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Immunofluorescence can assess 
the efficacy of mTOR pathway 
therapeutic agent Everolimus in 
breast cancer models
Chun-Ting Kuo1, Chen-Lin Chen1, Chih-Chi Li1, Guan-Syuan Huang1, Wei-Yuan Ma1,  
Wei-Fan Hsu  1, Ching-Hung Lin2, Yen-Shen Lu2 & Andrew M. Wo1

When breast cancer patients start to exhibit resistance to hormonal therapy or chemotherapy, the 
mTOR inhibitor everolimus can be considered as an alternative therapeutic agent. Everolimus can 
deregulate the PI3K/AKT/mTOR pathway and affect a range of cellular functions. In some patients, 
the agent does not exhibit the desired efficacy and, even worse, not without the associated side 
effects. This study assessed the use of immunofluorescence (IF) as a modality to fill this unmet need 
of predicting the efficacy of everolimus prior to administration. Cell viability and MTT assays based 
on IF intensities of pho-4EBP1 Thr37/46 and pho-S6K1 Ser424 on breast cancer cells (Hs578T, MCF7, 
BT474, MDA-MB-231) and patient-derived cell culture from metastatic sites (ABC-82T and ABC-16TX1) 
were interrogated. Results show that independent pho-4EBP1 Thr37/46 and pho-S6K1 Ser424 IF 
expressions can classify data into different groups: everolimus sensitive and resistant. The combined 
IF baseline intensity of these proteins is predictive of the efficacy of everolimus, and their intensities 
change dynamically when cells are resistant to everolimus. Furthermore, mTOR resistance is not only 
consequence of the AKT/mTOR pathway but also through the LKB1 or MAPK/ERK pathway. The LKB1 
and pho-GSK3β may also be potential predictive markers for everolimus.

The pathway PI3K/AKT/mTOR is frequently activated in breast cancer potentially controlling many major 
cytophysiologically functions related to cellular proliferation, metastasis, growth, survival and motility. When 
cells are stimulated by growth factors or hormones, phosphatidylinositol 3-kinase (PI3K) will likely be first acti-
vated promoting phosphorylation of both the AKT pathway and the mechanistic target of rapamycin complex 1 
(mTORC1) sequentially. Then, the mTORC1 will phosphorylate its downstream substrate eukaryotic initiation 
4E-binding protein 1 (4EBP1) and ribosomal protein S6 kinase beta-1 (S6K1)1,2. Moreover, p53, KRAS, PI3CA 
and PTEN mutations are well-known to be related to the PI3K/AKT/mTOR pathway3–5. As a consequence, the 
mammalian (or mechanistic) target of rapamycin (mTOR) pathway, in conjunction with phospho-4EBP1 and 
phospho-S6K1, plays a critical role in controlling key cellular processes6–8.

For breast cancer, mTOR-targeted therapy is considered when patients are resistant to hormonal therapy or 
chemotherapy. The therapeutic agent everolimus is one of mTOR inhibitors and can deregulate the PI3K/AKT/
mTOR pathway by allosteric binding of the catalytic site of mTORC1. Anti-proliferative effect of everolimus has 
also been demonstrated in cancer cell lines9. Everolimus can be used combinatorically with other agents with 
efficacy in clinical trials. For example, a landmark study (BOLERO-2) for hormone receptor-positive and human 
epidermal receptor 2 (HER2)-negative advanced breast cancer patients demonstrated everolimus and exemes-
tane extended progression-free survival (PFS) compared with exemestane and placebo, with median PFS of 10.6 
months verses 4.1 months, respectively (hazard ratio, 0.36; 95% CI, 0.27 to 0.47; P < 0.001)10. A follow-up study 
explored the correlation of genetic alterations in a representative cohort of BOLERO-2 patients found that the 
efficacy of everolimus was essentially independent of the status of PIK3CA, FGFR1, and CCND1, which are the 
commonly altered genes or pathways associated with this cohort11.
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In clinical trials, combination therapy was employed yet it was still difficult to confirm the effect or impact of 
each agent. To conquer this obstruction, many researchers had been working hard and several studies had mod-
eled combinatorial therapeutic effect with algorithmic methods while considering the probability of sensitivity 
of each individual agent12,13. The expression of individual agent might give another way/method to predict/find 
potential sensitivity of combination treatments14. It demonstrates that everolimus monotherapy is still worth 
examining with in vitro and vivo to reveal mechanism of resistance to this drug in breast cancer. Instead of replac-
ing the existing combined therapy, the core research value of this work is to find a more efficient way to under-
stand and show the patient’s medication situation.Clinical consideration of everolimus when appropriate could 
benefit from a means to predict the response of the agent for patients prior to administration while weighting 
the potential side effects which could substantially hamper life quality for some patients. The predictive modality 
should be amenable to the clinical management of the disease with relative ease given the fact that these patients 
have been shown to be resistant to hormonal therapy or chemotherapy.

A range of methodologies have been explored to interrogate the mTOR pathway. Many reported responses 
downstream of the mTOR pathway using western blot on cell lines15–19 and immunohistochemistry (IHC) on 
tumors19–21. While others have directly targeted the mTOR pathway and a range of inhibitors using quantitative 
PCR (q-PCR), IHC and western blot to demonstrate the efficacy of these mTOR inhibitors18–24. Clinically, IHC is 
routinely used to characterize tumor tissue, while western blot and immunofluorescence (IF) are research tools 
for protein studies. Each modality is robust when utilized within its designed parameters, which is often balanced 
by complex considerations such as amount of sample required, processing time, clinical setting and cost. Some 
studies reported gene expression and mutations can be leveraged to assess the sensitivity of everolimus15,24–29, 
yet another research revealed that low chromosome instability corresponds to everolimus efficacy, while no dif-
ference in PIK3CA mutation status11. Another study also hypothesized that efficacy of the agent is related to 
epithelial-mesenchymal transition (EMT) and cell lines were systematically interrogated30 towards this end.

Although many methodologies have been undertaken on everolimus, further studies to explore the use of 
IF as a modality to predict response of the therapeutic agent are still warranted for the following reasons: (a) 
the IHC approach is challenging particularly when phospho-antibodies are involved; (b) even if western blot 
and IHC might detect protein expressions for mTOR pathway, the results might be challenging to interpret 
due to rapid dephosphorylation of some phosphorylated protein during the duration required31; (c) IF can be 
detected in media for fresh or frozen samples to avoid dephosphorylation of phosphorylated protein; and (d) 
IF had been proved to correlate linearly with results from western blot32 while, in contrast, IF enables rapid 
processing, requires less sample than other protein detection approaches which is important in the metastatic 
setting where samples can be limited if accessible. Key characteristics among IHC, western blot and IF are listed 
in Table 1 31,33–35.

Besides, it could be presumed that pho-4EBP1 and pho-S6K1 are not only due to AKT/mTOR pathway but 
activated by another target or pathway from some studies, which suggested that pho-GSK3β and LKB1 would 
affect the downstream of mTOR pathways36,37. Supplementary Fig. 1 showed the possible factors that affected 
the performance of pho-4EBP1 and pho-S6K1. This study was also focused on expressions of pho-4EBP1 and 
pho-S6K1.

The aim of this study was to interrogate IF as a predictive modality for the response of the mTOR inhibitor 
everolimus monotherapy in breast cancer cell lines and in patient-derived cell culture (PDCC) from metastatic 
breast cancer sites. The reason for the focus of everolimus monotherapy is that, as aforementioned, the mTOR 
pathway inhibitor is considered not only for endocrine-resistance but also for chemo-resistance patients. Thus, 

Western blot Immunohistochemistry Immunofluorescence

Target Protein expressions Protein expressions Protein expressions

Sample acquisition Proteins lysated form cells or tissues Tissues Cells or tissues (supension or adherent cells)

Sample quantity cells typically (about 15–30 μg total 
proteins) cells from tissues typically cells typically (1/10–1/100 times compared 

with amount of western blot)

Advantages

Sensitivite detection Can measure situations in the 
context of intact tissues.

Can be used in suspension and adherent 
cells situations

Quantitative analysis use Can be used in fresh samples situations

Provides moleualr weight information Less sample need amount and less time to 
perform results

Quantitative analysis

Suitable for detection for phosho-proteins

Disadvantages

Time consuming problem Less sensitivity quantitatively The condition setting for high sensitivity

High sample comsumption Limited time of storage Limited time of storage

Lower sensitivity in less protein amount 
situation Repeated use problem Repeated use problem

Improper quantification

Measuring confusion when 
phosphorlyative peotein detection

Reactivity problem of antibodies each 
other

Table 1. Comparsions between western blot, IHC and IF used in the study31,33–35.
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unlike other combinatorial study where the complementary agent contributes in a supporting therapeutic role, it 
is reasonable to assume that the addition of endocrine or chemo therapeutics should not contribute substantially 
to determine multi-agent sensitivity/resistance in everolimus-based therapy. This study design serves as a pilot 
attempt to develop a clinically amenable tool towards the goal set in this work.

Materials and Methods
Cell culture, cell lines, and patient-derived cell culture (PDCC). Breast cancer cell lines MCF7, 
MDA-MB-231, BT474, Hs578T and two PDCC ABC-16TX1, ABC-82T were chosen to explore the use of IF 
signals to predict the sensitivity of the mTOR inhibitor everolimus. All experiments were tested in triplicate.

MCF7 cell lines were cultured in 10% FBS DMEM/F12 medium. BT474 cell lines were cultured in Hybricare 
medium, which EGF was added. MDA-MB-231 cell lines were cultured in 10% FBS DMEM HG medium. Hs578T 
cell lines were cultured in 10%FBS DMEM HG medium, which insulin was added. Patient-derived cell culture 
(PDCC) ABC82T and ABC-16TX1 were unique cells, which were derived from breast cancer patient metastatic 
biopsy samples, and these two PDCC were cultured in IH medium. All cells were incubated in the culture dish 
(704001, NEST) in 37 deg. C, 5% CO2 incubator. Supplementary Table 1 and supplementary Table 2 list the char-
acteristics and the gene mutation of these cell lines and PDCC25,38,39.

Reagents. The following reagents and kits were used: cell fixation buffer and Alexa Fluor 488 anti-human 
CD24 antibody (BioLegend), cell permeabilization kit (MiltenyiBiotec), mouse anti-human CD45 conjugated 
with Alexa Fluor 488 and Hoechst33342 (Invitrogen), Pho-4EBP1 Thr37/46 antibody, vimentin antibody conju-
gated with Alexa Fluor 647 and pho-GSK3β Ser9 antibody (Cell Signaling Technology), mouse anti-human CD44 
antibody (BD Biosciences), Pho-S6K1 Ser424 antibody, pan cytokeratin C11 antibody, the donkey anti-rabbit and 
anti-mouse IgG H&L conjugated with Alexa Fluor 488 and 647 secondary antibodies (Abcam), pan cytokeratin 
AE1/AE3 antibody (Novus Biologicals), LKB1 antibody, goat anti-rabbit and anti-mouse IgG(H + L) superclonal 
secondary antibodies, HRP conjugated (Thermo Fisher), everolimus (Selleckchem), 10X TGS buffer and 10X TG 
buffer for western blot (Omics Bio), and MTT powder (Sigma-Aldrich).

Cells viability rate assay. Cell lines MCF7, MDA-MB-231, BT474, and two PDCCs ABC-82T and ABC-
16TX1 were used in this study. First, seeded cells in the 3.5 cm culture dish were grown to about 50–60% con-
fluence. Second, 200 nM everolimus were added into the dish. After about 24 hours, cells were harvested and the 
number of live cells were counted and to determine cell viability rate. Cells under the normal growth condition 
were harvested as the control group. The cell viability rate is defined as equation (1):

−
×

cell number of drug treatment after about 24 hours cell number of control after about 24 hours
cell number of control after about 24 hours

100% (1)

MTT and IC50 assays. About 5,000–10,000 cells were seeded in 100 μl medium into the 96-well and incu-
bated in 37 C at CO2 5% incubator overnight before the drug treatment. Second, the same volume of the culture 
medium which contained different everolimus concentration were replaced and were incubated for 48 hours.

After treatment with everolimus for 48 hours, the culture medium was replaced by 12 mM 100 μl MTT solu-
tion and was placed for 3 hours in 37 C at CO2 5% incubator. Finally, the same amount of DMSO was replaced for 
20 minutes at 37 C and the absorbance of DMSO at 570 nm was determined, which stood for the number of live 
cells by the plate reader (MQX 200, BioTek). The concentration of IC50 to everolimus were determined for every 
type of cell lines.

Immunofluorescence staining. For IF staining, cells were harvested first, then fixation buffer 200 μl was 
added and incubated for 20 minutes at 4 C and washed with running buffer. Second, cells were permeabilized by 
adding the inside perm buffer, incubated for 20 minutes at 4 C and washed with running buffer (some antibodies 
did not use this process).

After cells were fixed and/or permeabilized, the primary antibodies were added, incubated for 25 minutes at 
4 C and washed with running buffer. When primary antibodies were bonded at cells, the secondary antibodies 
conjugated to Alexa Fluor 488 or 647 channels were added, incubated for 25 minutes at 4 C and washed with run-
ning buffer. Immunofluorescence images were taken by microscope.

Cell lines and PDCC
IC50 concentration to 
everolimus

Respone to 
everolimus

MCF7 5 nM Sensitive

Hs578T 6.8 nM Sensitive

BT474 60 nM Resistant

MDA-MB-231 500 nM Resistant

ABC-82T >500 nM Resistant

ABC-16TX1 >1000 nM Resistant

Table 2. The response to everolimus alone for cell lines and PDCC used in the study. Notes: Sensitive 
to everolimus is defined as IC50 concentration < 50 nM Resistance to everolimus is defined as IC50 
concentration > 50 nM.
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Western blots. The following protocol was used for western blot. Cells of about 106 count were boiled with 
sample buffer for 15 minutes. Afterwards, cell samples which contained proteins were loaded into the wells of 
gels (Mini-PROTEAN Precast Gels; Bio-Rad). Then, the gels were run with 200 volts for about 30 minutes. Upon 
completion, proteins were transferred to PDVF membranes (Merck Millpore) at 100 volts for 30 minutes.

After running gels and blotting, the PDVF membranes were stained with Ponceau S solution for about 5 min-
utes to show the total proteins expression to check the equal amount protein and were washed with PBS-T three 
times. After this, the PDVF membranes were blocked with milk at room temperature for about 2 hours. After 
blocking, the primary antibody (1:1000) were added into the milk, incubated at 4 C overnight and were washed 
with PBS-T three times. The secondary antibody which HRP conjugated (1:5000) was added into the milk, incu-
bated at room temperature for 1 hours and washed with PBS-T six times. Proteins were detected using imaging 
(UVP BioSpectrum 500 Imaging System).

Statistical analysis. Immunofluorescence images in this work were captured (from Leica DMI 6000 B 
microscope) and analyzed by a commercial software (MetaMorph). In the software, the count nuclei function was 
used which can enumerate cells above a certain threshold of IF intensity. After image capture and counting, 
another software (SigmaPlot 12.5 and MedCalc Version 18.11.3) was used for compilation and results expressed 
as mean +

−
 s.e.m.

Results
Cell viability and IC50 of cell lines & PDCC. Initial cell viability was first assessed prior to testing in 
the MTT assay. Cells – BT474, MCF7, MDA-MB-231, ABC-82T and ABC-16TX1 – were placed under 200 nM 
everolimus treatment alone for 24 hours and compared with the amount under the normal growth condition over 
the same time interval in a cell viability assay. Results are presented in Supplementary Fig. 2 showing the growth 
rate of BT474 and MCF7 cells are “negative” while growth of MDA-MB-231, ABC-82T and ABC-16TX1 are 
“positive” implying resistant to everolimus.

Figure 1. IF expression for BT474, MCF7, ABC-82T, and ABC-16TX1 cells without everolimus with (a) pho-
S6K1 Ser424 and (b) pho-4EBP1 Thr37/46. Normalized IF intensity (using BT474) for (c) pho-S6K1 Ser424 and 
(d) pho-4EBP1 The37/46.
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Table 2 and Supplementary Fig. 3 represent results for the MTT assay and IC50 values under different everoli-
mus concentrations. Results show that the inhibition rate of Hs578T and MCF7 cells are less than 100 nM and 
inhibition rate of BT474 cells is about 60 nM, while results of MDA-MB-231, ABC-82T and ABC-16TX1 are 
still 70–80% under high everolimus concentrations. However, for ABC-16TX1 cells, the IC50 values were in the 
range of 0–10 μM of everolimus which suggest the cells are highly resistance to everolimus. Thus, we defined 
Hs578T and MCF7 cells as everolimus-sensitive cells and BT474, MDA-MB-231, ABC-82T and ABC-16TX1 cells 
as everolimus-resistant cells.

Immunofluorescence expression of mTOR markers and everolimus sensitivity. Based on the 
above assessment, Fig. 1 presents the baseline IF intensity for the same set of cells prior to administration of 
everolimus. Figure 1(a,b) show the images for the markers pho-S6K1 Ser424 and pho-4EBP1 Thr37/46, respec-
tively. Analyses of these images are quantified in Fig. 1(c,d) with IF intensity normalized for the two antibod-
ies (the intensity of BT474 cells for each antibody was used as normalization factor). In light of the results in 
Supplementary Figs 2 and 3 where sensitivity and resistance of each cell type are known, data in Fig. 1 suggest 
variation in IF intensity among these cells for both protein markers.

Figure 2. Antibodies-added (Combined) IF expression of pho-4EBP1 Thr37/46 and pho-S6K1 Ser424 for cell 
lines without everolimus. (a) Relative intensities of the two pho-antibodies. Everolimus-resistant cells have high 
IF intensity. (b) Comparison between IC50 values and the combined pho-antibody signals from (a).
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Results from Fig. 1(c,d) can be divided into four groups. The first group contains Hs578T and MCF7 cells, with 
both pho-S6K1 and pho-4EBP1 at low IF intensities demonstrating sensitive to everolimus. The rest of groups are 
everolimus resistant. The second group contains cells BT474 with similar pho-S6K1 and pho-4EBP1 IF intensities 
as the first group. The third group composes of (i) MDA-MB-231 cells with pho-S6K1 at high intensity and pho-
4EBP1 low intensity and (ii) ABC-82T cells with pho-S6K1 at low intensity and pho-4EBP1 high intensity. The 
fourth group is ABC-16TX1 cells with both the pho-S6K1 and pho-4EBP1 IF signals at high intensities. These 
four groups are listed in Supplementary Table 3.

Figure 2(a) and Supplementary Figure 4 present the combined IF images of pho-S6K1 and pho-4EBP1. In the 
context of this study, the manner in which the efficacy of everolimus is expressed is the key. From our experiment 
data, the individual use of either pho-4EBP1 or pho-S6K1 in immunofluorescence labeling might not better dis-
tinguish mTOR resistance intuitiveness than labeling both (combined) pho-4EBP1 and pho-S6K1 together. The 
resultant IF intensity from the combined labeling of the two antibodies clearly showed efficacy of administrating 
everolimus (see Supplementary Fig. 4 for double-staining of both antibodies using the same fluorescence channel).

Unlike Fig. 1(c,d) for individual marker, combined intensities suggest a clearer trend. Hs578T has the lowest 
relative intensity of all followed by MCF7 and BT474 with higher intensity. Hs578T and MCF7 cell lines are sen-
sitive to everolimus therapy as demonstrated by results of Supplementary Figs 2 and 3. The cells MDA-MB-231, 
ABC-82T and ABC-16TX1 all have high relative intensity (relative to the background) and they are resistant to 
everolimus. Figure 2(b) represents the relationship between combined IF intensity and IC50 value. Results indi-
cate that combined IF intensity is proportional to IC50 value in term of response to everolimus.

Figure 3 and Supplementary Fig. 5(a) show the ROC curves and IF relative intensity for individual and com-
bined protein markers for everolimus sensitive and resistant cell groups. The area of the ROC (AUC) for pho-
4EBP1 only is 0.67 and the area of the ROC for pho-S6K1 only is 0.66. In comparison, the area of the ROC curve 
for added protein markers is 0.80. This AUC value suggests enhanced predictive power of everolimus sensitivity 
over that of pho-4EBP1 and pho-S6K1 individually.

Pho-4EBP1 and pho-S6K1 reflect AKT/mTOR pathways. It is initially believed that the immunofluo-
rescence of pho-4EBP1 and pho-S6K1 alone was sufficient to express the sensitivity of everolimus but the results 
of the experiment were not as we expected. These phosphorylated protein markers alone can only roughly cluster 
these cell lines, and cannot fully present the trend of everolimus resistance. Furthermore, in the original expecta-
tion, for cells that produce resistance in the mTOR drug everolimus, the amount of downstream phosphorylated 
protein should be expressed much more than those sensitive cells, as explained in the literature. However, from 
the experimental data of the individual immunofluorescence of phosphorylated proteins, it can be shown that 
MDA-MB-231 and ABC-82T cells do not fully comply with this argument. Therefore, it might be suggested that 
the performance of phosphorylated proteins downstream of mTOR is not entirely from the single AKT/mTOR 
pathway. Supplementary Fig. 1 indicates other physiological pathways or other proteins are also responsible for 
the performance of pho-4EBP1 and pho-S6K140,41.

Figure 3. The ROC curve with pho-S6K1, pho-4EBP1 and the two added markers for everolimus sensitive/
resistant cells group without everolimus. The combined IF intensity has a higher AUC than pho-4EBP1 and 
pho-S6K1 individually and can distinguish sensitive and resistant cells group statistically. (Amount of cells used 
in the test: 11092 cells, including six types of cell lines and PDCC. The parameter of ROC curves likes AUC, SE 
and 95% CI are listed).
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To test our hypothesis, another AKT downstream marker, pho-GSK3β Ser9 antibody, which represents 
activation of pho-AKT, and LKB1 antibody were chosen to interrogate whether IF intensity of pho-4EBP1 and 
pho-S6K1 would be impacted solely by AKT/mTOR. Figure 4(a) represents the IF relative intensity (FITC) for 
pho-GSK3β. Supplementary Fig. 5(b) show western blot for pho-GSK3β. The cells ABC-82T, ABC-16TX1 and 
BT474 cells have strong bands corresponding to pho-GSK3β at 46 kDa. In contrast, MDA-MB-231 and MCF7 
cells have weak bands.

Figure 4(b) also shows the LKB1 IF signals (APC) for MCF7 and ABC-16TX1 cells, where Fig. 4(b) also 
quantifies intensities for all cell types studied. Supplementary Fig. 5(c) represents the western blot for LKB1. 
Everolimus sensitive cells MCF7 is higher than everolimus resistant cells ABC-16TX136,37, means that LKB1 can 
affect everolimus efficacy.

Antibodies-added IF expression of pho-4EBP1 and pho-S6K1 before and after everolimus.  
With the aforementioned understanding, administration of everolimus was commenced. Figure 5 shows the combined 
expression of pho-4EBP1 and pho-S6K1 for everolimus-sensitive cells (Hs578T, MCF7) and everolimus-resistant cells 
(BT474, MDA-MB-231, ABC-16TX1) for the control group (without everolimus) and with application of everolimus 
at 500 nM after 24 hours. Figure 5(a) shows the IF signals of MCF7 and Hs578T decreased after everolimus addi-
tion but the signals of everolimus-resistant cells remained essentially unchanged. The BT474 cell line in everolimus 
500 nM group are higher than the control group, and this cell line also has higher resistance than MCF7 cell line. 
Figure 5(b) shows that BT474, MDA-MB-231 cells and ABC-16TX1 cells are everolimus-resistant cells.

Epithelial-mesenchymal transition state and everolimus sensitivity. The efficacy of everolimus 
is reportedly affected by the cellular program epithelial-mesenchymal transition (EMT)30. We used an EMT 
marker (vimentin) to interrogate this understanding. Figure 6 presents results for four cell types. The expression 
of vimentin is negative for MCF7 which is sensitive to everolimus. On the other hand, the expression is positive 
for MDA-MB-231 and ABC-16TX1 which are resistant to everolimus. These results provide clue to the positive 
correlation between EMT state and the efficacy of everolimus.

Figure 4. Pho-4EBP1 and pho-S6K1 reflect AKT/mTOR pathways. (a) IF relative intensity of pho-GSK3β. It 
suggests that the expression of pho-AKT cannot represent the resistance of everolimus. (b) Expressions and 
relative intensities of LKB1 for cell lines and PDCC without everolimus. Results show that everolimus-sensitive 
cells have higher LKB1 IF intensity than everolimus-resistant cells.
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Discussion
The main goal of this study was to assess the use of IF as a modality to predict the efficacy of the mTOR inhibitor 
everolimus alone in breast cancer cells. Fundamentally, the mTOR pathway inhibitor everolimus is considered not 
only for endocrine-resistance but also for chemo-resistance patients. Furthermore, mTOR therapy with everoli-
mus might be not completely straightforward to confirm a correlation with original resistance of each cell type 
to everolimus alone. In general, combinatorial therapy might bring more clinical benefits than monotherapy. The 
reference42 demonstrated that combination therapy offers PFS benefits. However, it also clearly demonstrated that 

Figure 5. Antibodies-added (Combined) IF expression of pho-4EBP1 and pho-S6K1 for both the control group 
and the 500 nM everolimus group after 24 hours. (a) Everolimus-sensitive cells (Hs578T, MCF7 cell lines). (b) 
Everolimus-resistant cells (MDA-MB-231, BT474 cell lines and ABC-16TX1 PDCC).
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monotherapy offers OS benefits in the same reference. Hence, it is preferred not to make a clear-cut statement 
in this paper that combination therapy offers definitive clinical benefits. Thus, as aforementioned, unlike other 
combinatorial study where the complementary agent contributes in a supporting therapeutic role, the way of 
applications of drugs maybe not the dominant factor or its affected factors is flexible to determine everolimus 
resistance. It is reasonable to assume that the addition of endocrine or chemo therapeutics or protein inhibition 
should not contribute totally to determine dominant everolimus sensitivity/resistance.

The high expression of pho-S6K1 and pho-4EBP1 in some cells may reflect mutation of mTOR. Two refer-
ences43,44 also provided evidence that the expression of mTOR downstream marker will increase when the mTOR 
genes are mutated. Further studies suggested that high expression of pho-4EBP1 Thr37/46 due to resistant to 
rapamycin11,45. Moreover, pho-S6K1 Ser424 is also related to the MAPK/ERK pathway, which is another path-
way in cell proliferation. In a gastric cell line research, expressions of pho-S6K1 Ser424 and pho-AKT Ser473 in 
rapamycin-resistant cells were higher than that in rapamycin-sensitive cells46. Another research also showed that 
low pho-S6 expression corresponded to response to everolimus-combined therapy and pho-S6K1 overexpression 
was associated with a poor prognosis47.

Our results (Fig. 4, Supplementary Figs 5(b,c), 6 and 8) suggest the expression of pho-AKT cannot represent 
the resistance of everolimus. One reference40 also indicated that the higher expression of pho-GSK3 in lung cancer 
cell lines, the higher the resistance of everolimus. The results presented here confirm this phenomenon and show 
that the mTOR resistance might be impacted not only by the AKT/mTOR but also by LKB1 or another pathway, 
e.g. the MAPK/ERK pathway. Our results may also be shown the same expressions of pho-GSK3β and negative 
feedback of pho-AKT. If cells have characteristics of resistance in everolimus-sensitive cells, the dynamic change 
for pho-4EBP1 and pho-S6K1 will commence. For everolimus-resistant cells, the expression of pho-4EBP1 and 
pho-S6K1 will almost unchanged. These results also show that signals are proper in our research.

Results presented suggest that IF as a modality can predict the efficiency of everolimus as a monotherapy in 
the current models. The use of IF can substantially reduce the time required compared with western blot. Besides, 
IF can potentially be applied even in rare cells when minimal samples are available, while methods of western 
blot, q-PCR and IHC would need a certain amount of samples to show expressions and quantifications of target 
protein. Moreover, the dephosphorylative level of phosphorylated protein markers in mTOR pathway will also 
be relative with saving conditions of samples and experiment time. If saving condition of samples is not proper 
or total experiment time is too long, it might lead to a misunderstanding result. Based on accuracy of phospho-
rylated protein considerations, IF might provide a better choice to investigate biomarkers of mTOR researches.

Collectively, data suggest that IF intensities of combined pho-4EBP1 Thr37/46 and pho-S6K1 Ser424 markers 
can predict everolimus sensitivity in the cell models and metastatic cell culture used. It also indicates that mTOR 
resistance might be impacted not only by AKT/mTOR but also by LKB1 or MAPK/ERK pathway. In addition, the 
expression of LKB1 and pho-GSK3β may also be potential markers for efficacy of the therapeutic agent.
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