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Pathway Analysis of Global Metabolomic Profiles 
Identified Enrichment of Caffeine, Energy, and Arginine 
Metabolism in Smokers but Not Moist Snuff Consumers
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ABSTRACT: Existing US epidemiological data demonstrate that consumption of smokeless tobacco, particularly moist snuff, is less harmful than 
cigarette smoking. However, the molecular and biochemical changes due to moist snuff consumption relative to smoking remain incompletely 
understood. We previously reported that smokers (SMK) exhibit elevated oxidative stress and inflammation relative to moist snuff consumers (MSC) 
and non-tobacco consumers (NTC), based on metabolomic profiling data of saliva, plasma, and urine from MSC, SMK, and NTC. In this study, 
we investigated the effects of tobacco consumption on additional metabolic pathways using pathway-based analysis tools. To this end, metabolic 
pathway enrichment analysis and topology analysis were performed through pair-wise comparisons of global metabolomic profiles of SMK, MSC, 
and NTC. The analyses identified >8 significantly perturbed metabolic pathways in SMK compared with NTC and MSC in all 3 matrices. Among 
these differentially enriched pathways, perturbations of caffeine metabolism, energy metabolism, and arginine metabolism were mostly observed. 
In comparison, fewer enriched metabolic pathways were identified in MSC compared with NTC (5 in plasma, none in urine and saliva). This is 
consistent with our transcriptomics profiling results that show no significant differences in peripheral blood mononuclear cell gene expression 
between MSC and NTC. These findings, taken together with our previous biochemical, metabolomic, and transcriptomic analysis results, provide a 
better understanding of the relative changes in healthy tobacco consumers, and demonstrate that chronic cigarette smoking, relative to the use of 
smokeless tobacco, results in more pronounced biological changes, which could culminate in smoking-related diseases.
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Introduction
Cigarette smoking is an important risk factor for many diseases 
including lung cancer, chronic obstructive pulmonary disease 
(COPD), cardiovascular disease (CVD), and oral cancer.1 
Cigarette smoke is a dynamic and complex aerosol containing 
non-volatile compounds in liquid droplet form (termed the 
“particulate phase”) and volatile constituents in the gas phase. 
More than 8000 chemical compounds have been identified in 
the particulate and gas phase of cigarette smoke,2 including 
many well-known toxicants. For example, 93 cigarette smoke 
constituents have been classified by the Food and Drug 
Administration (FDA) as harmful and potentially harmful 
constituents (HPHCs), which are further classified as carcino-
gens, respiratory toxicants, reproductive or developmental toxi-
cants, cardiovascular toxicants, and/or addictive constituents.3

While cigarette smoking is the predominant form of tobacco 
consumption in the United States and other countries, con-
sumption of smokeless tobacco products (STPs) is also com-
mon.4 Existing US and Swedish epidemiological data indicate 
that consumption of STPs is less harmful compared with ciga-
rette smoking and the health risks associated with STPs use are 
lower than those with smoking.5-8 Although the health effects 
of cigarette smoking and knowledge of smoking-related bio-
markers have been extensively documented,9 relatively less 
information exists on the effects of STP consumption. 

Consequently, very few biomarkers inform the biological 
effects (BioEff ) of STP use.

To gain a better understanding of the physiological effects 
of smoking and STP use, R. J. Reynolds Tobacco Company 
(RJRT) has conducted several clinical studies to evaluate bio-
markers of tobacco exposure (BioExp) and BioEff.10-14 Among 
these are 2 cross-sectional studies that include a CVD bio-
marker study13,14 and a biomarker discovery study11 consisting 
of 3 cohorts (non-tobacco consumers [NTC], smokers [SMK], 
and moist snuff consumers [MSC]). Both studies consistently 
showed that biomarkers of combustible toxicants were sub-
stantially higher in SMK compared with MSC. As expected, 
NTC exhibited the lowest levels of BioExp among these 
cohorts. Moreover, SMK showed higher levels of BioEff asso-
ciated with oxidative stress (urinary isoprostanes and leukot-
riene E4), inflammation (white blood cell count), platelet 
activation (thromboxane metabolites), and lipid metabolism 
(apolipoprotein B100 and oxidized low-density lipoprotein), 
relative to NTC and MSC.11 Principal components analysis of 
serum CVD BioEff suggests that interleukin (IL)-12, soluble 
intracellular adhesion molecule (sICAM)-1, and IL-8 are 
potential BioEff that differentiate SMK, MSC, and NTC.14

Untargeted metabolomics profiling technologies such as 
high-resolution nuclear magnetic resonance spectroscopy and 
mass spectrometry (MS) have been used for discovery of 
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metabolic biomarkers to evaluate health effects of short-term 
and long-term tobacco usage.15-22 Untargeted metabolomics 
enables high-throughput measurements of hundreds or even 
thousands of small molecules without prior knowledge and 
thus leads to identification of novel potential biomarkers. In 
the biomarker discovery study discussed above, Prasad et al12 
applied gas chromatography (GC)–MS and liquid chromatog-
raphy (LC)–MS/MS-based metabolomics to identify metabo-
lomic biomarkers from plasma, urine, and saliva collected from 
clinical trial participants. Statistical analysis of the global 
metabolomics profiling suggests that the overall biochemical 
profile of SMK is distinct from that of MSC and NTC. Fewer 
metabolic differences in both number and magnitude of bio-
chemical compounds were observed between MSC and NTC, 
compared with differences between SMK and NTC. Several 
metabolites associated with oxidative stress and inflammatory 
pathways were identified as potential metabolic BioEff.

Metabolic pathway analysis identifies clusters of metabo-
lites related to key cellular signaling and metabolic networks, 
which provides mechanistic insight into the underlying 
biology of differentially expressed metabolites.23 In this study, 
we used metabolomic profiles from these 3 cohorts (NTC, 
SMK, and MSC) and an integrated metabolic pathway analy-
sis approach that included pathway enrichment analysis and 
pathway topology analysis to assess the impact of smoking 
and consumption of moist snuff on human physiology. 
Perturbations in caffeine metabolism, energy metabolism, and 
arginine metabolism distinguished the 3 different cohorts. 
These findings, taken together with our previous investiga-
tions,11-13,24 provide a more comprehensive understanding of 
biochemical and physiological changes induced by consump-
tion of various tobacco products.

Materials and Methods
Clinical study conduct

A single-blinded, cross-sectional clinical study was conducted 
at the High Point Clinical Trails Center, High Point, North 
Carolina. The clinical conduct and sample collection have been 
described elsewhere.11 Briefly, 40 healthy, male participants 
(age 35-60 years) were enrolled into 1 of 3 consumer group 
cohorts (SMK, MSC, or NTC) after they provided informed 
consent. The participants fasted overnight and refrained from 
tobacco use prior to sample collection. Plasma was collected 
into tubes containing ethylenediaminetetraacetic acid (EDTA). 
Unstimulated saliva was collected into tubes containing pro-
tease and phosphatase inhibitors. The 24 hour urine samples 
were collected under ambulatory conditions and stored at 
–80°C. Aliquots of the plasma, urine, and saliva samples were 
analyzed using global metabolomic profiling at Metabolon Inc. 
(Durham, North Carolina). The clinical conduct of the study 
was approved by the Independent Investigational Review 
Board, Inc (Plantation, Florida) and registered at ClinicialTrials.
gov (ClinicalTrials.gov Identifier: NCT01923402).

Metabolomic profiling

Metabolomic profiling was performed using saliva, plasma, and 
urine samples collected from the participants.25-27 Briefly, all 
samples were extracted with a methanol solution and split into 
equal parts for analysis by GC-MS and LC-MS/MS.28 Two 
separate ultrahigh performance LC-MS/MS injections were 
optimized for basic and acidic species. After chromatographic 
separation using separate acid/base 2.1 × 100 mm Waters 
BEH C18 1.7 µm particle LC columns (or 20 m × 0.18 mm 
GC column with 0.18 µm film phase), full-scan MS was con-
ducted to record and quantify all detectable ions formed after 
molecule fragmentation. Metabolites were identified by match-
ing the ion’s chromatographic retention index, nominal mass, 
and spectral fragmentation signatures to Metabolon’s in-house 
reference library, which was generated from standard metabo-
lites under similar analytical procedures as the experimental 
samples. Once identified, metabolite ions were quantified by 
integration of their corresponding peak area.29

Statistical analysis of individual metabolites

Raw data were imputed with minimum values, mean- 
normalized, and then log-transformed. A 2-sample unequal 
variances t test was used to compare individual plasma, urine, 
and saliva metabolomic profiles obtained from the 3 cohorts. 
Statistical significance was defined as P ⩽ .05 and q ⩽ .1. False 
discovery rates (FDRs), estimated by q values, were used to 
account for multiple comparisons.

Metabolic pathway analysis

Metabolic pathway enrichment analysis and pathway topol-
ogy analysis were conducted using MetaboAnalyst 3.0 com-
putational platform to better understand the functional 
impact of tobacco use on human metabolism.23 Pathway 
enrichment analysis computes a single P value for each meta-
bolic pathway (a group of functional-associated metabolites), 
as opposed to the t test, which calculates statistical signifi-
cance of the difference between individual metabolites. 
Pathway topology analysis applies graph theory to measure a 
given experimentally identified metabolite’s importance in a 
pre-defined metabolic pathway. Measurements were com-
puted using centrality, a common metric used in graph the-
ory to estimate the relative importance of individual nodes to 
the overall network. Similarly, the importance measures for 
other unidentified metabolites in the pathway were com-
puted. A “pathway impact score” was then computed as the 
sum of the importance measures of identified metabolites 
divided by the total sum of the importance measures of all 
the identified and unidentified metabolites in the pathway. 
The pathway impact score represents an objective estimate of 
the importance of a given pathway relative to a global meta-
bolic network.
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In step 1 of the analysis, we created a 2-column data input 
file comprising an individual metabolite’s relative abundance 
and Human Metabolome Database entry number. Data on 
nicotine and its metabolites were excluded as these analyses 
were focused on identifying distinguishing BioEff as opposed 
to BioExp. In addition, unnamed structures from global 
metabolomic profiles were excluded from the data input file. 
The data input files were uploaded to the MetaboAnalyst 3.0 
web server. Data pre-processing, such as normalization and 
scaling, and metabolic pathway analysis were performed using 
the following parameters: (1) enrichment analysis was per-
formed using the global test method,30 (2) centrality was meas-
ured using Relative Betweenness, and (3) 80 human metabolic 
pathways in the Kyoto Encyclopedia of Genes and Genomes 
(KEGG) database were used as reference metabolic pathways. 
Details of the algorithms for enrichment pathway analysis and 
topology analysis were previously described.31

Classical FDR approach was used to control for false posi-
tives for metabolite enrichment analysis. A large FDR thresh-
old, similar to gene set enrichment analysis (GSEA),32 was 
applied to identify significant “enriched” pathways (in our case, 
0.22-0.52 and in GSEA, 0.25). The optimal FDR threshold 
identified is 0.32, as described in the “Results” section. The cut-
off value of 0.1 for pathway impact score was used consistently 
across multiple comparisons to filter less important pathways, 
similar to previous work.33

Results
Pathway enrichment analysis and topology analysis were per-
formed to analyze metabolomic profiles measured from plasma, 
urine, and saliva samples. Pair-wise comparisons were con-
ducted among 3 cohorts (SMK, NTC, and MSC), namely, 
between SMK and NTC (SMK vs NTC), between MSC and 
NTC (MSC vs NTC), and between SMK and MSC (SMK vs 
MSC). Enriched functional pathways were identified and their 
impact scores were measured.

Optimal FDR threshold

Different FDR threshold values were explored for pathway 
analysis of plasma metabolomics data (Figure 1A). When the 
FDR cut-off value (fdrcut-off) was 0.22, 11 and 13 significantly 
enriched metabolic pathways were observed between SMK 
and NTC, and between MSC and SMK, respectively. However, 
no significantly enriched pathways were found when MSC 
were compared with NTC. When the fdrcut-off was 0.32, 6 meta-
bolic pathways were identified as significantly different 
between MSC and NTC, 18 pathways between SMK and 
NTC, and 16 between SMK and NTC (Figure 1A). However, 
there was no appreciable increase in the number of significantly 
enriched pathways between MSC and SMK when the fdrcut-off 
was increased to either 0.42 or 0.52. Thus, 0.32 was used as an 
optimal fdrcut-off for analyzing plasma metabolomics data. For 

urine, the number of significantly enriched pathways between 
MSC and NTC remained zero until fdrcut-off reached 0.52 
(Figure 2A). In the case of saliva, none of the significantly 
enriched pathways between MSC and NTC were found when 
fdrcut-off increased from 0.22 to 0.52 (Figure 3A). For consist-
ency with plasma analysis, fdrcut-off 0.32 was used as the thresh-
old for analyzing urine and saliva metabolomics data.

Plasma metabolomic pathway analysis

The enriched pathways and their impact scores identified from 
plasma metabolomics data are visualized in Figure 1. When 
SMK metabolomics data were compared with NTC (SMK vs 
NTC), 18 pathways were identified as significantly enriched, 
among which 6 pathways had relatively large impact scores 
(>0.1) (Figure 1B). These pathways included linoleic acid 
(LA) metabolism, alpha linolenic (α-LA) metabolism, caffeine 
metabolism, arginine and proline metabolism, lysine biosyn-
thesis, and D-glutamine and D-glutamate metabolism. In the 
case of MSC versus NTC, only 6 enriched pathways were 
identified (Figure 1C); 3 of them had higher-impact scores 
(>0.1) including α-LA metabolism, aminoacyl-tRNA biosyn-
thesis, and biotin metabolism, suggesting different biological 
pathways were affected by moist snuff consumption from ciga-
rette smoking. In the comparison between SMK and MSC, 
aminoacyl-tRNA biosynthesis, arachidonic acid metabolism, 
valine/leucine/isoleucine metabolism, and arginine and proline 
metabolism were identified as enriched pathways with an 
impact score of >0.1 (Figure 1D).

Urine metabolomic pathway analysis

Comparative analysis of urine metabolomics data (Figure 2) 
revealed a greater number of differentially regulated pathways 
in SMK than those found in plasma (Figure 1). Relative to 
NTC, 38 differentially regulated pathways were detected in 
SMK (Figure 2B), whereas 20 pathways were enriched com-
pared with MSC (Figure 2D). No enriched pathways were 
found between MSC and NTC (Figure 2C).

In SMK versus NTC, 28 enriched metabolic pathways with 
impact score >0.1 were found. They belong to a wide range of 
metabolic pathways, including carbohydrate metabolism 
(pyruvate metabolism, ascorbate and aldarate metabolism), 
metabolism of cofactors and vitamins (nicotinate and nicotina-
mide metabolism), amino acid (glycine, serine, and threonine; 
alanine, aspartate, and glutamate) metabolism, biosynthesis of 
other secondary metabolites (caffeine metabolism), and lipid 
(glycerophospholipid) metabolism (Figure 2B). Thus, urine 
appears to provide richer metabolic information compared 
with plasma. In SMK versus MSC, 11 out of 20 enriched path-
ways were identified with impact scores >0.1. They include 
caffeine metabolism, amino acid–related metabolisms (such as 
alanine, aspartate, and glutamate metabolism, and cysteine and 
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methionine metabolism), nicotinate and nicotinamide metabo-
lism, and others (Figure 2D).

Saliva metabolomic pathway analysis

Similar to urine, but not plasma, pathway analysis of the saliva 
metabolomic data revealed no significant difference in enriched 
pathways between MSC and NTC (Figure 3A and C). Six 
enriched pathways were identified between SMK and NTC in 
saliva (Figure 3B) as compared with plasma (18 pathways) and 
urine (38 pathways). Among these enriched pathways, 5 have 
>0.1 impact scores including caffeine metabolism, taurine and 
hypotaurine metabolism, histidine metabolism, and nicotinate 
and nicotinamide metabolism.

In contrast, 26 enriched pathways were observed between 
SMK and MSC in saliva (Figure 3D). Among them, 18 path-
ways were scored with an impact score higher than 0.10. 
Interestingly, they included not only the metabolic pathways 
previously identified (e.g., caffeine metabolism, arginine and 
proline metabolism, nicotinate and nicotinamide metabolism), 
but also the pathways of tricarboxylic acid (TCA) cycle (impact 
score = 0.25) and sphingolipid metabolism (impact score = 
0.39). Thus, analyses of saliva data revealed several enriched 

pathways between SMK and MSC, which were not identified 
in plasma or urine.

Enriched metabolic pathways

Among the enriched pathways identified, several were consist-
ently enriched in SMK when compared with both NTC and 
MSC in urine, plasma, or saliva and therefore were selected for 
further evaluation, namely, caffeine metabolism, amino acid 
metabolism (e.g., arginine and proline metabolism), and energy 
metabolism (e.g., pyruvate metabolism).

Caffeine metabolism. Caffeine metabolism, which involves the 
Phase I liver detoxification enzyme cytochrome P-450 1A2 
(CYP1A2), was identified as a significantly enriched pathway 
when comparing SMK versus NTC and SMK versus MSC in 
plasma, urine, and saliva (Figures 1-3). A number of the 14 
possible caffeine metabolites were detected in urine (13), 
plasma (8), and saliva (6) (Table 1).

First, the level of caffeine in urine of SMK was higher rela-
tive to NTC (fold change [FC]: 1.35) although it did not 
achieve statistical significance. In contrast, the level of caffeine 
was significantly lower in both plasma and saliva of SMK 

Figure 1. Pathway enrichment and topology analysis of plasma metabolomics data from 3 cohorts including SMK, MSC, and NTC. The most enriched 

pathways were identified when (A) SMK were compared with NTC (SMK vs NTC), (B) MSC versus NTC, and (C) SMK versus MSC. “Pathway Impact 

Score” in x-axis represents the impact of these enriched pathways computed from topology analysis. “–log P” in y-axis refers to negative natural 

logarithmic value of the original P value from statistical analysis of pathway difference between 2 cohorts. (D) The number of enriched pathways was 

computed when different fdrcut-off values were used. When fdrcut-off = 0.32, 18, 5, and 16 pathways were considered for the case of SMK versus NTC, MSC 

versus NTC, and SMK versus MSC, respectively. MSC indicates moist snuff consumers; NTC, non-tobacco consumers; SMK, cigarette smokers.
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relative to NTC. Relative to NTC, MSC exhibited a high level 
of caffeine in plasma, urine, and saliva (FC: 1.79, 1.47, and 
1.55), respectively. Second, 1-methylurate and 1,3-dimethylu-
rate were significantly higher in the urine of SMK relative to 
NTC and MSC. However, they were not detected in plasma or 
saliva of SMK, NTC, and MSC. Third, caffeine metabolic 
ratios (CMR = Cparaxanthine / Ccaffeine) were computed for each 
participant and compared with different cohorts in each matrix 
(Figure 4). In urine, no significant differences were observed 
between MSC and NTC, and between SMK and NTC, 
although there was a marginal significant difference between 
SMK and MSC (P = .093). In both saliva and plasma, signifi-
cant differences in CMR were observed between SMK and 
NTC (P < .001), and between SMK and MSC (P < .001). 
The P value for the comparison between MSC and NTC in 
saliva was between .1 and .05, but in plasma was less than .05.

Energy metabolism. Among many metabolic pathways that 
contribute to providing energy for cellular and physiological 
functions, nicotinate and nicotinamide metabolism, pyruvate 
metabolism, and the TCA cycle were identified to be signifi-
cantly enriched in urine or saliva of SMK compared with NTC 
and MSC. Among the metabolites involved in these metabolic 

pathways, levels of 1,5-anhydroglucitol (1,5-AG), a naturally 
occurring monosaccharide, were different in the study cohorts 
(Table 2). The levels of 1,5-AG were significantly lower in the 
plasma, but higher in urine of SMK compared with NTC 
(Table 2).

In addition, urinary pyruvate levels were significantly lower 
in SMK, compared with NTC and MSC. In contrast, compared 
with NTC, only lactate was higher in the urine of MSC, while 
malate trended higher but was not statistically significant.

Among the TCA cycle metabolites, circulating plasma cit-
rate levels were lower in SMK compared with NTC. Other 
indications of altered energy metabolism that were also sig-
nificantly lower in SMK relative to NTC, include urinary suc-
cinylcarnitine, 2-methylcitrate, and itaconate. While a similar 
trend was evident in SMK compared with MSC, only the uri-
nary succinylcarnitine was significantly lower.

The urine of SMK, compared with NTC, also had signifi-
cantly elevated nicotinate and trigonelline levels along with 
decreased levels of quinolinate, a biosynthetic intermediate in 
NAD+ biosynthesis (Table 2). Similarly, SMK exhibited ele-
vated levels of nicotinate and trigonelline compared with MSC. 
Smokers also exhibited decreased urinary nicotinamide relative 
to NTC and MSC.

Figure 2. Pathway enrichment and topology analysis of urinary metabolomics data from 3 cohorts including SMK, MSC, and NTC. The most enriched 

pathways were identified when (A) SMK were compared with NTC (SMK vs NTC); (B) MSC versus NTC; and (C) SMK versus MSC. “Pathway Impact 

Score” in x-axis represents the impact of these enriched pathways computed from topology analysis. “–log P” in y-axis refers to negative natural 

logarithmic value of the original P value from statistical analysis of pathway difference between 2 cohorts. (D) The number of enriched pathways was 

computed when different fdrcut-off values were used. None of the enriched pathways in the case of MSC versus NTC were identified as significantly 

different, except fdrcut-off = 0.52, respectively. MSC indicates moist snuff consumers; NTC, non-tobacco consumers; SMK, cigarette smokers.
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Arginine and proline metabolism. Arginine and proline metabo-
lism was identified as a commonly enriched pathway affected 
by tobacco consumption (Figures 1 and 3). Arginine serves as a 
building block for the synthesis of proteins and as a precursor 
for many other small molecules including nitric oxide, urea, 
and polyamines (Figure 5A). The levels of citrulline, which is 
formed by the deamination of arginine, were significantly lower 
in the saliva of SMK relative to NTC and MSC (Figure 5B). 
The mean value of salivary citrulline levels was higher in MSC 
compared with NTC but the difference is not statistically sig-
nificant. The levels of salivary urea were elevated, but not sta-
tistically higher (.05 < P < .1), in MSC and SMK, relative to 
NTC.

Discussion
To better understand metabolism in tobacco product consumers, 
pathway enrichment and topology analyses methods were 
applied to evaluate the metabolomic profiles of 3 biological 
matrices obtained from SMK, MSC, and NTC. The metabo-
lomic profiles were generated using an untargeted metabolomics 

platform in our previous effort to identify metabolic biomarkers 
for MSC and SMK in urine, plasma, and saliva.12 We reported 
previously that many differentially expressed metabolites in 
SMK, relative to NTC and MSC, were indicative of higher lev-
els of oxidative stress and inflammation.12 In the current work, as 
opposed to focusing on individual metabolites, we analyzed the 
metabolomic data using knowledge-based pathway analysis 
approaches and identified significantly affected metabolic path-
ways in SMK and MSC. Key findings of this work are (1) SMK 
exhibit more pronounced and extensive metabolic pathway 
changes relative to MSC and NTC and (2) energy metabolism, 
caffeine metabolism, and arginine and proline metabolism are 
prominently enriched in SMK, but not in MSC, when com-
pared with NTC.

In this study, a relatively large fdrcut-off (0.32) was used to 
identify enriched metabolic networks. Previously, a conven-
tional fdrcut-off of 0.05 was used to identify differentiating 
metabolites in the tobacco consumers.12 In the global net-
work analyses, application of a conventional 0.05 cut-off did 
not yield any differentially enriched pathways among cohorts 

Figure 3. Pathway enrichment and topology analysis of saliva metabolomics data from 3 cohorts including SMK, MSC, and NTC. The most enriched 

pathways were identified when (A) SMK were compared with NTC (SMK vs NTC), (B) MSC versus NTC, and (C) SMK versus MSC. “Pathway Impact 

Score” in x-axis represents the impact of these enriched pathways computed from topology analysis. “–log P” in y-axis refers to negative natural 

logarithmic value of the original P value from statistical analysis of pathway difference between 2 cohorts. (D) The number of enriched pathways was 

computed when a number of fdrcut-off values were used. None of enriched pathways in the case of MSC versus NTC were identified as significantly 

different when fdrcut-off varies from 0.22 to 0.52. MSC indicates moist snuff consumers; NTC, non-tobacco consumers; SMK, cigarette smokers.
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(data not shown). This could be due to the fact that these data 
were generated from generally healthy tobacco consumers 
(SMK and MSC). Thus, we explored multiple FDR cut-off 
values in 0.02 increments. Using this approach, a 0.32 fdrcut-off 
was found to provide a separation for plasma metabolomic 
profiles between MSC and NTC (Figure 1A); however, when 
a more stringent cut-off of 0.22 was applied, no differences 
were detected between MSC and NTC in plasma (Figure 
1A). Hence, for consistency across comparisons and other 
matrices, a 0.32 FDR cut-off was used in this study (Figures 
2A and 3A).

Using the 0.32 fdrcut-off, our pathway analysis of urinary, 
plasma, and saliva metabolomic profiles suggested that a diverse 
range of metabolic pathways, including carbohydrate, amino 
acid, lipid, vitamin, and nucleotide metabolism, were perturbed 
in SMK relative to NTC (Table S1 and Figure S1 in the 
Supplementary Material). First, two enriched pathways includ-
ing caffeine metabolism and ascorbate and aldarate metabo-
lism were consistently seen in urine, plasma, and saliva of SMK. 
Second, three carbohydrate metabolic pathways (amino sugar 
and nucleotide sugar metabolism, starch and sucrose metabo-
lism, galactose metabolism), three amino acid metabolic path-
ways (arginine and proline metabolism, glutathione metabolism, 
and D-glutamine and D-glutamate metabolism), and one 
nucleotide metabolic pathway were enriched in plasma and 

urine of SMK. Third, lysine biosynthesis was enriched in 
plasma and saliva of SMK. Fourth, one metabolic pathway 
concerning cofactors and vitamins (nicotinate and nicotina-
mide metabolism) and two amino acid metabolic pathways 
(histidine metabolism, taurine and hypotaurine metabolism) 
were enriched in urine and saliva of SMK. Finally, eight meta-
bolic pathways were uniquely enriched in plasma of SMK 
including steroid hormone biosynthesis; 30 uniquely enriched 
metabolic pathways were identified in urine and zero in saliva 
(Table S1 in the Supplementary Material). Multiple enriched 
lipid metabolic pathways including glycerolipid metabolism, 
sphingolipid metabolism, and glycerophospholipid metabolism 
were identified in urine only.

We further compared the enriched pathways in SMK and 
MSC with NTC, and found only two pathways (lysine biosyn-
thesis and α-LA metabolism) were enriched in plasma of both 
SMK and MSC. Given the similarity between urinary and 
saliva metabolomes of MSC and NTC, no enriched pathways 
were detected in MSC.

The enrichment of pyruvate metabolism, the TCA cycle, 
glycolysis, and gluconeogenesis pathways in urine of SMK, but 
not in urine of MSC, suggests a perturbed energy metabolism 
in SMK, but not in MSC. Such finding is also indirectly sup-
ported by enriched nicotinate and nicotinamide metabolism in 
urine and saliva of SMK, but not MSC, as well as many enriched 

Table 1. Fold changes for the metabolites involved in caffeine metabolism among SMK, MSC, and NTC.

BIOChEMICAL NAME FOLD ChANGES

PLASMA URINE SALIvA

MSC/
NTC

SMK/
NTC

SMK/
MSC

MSC/
NTC

SMK/
NTC

SMK/
MSC

MSC/
NTC

SMK/
NTC

SMK/
MSC

Caffeine 1.79 0.52 0.29 1.47 1.35 0.92 1.55 0.42 0.27

Paraxanthine 1.19 0.82 0.69 1.09 1.48 1.37 1.15 0.86 0.74

Theobromine 1.06 0.43 0.41 1.05 0.74 0.70 0.79 0.44 0.56

1-methylurate ND ND ND 1.02 1.34 1.32 ND ND ND

1,3-dimethylurate ND ND ND 0.97 1.71 1.75 ND ND ND

1,7-dimethylurate 1.24 0.89 0.70 1.19 1.26 1.06 1.1 1.05 0.95

3,7-dimethylurate ND ND ND 0.88 0.62 0.71 ND ND ND

1,3,7-trimethylurate ND ND ND 1.13 1.11 0.98 ND ND ND

1-methylxanthine 1.03 1.23 1.20 1.03 1.64 1.59 ND ND ND

3-methylxanthine 0.90 0.81 0.90 0.98 0.88 0.89 ND ND ND

7-methylxanthine 0.91 0.81 0.88 0.90 0.94 1.05 0.69 0.91 1.32

5-acetylamino-6-amino-3-methyluracil ND ND ND 0.97 1.93 2.00 ND ND ND

5-acetylamino-6-formylamino-3-methyluracil ND ND ND 0.94 2.07 2.20 ND ND ND

Theophylline 1.24 0.91 0.74 ND ND ND 1.23 0.89 0.72

The statistical significance P < .05 is highlighted by shaded and bolded “fold change” values; bolded fold of change values indicate .05 < P < .1. Abbreviations: MSC, 
moist snuff consumers; ND, not detected; NTC, non-tobacco consumers; SMK, cigarette smokers.

https://journals.sagepub.com/doi/suppl/10.1177/1177932219882961
https://journals.sagepub.com/doi/suppl/10.1177/1177932219882961
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carbohydrate and amino acid metabolic pathways shown above. 
This finding is not surprising as these pathways are closely 
linked to energy metabolism. In addition, the increased urinary 
lactate in SMK suggests that the rate of pyruvate production 
through glycolysis exceeded the rate of pyruvate consumption 
through mitochondrial oxidative phosphorylation. We also 
observed that circulating citrate was decreased in plasma, and 
multiple metabolites related to TCA cycle intermediates were 
decreased in SMK urine. Although lactate was also elevated in 
the urine of MSC, we did not observe other signs of energy 
metabolism impairment. Our findings are consistent with the 
well-known smoking-related energy metabolism perturbations. 
For example, cigarette smoke exposure to cultured cells causes 
structural and functional abnormalities in the mitochondria34,35; 
the levels of several TCA cycle intermediates, malate, fumarate 
and succinate, were decreased in the urine of SMK.36

Caffeine metabolism was prominently altered in tobacco 
consumers. Our analysis showed that caffeine metabolism was 
profoundly altered in SMK, compared with NTC, and was less 
pronounced in MSC. Caffeine is a naturally occurring stimu-
lant found in coffee, tea, chocolate, and many other beverages. 
CYP1A2 is the major enzyme responsible for the metabolism 
of caffeine37; 95% of ingested caffeine is metabolized by 
CYP1A2 to paraxanthine as the primary intermediate product. 
Our metabolomics analysis identified that SMK exhibit marked 
changes in caffeine metabolism. This observation is consistent 
with the CMR measured in saliva and plasma of SMK relative 
to NTC (Figure 4), suggesting CYP1A2 enzyme activity is up-
regulated by cigarette smoking, as reported previously.38 In our 
study, several caffeine metabolites were significantly elevated in 
urine of SMK, but not in MSC, compared with NTC (Table 1). 
However, this could be attributed to higher coffee consumption 

Figure 4. Caffeine metabolic ratio of SMK, MSC, and NTC in urine, saliva, and plasma. Box plots of caffeine metabolic ratios (computed using scaled 

intensity of paraxanthine divided by caffeine) in (A) urine, (B) saliva, and (C) plasma show altered caffeine metabolic ratio in saliva and plasma.  

MSC indicates moist snuff consumers; NTC, non-tobacco consumers; SMK, smokers. *indicates .05 < P ⩽ 0.1, **indicates .001 < P ⩽ .05, and 

***indicates P ⩽ .001.
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in SMK compared with NTC and MSC cohorts (unpublished 
data), which is consistent with a published report.39

Our analysis also suggested enrichment of arginine and 
proline metabolism in plasma and urine of SMK, but not 
MSC. The finding that urea production in the saliva of SMK 
was elevated indicates the up-regulation of arginine metabo-
lism in SMK. Interestingly, this BioEff was not apparent in 
MSC’s saliva, SMK’s urine, and plasma compared with NTC 
(Figure 5). Our results are consistent with a report of increased 
salivary urea, which may account for dental implant failure in 
SMK.40 In asthmatic patients, arginase activity in airway 
endothelial cells is up-regulated with smoking41 and may 
impair nitrous oxide production.42

In addition to the aforementioned metabolic pathway 
perturbations, we also observed that glutathione metabolism 
was significantly enriched in plasma and urine of SMK. 
Glutathione metabolism plays an important role in alleviating 
oxidative stress,43 and this finding is consistent with our previ-
ous observation from single metabolite analyses12 that SMK 
exhibited higher levels of oxidative stress. In addition, SMK 

exhibited elevated levels of 1,5-AG in urine, relative to MSC 
and NTC. The 1,5-anhydroglucitol, a clinically established 
marker for hyperglycemia, is a non-metabolized food compo-
nent and its concentration remains relatively stable in the 
blood. It is filtered and reabsorbed by the kidney and a small 
amount is excreted in the urine. During hyperglycemia, glu-
cose competes with 1,5-AG for re-absorption. Thus, hyper-
glycemia leads to elevated 1,5-AG urinary levels and a decrease 
in plasma levels. Elevated levels of 1,5-AG indicate a hyper-
glycemic state, which is a risk factor for diabetes.44 Thus, our 
finding suggests that SMK are relatively hyperglycemic, which 
is consistent with the reported association between smoking 
and impaired glucose control.45

Our results demonstrate that pathway-based analysis 
approach is a useful means of overcoming the limitations 
imposed by univariate analysis of metabolomics data, and it 
offers a methodology for uncovering the biologically plausible 
pathways affected by tobacco product consumption. Many of 
these identified enriched biochemical networks such as oxida-
tive stress response, and arginine and proline metabolism, have 

Table 2. SMK had indications of disrupted energy metabolism.

BIOChEMICAL NAME FOLD OF ChANGE (PLASMA) FOLD OF ChANGE (URINE)

SMK P 
vALUE

SMK P 
vALUE

MSC P 
vALUE

SMK P 
vALUE

SMK P 
vALUE

MSC P 
vALUE

NTC MSC NTC NTC MSC NTC

Glycolysis

  1,5-anhydroglucitol 
(1,5-AG)

0.9 .034 0.93 .184 0.97 .312 1.32 .026 1.18 .268 1.12 .199

 Pyruvate 1.04 .856 1.03 .850 1.01 .991 0.77 .021 0.72 .003 1.08 .501

 Lactate 1.09 .148 1.04 .409 1.04 .625 1.62 .046 1.1 .750 1.47 .006

 Glucose 1.07 .503 0.97 .459 1.1 .067 1.76 .169 0.96 .720 1.84 .061

TCA cycle

 Citrate 0.9 .018 0.97 .691 0.92 .077 0.9 .255 0.96 .858 0.94 .379

 Succinylcarnitine 0.94 .390 1.01 .943 0.93 .329 0.82 .004 0.83 .028 0.99 .688

 2-methylcitrate 0.78 .006 0.84 .078 0.93 .365

 Itaconate 0.84 .044 0.82 .064 1.03 .995

 Succinate 0.92 .292 0.87 .112 1.06 .570 0.71 .099 0.7 .028 1.01 .698

 Malate 0.83 .094 0.94 .917 0.88 .151 1.21 .560 0.94 .257 1.29 .057

NADh/NADPh metabolism

 Nicotinate 2.04 .002 2.04 .001 1 .724

 Quinolinate 0.77 .012 0.77 .125 1 .503

  Trigonelline  
(N’-methylnicotinate)

1.25 .293 1.4 .049 0.89 .319 1.74 .019 1.7 .006 1.02 .617

 Nicotinamide 0.93 .690 0.92 .417 1.01 .721 0.86 .099 0.82 .014 1.05 .508

The statistical significance P < .05 is highlighted by shaded fold of change values; bolded fold of change values indicates .05 < P < .1. Abbreviations: MSC, moist snuff 
consumers; NADh, nicotinamide adenine dinucleotide; NADPh, nicotinamide adenine dinucleotide phosphate; NTC, non-tobacco consumers; SMK, cigarette smokers; 
TCA cycle, tricarboxylic acid cycle.
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also been reported to be involved with smoking-associated dis-
eases like COPD and lung cancer. For example, oxidative stress 
response, and glycolysis and gluconeogenesis pathways were 
identified as two common underlying pathogenic pathways of 
lung cancer and COPD diseases from proteomics analysis of 
the bronchoalveolar lavage fluid in lung cancer and COPD 
patients.46 Serum metabolomics analysis of lung cancer patients 
identified sphingolipid metabolism, glycine, serine, and threo-
nine metabolism, arginine and proline metabolism, and LA 
metabolism as commonly altered pathways.47 Taken together, 
the smoking-related metabolic perturbations in biological 
pathways may drive the progression to disease phenotypes such 
as COPD and lung cancer.

Although the current study has provided important insights 
into biochemical perturbations in tobacco consumers, particu-
larly SMK, several limitations exist. First, although KEGG 
pathway databases have been widely used in enrichment analy-
sis as reference databases, high-quality and high-resolution 
annotation of condition- and cell-specific metabolites remains 
challenging.48 Second, the enrichment analysis method used in 

the current study assumes that each pathway in the database is 
independent of other pathways; it does not account for the 
interactions between different pathways.49 Third, the current 
analyses do not consider all identified metabolites due to a lack 
of accurate KEGG annotation of metabolites identified from 
Metabolon’s MS platform. Nevertheless, our analyses provide 
an unbiased qualitative and semi-quantitative approach to 
compare the significance and the importance of a given bio-
logical pathway perturbed across different conditions.

Conclusions
In summary, combined with our previous findings of BioExp 
and BioEff,11-13,24 pathway analysis of the plasma, urinary, 
and saliva metabolomic profiles from SMK, MSC, and NTC 
provides additional insights into the biochemical changes of 
tobacco consumers. We show that SMK, but not MSC, exhibit 
prominent changes in caffeine, energy, and arginine metabo-
lism relative to NTC. Collectively, our findings suggest ciga-
rette smoking, but not moist snuff consumption, is a prominent 
modifier of human physiology.

Figure 5. SMK have altered arginine metabolism in saliva. The increased urea and decreased citrulline in saliva are consistent with up-regulation of 

arginase and decreased nitric oxide synthase. (A) Pathway diagram of urea cycle and (B) boxplots showing altered urea cycle metabolites in SMK. MSC 

indicates moist snuff consumers; NTC, non-tobacco consumers; SMK, smokers. vertical lines in the boxplots represent the median; boxed areas 

represent 50% of the distribution; whiskers represent the maximum and minimum values excluding outliers, and the plus sign represents the mean. 

**indicates .001 < P ⩽ .05 and ***indicates P ⩽ .001.
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