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Abstract
Leukocyte immunoglobulin-like receptor B4 (LILRB4) is an inhibitory receptor in the LILR family mainly expressed on normal and
malignant human cells of myeloid origin. By binding to ligands, LILRB4 is activated and subsequently recruits adaptors to
cytoplasmic immunoreceptor tyrosine inhibitory motifs to initiate different signaling cascades, thus playing an important role in
physiological and pathological conditions, including autoimmune diseases, microbial infections, and cancers. In normal myeloid
cells, LILRB4 regulates intrinsic cell activation and differentiation. In disease-associated or malignant myeloid cells, LILRB4 is
significantly correlated with disease severity or patient survival and suppresses T cells, thereby participating in the pathogenesis of
various diseases. In summary, LILRB4 functions as an immune checkpoint on myeloid cells and may be a promising therapeutic
target for various human immune diseases, especially for cancer immunotherapy.
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1. INTRODUCTION

The leukocyte immunoglobulin-like receptor (LILR) family
comprises inhibitory and activating receptors expressed
among human hematopoietic cells. The LILR genes are
located on human chromosome 19q13.4 within the leukocyte
receptor complex, which is a genomic region that contains
several other innate immune system multigenic families
belonging to the Ig superfamily.1 The LILR family has 13
members, including six activating receptors (LILRA1–
ILLRA6), five inhibitory receptors (LILRB1–LILRB5), and
two pseudogenes (Table 1). The extracellular structures of
LILRAs and LILRBs are highly similar to C2-type Ig-like
domains, but the cytoplasmic tails are different, which
extends into opposing signaling pathways in their cytoplasmic
domains. LILRAs possess a shorter cytoplasmic tail lacking
intrinsic signaling capacity but possessing a positively charged
arginine residue (R) in the transmembrane domain, which
enables association with the FcgR chain that contains
immunoreceptor tyrosine-based activation motifs (ITAMs),
while LILRBs have a long cytoplasmic tail with immunor-
eceptor tyrosine-based inhibition motifs (ITIMs).2 LILRs are
mainly expressed on the myeloid lineage, such as monocytes,
∗
Address correspondence: Mi Deng, No. 38 Xueyuan Road, Haidian District,

Beijing 100191, China. E-mail address: mideng@bjmu.edu.cn (M. Deng).
This work was supported by the Imported Scholar Project and Startup from
Peking University Health Science Center (68263Y1056 to MD).

Blood Science, (2022) 4, 49-56

Received December 16, 2021; Accepted March 18, 2022.

http://dx.doi.org/10.1097/BS9.0000000000000109

Copyright © 2022 The Authors. Published by Wolters Kluwer Health Inc., on
behalf of the Chinese Medical Association (CMA) and Institute of Hematology,
Chinese Academy of Medical Sciences & Peking Union Medical College
(IHCAMS). This is an open access article distributed under the terms of the
Creative Commons Attribution-Non Commercial-No Derivatives License 4.0
(CCBY-NC-ND), where it is permissible to download and share the work
provided it is properly cited. The work cannot be changed in any way or used
commercially without permission from the journal.

www.blood-science.org
macrophages, neutrophils and dendritic cells, and some LILRs
are also found on B cells, NK cells and T cells.2,3 LILRB4 is
one of the inhibitory receptors in this family. It was an orphan
receptor until recent discoveries and has become a potential
target for cancer immunotherapy.
LILRB4, also known as ILT3, LIR5, CD85K, and HM18,

was identified in 1997 as an inhibitory receptor on monocytes
and considered to be a homolog of mouse glycoprotein
(gp49B).4,5 The LILRB4 gene is highly polymorphic, which
may be related to susceptibility to autoimmune diseases.6,7

LILRB4 bears two extracellular C2-type Ig domains and three
cytoplasmic ITIMs that recruit phosphatases for downstream
signal transduction. Interestingly, LILRB4 is unique because
family phylogenetic analysis shows that LILRB4 appears as an
“outlier” and structural feature analysis shows that LILRB4
contains only two extracellular Ig domains (designated D1,
D2), while most family members contain four Ig domains
(designated D1, D2, D3, and D4) in their extracellular
domains.8 Unlike other LILRBs, LILRB4 is not conforma-
tionally and electrostatically suitable for the interaction with
major histocompatibility complex (MHC), as well as hormone
and virus products (Table 1). Thus, LILRB4 may not be
directly involved in regulation of MHC-mediated antigen-
specific T cell activation,9 synergistic inhibition of phagocy-
tosis to CD47,10 activation of NK cells,11 immune response to
special pathogens12 and stemness of hematopoietic stem
cells.13 In this review, we will mainly discuss LILRB4
functions in homeostasis, inflammation disorders and tumors,
and particularly focus on its extracellular interaction patterns,
intracellular signaling and functions in different cell types.
(Fig. 1).

1.1. LILRB4 functions in homeostasis
1.1.1. Monocytes. Monocytes originate from hematopoietic
progenitor cells in the bone marrow and are able to further
differentiate into macrophages and dendritic cells (DCs).53

FcgRI, expressed on the surface of monocytes and macrophages,
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Table 1

Characterizations of LILR family members.

Gene Species Alias Ig domain Tail Ligand Physiological expression Reference

Activation
receptor

LILRA1 Human LIR-6, CD85i 4 R HLA-B27, HLA-C free heavy
chain, BCG, M.Bovis

B cells, Mac, Mo 2,14–16

LILRA2 Human ILT1, LIR-7, CD85h 4 R Degraded IgM, IgG3, IgG4, IgG1,
IgG2

Mo, Mac, DC, NK, Gr (Neu, Eos,
Baso), T cells,

17–22

LILRA3 Human ILT6, LIR-4, CD85e 4 HLA-C free heavy chain, Nogo66 Mo, NK, T cells, B cells 2,15,22,23

LILRA4 Human ILT7, CD85g 4 R BST2 pDC 24,25

LILRA5 Human ILT11, LIR-9, CD85f 2 R Mo, Neu 2,26

LILRA6 Human ILT8, CD85b 4 R Glandular epithelial cells
cytokeratin 8

Mo 27

gp49A Mouse 2 IntegrinaVb3 Mast cells, NK 28

Inhibitory
receptor

LILRB1 Human ILT2, LIR-1, CD85j 4 4 ITIM HLA-I, UL18, dengue virus
product, Sl00A8/9, S.aureus,
RIFIN, E.coli

Mo, Mac, DC, Gr (Eos, Baso), B
cees, T cells, NK, Mast cells
progenitor, Osteoclasts,
Placental stromal cells

2,29,30

LILRB2 Human ILT4, LIR-2, CD85d, MIR10 4 3 ITIM HLA-I,UL18, CD1d, ANGPTLs,
oligomeric b-amyloid, RTN4,
MAG, OMgp

Mo, Mac, DC, Gr, Mast cells
progenitor, Osteoclasts,
Endothelial cells, Placental
vascular smooth muscle,
HSC, Neuron

2,22,31

LILRB3 Human ILT5, LIR-3, CD85a 4 4 ITIM ANGPTLs, glandular epithelial
cells cytokeratin 8

Mo, DC, Gr, Mast cells
progenitor, Osteoclasts, B
cells, Gr (Neu, Eos, Baso)

2,32,33

LILRB4 Human ILT3, LIR-5, CD85k, HM18 2 3 ITIM ALCAM, APOE, fibronectin DC, Mo, Mac, Plasmablasts/
plasma cells, Memory B,
Progenitor mast cell,
Osteoclasts, Microglia,
Endothelial cells,

5,34-41

LILRB5 Human LIR-8, CD85c 4 2 ITIM HLA class-I heavy chains, HLA-
B7, HLA-B27 dimers, BCG

Mo, NK, Mast cells granules,
Mast cells progenitor

14,16

PirB Mouse 6 4 ITIM MHC class-I, ANGPTLs,
oligomeric b-amyloid, MAG,
OMgp, APOE

DC, Mac, Gr (Neu, Eos), B cells,
Osteoclasts, Microglia

42–45

gp49B Mouse Mouse LILRB4 2 2 ITIM Fibronectin, IntegrinaVb3 Mast cells, DC, Mo, Mac, NK,
Marginal zone and memory B
cells

46–52

ALCAM= activated leukocyte cell adhesion molecule, ANGPTLs=angiopoietin-like proteins, APOE= apolipoprotein E, Baso=basophil, BCG=bacillus Calmette-Guérin, BST2=bone stromal cell antigen,
DC=dendritic cell, Eos=eosinophil, Gr=granulocyte, HLA=human leukocyte antigen, HSC=hematopoietic stem cell, Ig= immunoglobulin, ILT= Ig-like transcript, ITIM= immunoreceptor tyrosine-based
inhibitory motif, LILR/LIR= leukocyte immunoglobulin-like receptor, Mac=macrophage, MAG=myelin-associated glycoprotein, MIR=myeloid inhibitory receptor, Mo=monocyte, Neu=neutrophil, NK=
natural killer cell, OMgp=oligodendrocyte myelin glycoprotein, pDC=plasmacytoid dendritic cell, R= arginine residue, RTN4=myelin glycoprotein, UL18=human CMV MHC class I homolog.
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is a high-affinity human IgG receptor composed of a ligand-
binding a-chain and an ITAM-bearing g-chain. Three ITAMs in
the g chain of FcgRI are necessary for eliciting immune functions
such as phagocytosis, cytotoxicity, degranulation, antigen
presentation and cytokine production.54,55 FcgRI signal initia-
tion occurs after cross-linking of the receptor complex, leading
to phosphorylation of the ITAM on the FcR g-chain by Src
kinases and subsequent recruitment of Syk, which induces
cellular activation through the PLCg and PI3K signaling
pathways. PLCg converts PI(4,5)P2 into IP3 and diacylglycerol
(DAG), where IP3 leads to Ca2+ mobilization, while DAG
activates PKC to drive the downstream activation of the NFAT,
NFkB, JNK, andMAPK pathways to promote effector function,
maturation, and cytokine release. PI3K binds Ras to activate
Ras/Raf signaling and binds pleckstrin homology domains to
activate Btk and Akt at the cell membrane, leading to immune
cell proliferation, survival, and motility.30,56

The LILRB4 inhibitory receptor containing ITIMs attenuates
crosslink-dependent activation of ITAM-containing activated
receptors. By coligation with activating receptors, ITIMs are
50
phosphorylated by Src-family tyrosine kinases, which enables
them to recruit Src homology 2(SH2) domain phosphatases
(SHPs), such as SHP-1 or SHP-2, and SH2-containing inositol
phosphatase (SHIP-1), to directly inhibit the activation of Syk
and PI3K signals, thus terminating the activation signals induced
by ITAM-containing receptors.57 Subsequently, coligation of
LILRB4 and FcgRI significantly inhibited production of the key
pro-inflammatory cytokine TNFa induced by FcgRI by reducing
FcgRI-mediated phosphorylation of Lck, Syk, LAT, Erk and c-
Cbl. Treatment with the SHP-1-specific phosphatase inhibitor
sodium stibogluconate significantly reversed the inhibitory effect
of LILRB4 on TNFa production, which suggests that SHP-1
mediates the downregulation of tyrosine phosphorylation of
signaling molecules and the production of cytokines.58 In
addition to inhibiting cytokine production, LILRB4 inhibits
FcgRI-dependent endocytosis/phagocytosis through SHP-depen-
dent dephosphorylation of Syk, clathrin, and the E3 ubiquitin
protein ligase Cbl.59 Furthermore, the extracellular matrix
protein fibronectin binds to LILRB4 and may regulate FcgR-
dependent intrinsic activation of monocytes in an ITIM-
www.blood-science.org
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Figure 1. The functions of LILRB4 in homeostasis, inflammation disorders, and tumors. The functions of LILRB4 include (1) eliciting immune functions in
monocytes, macrophage activation by inactivation of FcgR signaling, suppressing the activation and maturation of CD4+ Th cells, or inducing the generation of
CD8+ T suppression in tDCs; (2) exerting immunosuppressive functions inMDSCs and TAMs via regulation of the production of immune suppressive cytokines; (3)
promoting leukemia cell infiltration and T cell suppression in AML through the NFkB signaling pathway. AML=acute myeloid leukemia, B-CLL=B-cell chronic
lymphocytic leukemia, Mϕ=macrophage, MDSC=myeloid-derived suppressor cells, NFkB=nuclear factor kappa B, TAM= tumor-associated macrophages,
TCL=T cell lymphoma, tDC= tolerogenic DC, Ts=suppressor T cell, uPAR=urokinase receptor, VEGF=vascular endothelial growth factor.
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dependent manner.36 In addition, osteoclasts are multinucleated
giant cells derived from bone marrow monocytes. Osteoclast
precursor cells enter the blood circulation under the chemotaxis
of chemokines, reach the bone tissue in the resorption state, and
differentiate into osteoclasts under the activation of M-CSF and
NFkB ligand (RANKL).39 LILRB4 is expressed on osteoclast
precursor cells derived from peripheral blood monocytes, and in
the presence of RANKL and M-CSF, the ITIM of LILRB4
constitutively recruits SHP-1 to inhibit the development of
osteoclasts in vitro.42 Together, LILRB4, as an inhibitor of
monocyte activation, plays an important role in immune
regulation by abrogating FcgRI-dependent monocyte activation.

1.2. LILRB4 functions in inflammation disorders
1.2.1. Macrophages. Macrophages, derived from blood
monocytes, are a key component of the innate immune system.
As tissue-resident cells, macrophages act as immune sentinels
and can be equipped to sense and respond to tissue invasion by
infectious microorganisms and tissue injury.60 LILRB4 is
expressed in macrophages, and as an endogenous negative
regulator of macrophage activation, coligation of LILRB4 and
FcgRI inhibits the FcgRI-mediated production of TNFa in
vitro.61 In Toxoplasma gondii infection during pregnancy,
LILRB4 expression is downregulated on macrophages, which
enhances M1 activation function but attenuates M2 tolerance
function. The decrease in LILRB4 results in downregulation of
www.blood-science.org
the arginine catabolism enzyme arginase-1 (ARG-1) and
upregulation of inducible nitric oxide synthase (iNOS) to
suppress placental vascular development, which contributes to
abnormal pregnancy outcomes.62 In atherosclerosis, LILRB4 is
expressed on macrophages located in atherosclerotic plaque
atherosclerotic lesions of human coronary arteries. In mice,
gp49b deficiency reduces SHP-1 phosphorylation and subse-
quently promotes the activation of the NFkB signaling pathway
to aggravate atherosclerosis and increase the inflammatory
response of macrophages.63 In an acute lung injury (ALI) model
induced by lipopolysaccharide, the expression of gp49B is
upregulated, and its deficiency increases the macrophage-
dependent inflammatory response of ALI through the activation
of the NFkB signaling pathway.64 In human chronic obstructive
pulmonary disease (COPD), the percentage of LILRB4-positive
lung interstitial macrophages is increased, which correlates with
the severity of emphysematous lesions. In the mouse model of
COPD induced by elastase, the expression of gp49B on
interstitial macrophages was also increased. In gp49b-deficient
mice, elastase-induced emphysema and the production of matrix
metalloprotease-12 (MMP-12) are increased, which suggests
that upregulation of gp49B on pulmonary interstitial macro-
phages of COPD may have a protective effect on emphysema
formation.65 In short, LILRB4 plays an important role in the
activation, differentiation and polarization of macrophages
during pathogenesis.
51
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1.2.2. Dendritic cells. Classical dendritic cells (DCs) are
professional antigen presenting cells (APCs) that drive T cell
priming and differentiation.66 Under disease conditions, DCs
have tolerogenic functions, which are characterized by high
expression of inhibitory receptors, such as LILRB2 and LILRB4.
Tolerogenic DC (tDC) overexpression of LILRB4 recruits SHP-1
or SHIP-1 phosphatases to decrease the phosphorylation and
degradation of IkB, thus preventing NFkB nuclear translocation
and the signaling cascade.67–69 tDCs suppress the activation and
maturation of CD4+ Th cells and induce the generation of
regulatory T (Treg) cells and CD8+ T suppression (Ts) cells from
naïve T cells. On the other hand, Treg and Ts cells induce the
differentiation of tDCs from immature DCs. The tolerogenic
crosstalk between Treg/Ts cells and tDCs is partly carried out by
the inhibitory receptor LILRB4.70–73 In addition, IL-6, IL-10,
IFNa, IFNb, vitaminD3, low tryptophan and aspirin also induce
DC tolerance through upregulation of LILRB4.74–79 The fine
balance of DC regulation between tolerogenic and inflammatory
states may contribute to the development of autoimmune
diseases, tolerance of transplanting, and tumor immune evasion.
Treatment with recombinant human LILRB4-ECD-Fc proteins
or upregulation of mouse endogenous gp49B induces DC
tolerance to inhibit a variety of autoimmune diseases, such as
systemic lupus erythematosus, collagen-induced arthritis, auto-
immune encephalomyelitis and inflammatory bowel disease; in
contrast, blocking LILRB4 or gp49b deficiency exacerbates
autoimmune diseases.47,80–82 In addition, human patients
without transplant rejection have more circulating TS cells to
upregulate the expressions of LILRB4 and LILRB2 in donor
DCs, rendering tolerance.68,83,84 In malignancies, tumor cells
secrete IL-6 and IL-10 to induce tDCs with high expression of
LILRB4, which attenuates the response of T cells to tumor-
associated antigens.68 Together, LILRB4 may induce tolerance
of DCs to promote immunological tolerance in autoimmune
diseases and transplant rejection; blocking LILRB4 may reverse
DC tolerance to treat these diseases.

1.2.3. Myeloid-derived suppressor cells. Myeloid-derived
suppressor cells (MDSCs) are a heterogeneous population of
immature myeloid cells derived from the bone marrow. In
general, MDSCs include early-stage MDSCs (e-MDSCs),
monocytic MDSCs (M-MDSCs), and granulocytic or polymor-
phonuclear MDSCs (G-MDSCs or PMN-MDSCs).85 In chronic
infections and inflammation, MDSCs are strongly expanded and
are able to inhibit the activity of T cells.86,87 LILRB4 is
associated with the disease severity of coronavirus disease-19
(COVID-19) infection. In severe COVID-19 patients, PMN-
MDSCs and M-MDSCs are strongly expanded and related to
poor T cell responses, which suggests that MDSCs may exert
immunosuppressive functions through LILRB4 in COVID-19
patients88,89

1.3. LILRB4 functions in tumors
1.3.1. Myeloid-derived suppressor cells. In tumor immune
microenvironment, MDSCs are strongly expanded and are able
to inhibit the activity of T cells.85,86 In non-small-cell lung cancer
(NSCLC), LILRB4 is expressed on both PMN-MDSCs and M-
MDSCs. Particularly in PMN-MDSCs, the expression of
LILRB4 is correlated with poor outcomes in NSCLC patients.90

M-MDSCs may exhibit a stronger immunosuppressive potential
than PMN-MDSCs.91 In GM-CSF/IL-6-induced M-MDSCs
from human normal monocytes in vitro, treatment with
prostaglandin E2 expands M-MDSCs and enhances the ability
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to induce IL-10-producing Treg cells through the effect of
LILRB4 on M-MDSCs.92 Furthermore, in vitro coculture with
SK-MEL-5 cancer cells induces human normal monocytes from
peripheral blood to M-MDSCs with high expression levels of
LILRB4 on the cell surface. Treatment of these M-MDSCs with
anti-LILRB4 antibodies impairs the ability to induce T cell
suppression.93 In addition, the fibronectin expressed by stromal
cells in tumor microenvironment binds and activates LILRB4 on
MDSCs. The fibronectin-LILRB4 interaction recruits SHP-1 to
inhibit Syk-mediated FcgR signalings and immunosuppressive
activities of MDSCs.36 Together, MDSCs may inhibit the
activity of T cells via LILRB4.

1.3.2. Tumor-associated macrophages. In addition to
MDSCs, monocytes in the circulation can be recruited to the
tumor microenvironment and further differentiate into tumor-
associated macrophages (TAMs).94 TAMs, similar to alterna-
tively activated macrophages (M2), lack phagocytotic activi-
ties and promote tumor cell evasion from immune surveillance
and metastasis to other tissues and organs.95 Intensive studies
have shown that LILRB4 is expressed on TAMs in human lung
cancer, melanoma, colon carcinoma, pancreatic carcinoma,
mouse melanoma and colon cancer models.90,96–98 Either
blocking LILRB4 with antibodies or gp49b deficiency
increases the infiltration of anti-tumor immune cells into
the tumor microenvironment and decreases the inhibitory
effect of Treg cells via regulation of the production of IL-1b
and iNOS from TAMs.99 Together, these studies imply that
LILRB4 expressed on TAMs may be an intriguing target for
cancer immunotherapy.

1.3.3. Malignant cells. Expression of LILRB4 was found in
a variety of tumor cells, including solid tumors and
hematological tumors.3,99–101 The expression of LILRB4 in
acute myeloid leukemia (AML) has been extensively studied.
Independent studies have shown that LILRB4 is specifically
expressed on monocytic AML cells but not on other subtypes
of AML cells.35,102,103 In AML, apolipoprotein E (APOE)
binds to LILRB4, in turn recruiting SHP-2 to the intracellular
ITIMs of LILRB4, which further activates the NFkB signaling
pathway to promote leukemia cell infiltration via the
urokinase receptor (uPAR) and inhibit T cell activation via
ARG-1.35 Mutation analyses have shown that phosphoryla-
tion of tyrosine 412 and 441 in LILRB4 ITIMs by Src-family
tyrosine kinases is required for T cell suppression and
leukemia cell infiltration.104 Treatment with anti-LILRB4
antibodies, which interrupts the APOE-LILRB4 interaction in
a competitive manner, unleashes T cell suppression and
inhibits leukemia cell infiltration and AML development.105

The expression of LILRB4 is regulated at multiple levels, such
as the transcriptional, posttranscriptional and epigenetic
levels, which may provide more therapeutic options. Vitamin
D3 and its nuclear receptor bind to the promoter region of
LILRB4 and drive LILRB4 expression.106 Fat mass and
obesity-related protein (FTO), an RNA N6-methyladenosine
(m6A) demethylase, positively regulates the expression of
LILRB4 in monocytic AML cells by inhibiting YTH N6-
methyladenosine RNA binding protein 2 (YTHDF2)-medi-
ated decay of LILRB4 mRNA m6A modification. Further-
more, FTO-specific inhibitors reduce the expression of
LILRB4 and PD-L1/2 on AML cells, substantially increasing
the sensitivity of AML cells to be killed by activated T cells.107

In addition, protein arginine methyltransferase 5 (PRMT5),
www.blood-science.org
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an enzyme that catalyzes symmetric demethylation of protein
arginine residues, regulates epigenetic activity by targeting
histone proteins.108,109 LILRB4 expression is upregulated by
PRMT5 in AML cells, which results in activation of the
mTOR pathway to enhance the invasion ability of AML
cells.109 LILRB4 is specifically expressed on monocytic AML
cells but not on normal hematopoietic progenitor cells and
anti-tumor T cells, which makes LILRB4 a promising
therapeutic target to overcome the disadvantages of previous
AML antigens, such as CD123 and CD33, causing severe bone
marrow toxicity.35,102 Therefore, several therapeutic strate-
gies have been developed, including anti-LILRB4 humanized
monoclonal antibodies,105 anti-LILRB4 chimeric antigen
receptor (CAR)-T cells110 and anti-LILRB4 antibody-drug
conjugates (ADCs),111 and biomimetic inhibitors.112

Although these therapeutics have shown anti-tumor efficacy
in pre-clinical experiments, the most promising therapeutic
strategies that could be utilized to target LILRB4 on myeloid
cells to improve disease outcome will be validated in human
patients.
Similar to AML, LILRB4 is expressed and positively

correlated with immune checkpoint, cytotoxic T-lymphocyte
associated protein 4 (CTLA-4), in chronic myelomonocytic
leukemia (CMML).113 Although LILRB4 is not expressed on
naive B ormemory B cells, it is ectopic expressed on plasmablasts
and plasma cells, that might be related to the pathogenesis of
systemic lupus erythematosus,37,114 as well as B cell malignan-
cies. In B-cell chronic lymphocytic leukemia (B-CLL) cells,
LILRB4 recruits SHIP-1 to form a dynamic aggregation
inhibitory cluster to the B cell receptor (BCR), thereby inhibiting
BCR-dependent Akt activation.115 Beyond hematopoietic
malignancies, LILRB4 may be expressed on solid cancer cells,
such as non-small cell lung cancer (NSCLC) and gastric cancer
cells.100 In NSCLC, LILRB4 is activated by APOE binding and
further recruits SHP-2 and SHIP-1 to activate ERK1/2 signaling
and increase the expression of vascular endothelial growth factor
(VEGF) to promote cancer metastasis.116 Furthermore, LILRB4
may interact with membrane-bound molecules and modulate
their function. CD166/activated leukocyte cell adhesion mole-
cule (ALCAM) is a transmembrane protein on either tumor cells
or T cells that may be involved in the regulation of cancer
progression and T cell activation.117,118 A study reported that
the LILRB4-ECD-Fc fusion protein binds to CD166 on T cell
leukemia cells and disrupts the homophilic interaction between
CD166 proteins, further leading to impaired PLC-g-MAPK-
p70S6K signaling transduction and cell growth.34
2. CONCLUSION

T cell immune checkpoint blockade as an immunotherapy,
like PD-1 and CTLA-4, has elicited impressive therapeutic
responses in the treatment of many cancers.119,120 However,
existing immunotherapies are not effective in most cancer
patients and may develop de novo or adaptive resistance.121

Therefore, exploring novel immune checkpoint molecules is
emergent.
Here, we summarized the expression, ligands, intracellular

signaling and biological functions of LILRB4 in myeloid cells. In
normal and disease-associated myeloid cells, such as monocytes,
macrophages, andDCs, LILRB4may prefer to recruit SHP-1 as a
signaling adaptor to inhibit cell activation and cytokine
production; however, in malignant cells, LILRB4 is likely to
recruit SHP-2 or SHIP-1 to conduct its downstream signaling.
www.blood-science.org
More importantly, expression of LILRB4 is 40- to 50-fold higher
than that of PD-L1 and PD-L2 in AML cells.107 LILRB4
blockade can unleash anti-tumor T cells and suppress the disease
progression of AML35; In solid tumor, especially in “cold”
tumors, such as pancreatic ductal adenocarcinoma, LILRB4 is
expressed in MDSCs and TAMs and alleviated the suppression
of LILRB4 to tumor immunity in TME may remodel TME and
provide antitumor efficacy.99 Together, LILRB4 is a promising
therapeutic target that modulates immune activities in the
pathogenesis of various diseases, especially cancers.
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