and the CTCF binding data of ES
cells (H1) and FBs (NHLF) are downloaded from the ENCODE
Project (The ENCODE Project Consortium 2011). We focused on
the extended promoter regions as defined in the Data collection,
mapping, and annotation section, and developed an algorithm to
calculate the correlation between CpGMM targets, CTCF, and gene
expression (described in the Supplemental Methods).

Data access
Comprehensive lists of annotated motifs with their corresponding
scanned distributions can be downloaded from Supplemental
Material and from our web server at http://computational-
biology.mpi-muenster.mpg.de/publications/MethylationMotifs/.
These lists include the motif found for each of all the cell lines
analyzed, the pluripotent-specific motifs, the motifs that reveal the
somatic memory, and the motifs shared by TFs.
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