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Abstract

Motivation: Genome-wide association studies (GWAS) are an integral tool for studying the architecture of complex
genotype and phenotype relationships. Linear mixed models (LMMs) are commonly used to detect associations be-
tween genetic markers and a trait of interest, while at the same time allowing to account for population structure
and cryptic relatedness. Assumptions of LMMs include a normal distribution of the residuals and that the genetic
markers are independent and identically distributed—both assumptions are often violated in real data. Permutation-
based methods can help to overcome some of these limitations and provide more realistic thresholds for the discov-
ery of true associations. Still, in practice, they are rarely implemented due to the high computational complexity.

Results: We propose permGWAS, an efficient LMM reformulation based on 4D tensors that can provide permutation-
based significance thresholds. We show that our method outperforms current state-of-the-art LMMs with respect to
runtime and that permutation-based thresholds have lower false discovery rates for skewed phenotypes compared
to the commonly used Bonferroni threshold. Furthermore, using permGWAS we re-analyzed more than 500
Arabidopsis thaliana phenotypes with 100 permutations each in less than 8 days on a single GPU. Our re-analyses
suggest that applying a permutation-based threshold can improve and refine the interpretation of GWAS results.

Availability and implementation: permGWAS is open-source and publicly available on GitHub for download: https://
github.com/grimmlab/permGWAS.

Contact: arthur.korte@uni-wuerzburg.de or maura.john@hswt.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Genome-wide association studies (GWAS) are an integral tool to de-
tect associations between genetic markers within a population of
individuals and a complex trait or disease that is measured in the
same population (Atwell et al., 2010; The 1001 Genomes
Consortium, 2016; Todesco et al., 2020). State-of-the-art methods
can easily analyze millions of markers in populations of thousands
of individuals (Kang et al., 2008, 2010; Korte et al., 2012; Lippert
et al., 2011; Loh et al., 2015). Here, the critical step is to define a
threshold to distinguish true and spurious associations. Classically,
one controls the family-wise error rate (FWER), that is the probabil-
ity of making at least one type-1 error (or false positive), using the
commonly used Bonferroni correction (Bonferroni, 1936).
However, due to the large number of tests the Bonferroni correction
is in practice often too conservative (Gumpinger et al., 2021;
Llinares-López et al., 2015; Westfall and Young, 1993), as it
assumes that all tested markers are independent, which is clearly not
the case for high-density genomic data that are nowadays routinely
generated. Here, many markers are correlated with each other and

the actual number of independent tests performed is lower than the
number of markers analyzed. Therefore, many studies propose a sig-
nificance threshold that is based on the false discovery rate (FDR)
(Storey and Tibshirani, 2003). On the other hand, naı̈ve thresholds,
such as Bonferroni or FDR, cannot account for model mis-
specifications that easily arise in biological data, which are often
non-normally distributed. Variance-stabilizing transformations have
been proposed to account for phenotypic variability (Sun et al.,
2013), but are not non-controversial (Shen and Rönnegård, 2013)
and might complicate comparability across different phenotypes.
Permutation-based thresholds could provide an alternative approach
to overcome some of these limitations (Che et al., 2014). Here, the
main limitations are the computational burden to run permutations
routinely, as current implementations are still too slow and ineffi-
cient [such as our deprecated method GWAS-Flow (Freudenthal
et al., 2019)], or focus only on linear regression without the possibil-
ity to correct for confounding factors on specialized Field
Programmable Gate Arrays hardware (Swiel et al., 2022).

We propose permGWAS, an efficient permutation-based linear
mixed model (LMM) to compute adjusted significance thresholds
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that are able to account for correlated markers and skewed pheno-
typic distributions without the need to arbitrarily transform pheno-
types. To account for multiple hypotheses, correlated markers and
skewed phenotypes, we compute permutation-based significance
thresholds based on the maxT method proposed by Westfall and
Young (1993). To enable efficient computation of different
permutation-based tests, we provide a scaleable batch-wise reformu-
lation of a permutation-based LMM using 4D tensors. We propose
to implement permutation-based thresholds as the default choice for
GWAS and provide both simulations and re-analysis of more than
500 Arabidopsis thaliana phenotypes to underpin its benefits.

2 Materials and methods

We will first provide the necessary background of LMMs for
GWAS, the multiple hypothesis testing problem and how to empiric-
ally estimate the FWER using the Westfall–Young permutation test-
ing procedure (Westfall and Young, 1993). Finally, we will present
our approach on how to efficiently compute associations with
LMMs using a permutation-based significance threshold. An over-
view of all mathematical symbols and notations can be found in
Supplementary Table S1.

2.1 Linear mixed model
Let n be the number of samples and m the number of genetic
markers. Then for each genetic marker we consider a LMM of the
form

y ¼ Xbþ uþ �; (1)

where y 2 Rn is a vector of observed phenotypic values and X 2
Rn�c is a matrix of fixed effects containing columns for the mean,
covariates and the genetic marker. Fixed effects are denoted by b 2
Rc and random effects u 2 Rn follow a Gaussian distribution with
zero mean and a (genetic) variance of r2

gK, where K 2 Rn�n denotes
the kinship matrix and � 2 Rn is a vector of residual effects with
� � Nð0;r2

e IÞ. As described in Kang et al. (2008, 2010) and Lippert
et al. (2011), we estimate the variance components r2

g and r2
e by

maximizing the following likelihood function

Lðb; r2
g ;r

2
e Þ ¼ N ðyjXb; r2

gK þ r2
e IÞ (2)

once for a null model, which includes no genetic markers and reuse
them for the alternative model, which includes the marker of inter-
est. Finally, an F-test is used to test the null hypothesis that the
marker has no effect against the alternative hypothesis that it has an
effect on the phenotypic value. We reject the null hypothesis and call
a statistical test significant, if the P-value of the F-test is below a pre-
defined significance threshold a (e.g. 5%).

2.2 Multiple hypothesis testing
Since we have to test thousands to millions of markers simultaneous-
ly, we have to take these multiple tests into account, otherwise we
would obtain thousands of false positive associations deemed to be
significant.

2.2.1 Family-wise error rate

The FWER is the probability of making at least one type-1 error (or
false positive). One has to find an appropriate corrected significance
threshold d for each hypothesis, such that the FWER(d) � a. To de-
termine the optimal threshold d� one has to solve the following opti-
mization problem:

d� ¼ maxfdjFWERðdÞ � ag: (3)

Evaluating this optimization problem in closed form is not pos-
sible in general. For this purpose, the widely used Bonferroni ap-
proximation (Bonferroni, 1936) can be used to control the FWER.
To estimate the adjusted significance threshold d�b after Bonferroni,
one simply divides the target significance level a by the number of

simultaneous tests, i.e. d�b ¼ a=m. However, due to the large number
of tests, the Bonferroni correction is in practice often too conserva-
tive, i.e. FWER(d�b) � d�, as shown in Llinares-López et al. (2015)
and Gumpinger et al. (2021). In addition, when performing GWAS
one typically makes the assumption that the residuals are normally
distributed and that the genetic markers are independent and identi-
cally distributed. However, these assumptions are often violated in
practice, which leads to the fact that the Bonferroni threshold is ei-
ther overly conservative for normally distributed phenotypes (lead-
ing to many false negatives) or not stringent enough for phenotypes
with skewed distributions (leading to many false positives).

2.2.2 Westfall–Young permutations

Permutation-based methods can help to overcome some of these
problems, by empirically estimating the FWER(d). One could either
approximate the null distribution by using permutations to then
compute adjusted P-values or use the unadjusted P-values and pro-
vide a permutation-based significance threshold based on the maxT
permutation-method proposed by Westfall and Young (1993). With
this adjusted threshold we can account for non-Gaussian distributed
phenotypes, correlated markers due to linkage disequilibrium and
the large number of tests. In the following we will describe how to
compute both, adjusted P-values and adjusted significance
thresholds.

To compute adjusted P-values, we first permute the phenotype q
times and calculate the test statistic ðkÞtj for the kth permutation,
with k 2 f1; . . . ; qg and jth marker, with j 2 f1; . . . ;mg. After ran-
domizing, any correlation left between the genotypic and phenotypic
values will be of non-genetic origin, but the distribution of the
phenotypic values stays the same. To compute the permutation-
based P-values, let Tj denote the random variable corresponding to
the observed test statistic of the jth marker. We test the hypothesis
H0 that Tj follows the permutation distribution empirically given by
ðkÞtj for all k and all j. Then we compute the adjusted permutation-
based P-value as:

pj ¼ P Tj ¼ tjjH0

� �
¼
Pm

j¼1

Pq
k¼1 1 ðkÞtj � tj

� �
qm

; (4)

where 1 takes the value 1 if the argument is true and 0 otherwise.
The FWER can be controlled in this multiple hypothesis testing set-
ting using Bonferroni (1936).

For the adjusted significance threshold we follow a permutation
testing procedure proposed by Westfall and Young (1993). For each
permutation we take the maximal test statistic over all markers,
ðkÞtmax ¼ maxj2f1;...;mg

ðkÞtj and compute the corresponding minimal
P-value ðkÞpmin. Let again Tj denote the random variable correspond-
ing to the observed test statistic of the jth marker. We now test the
hypothesis H0 that Tj follows the permutation distribution empiric-
ally given by ðkÞtmax for all k. Then the adjusted P-value is given by
~pj ¼ PðTj ¼ tjjH0Þ and

~pj ¼
Pq

k¼1 1 ðkÞtmax � tj

� �
q

� a (5)

is equivalent to tj being larger than the 100ð1� aÞth percentile of
the ðkÞtmax. Hence, the ath percentile of the minimal P-values ðkÞpmin

leaves us with an adjusted threshold that controls the FWER.

2.3 permGWAS architecture
These permutation-based strategies are computationally highly
demanding, which makes them often inapplicable in practice.
Further, current state-of-the-art GWAS implementations sequential-
ly compute univariate test statistics for one marker and a given
phenotype (Grimm et al., 2017; Kang et al., 2008, 2010; Lippert
et al., 2011). We propose permGWAS, which is able to simultaneous-
ly compute univariate test statistics of several SNPs batch-wise on
modern multi-CPU and GPU environments, while at the same time
controlling the FWER using Westfall–Young permutation testing.
First, we will introduce the mathematical framework for batch-wise
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LMM without permutations, followed by an efficient formulation
for permutation-based LMM.

2.3.1 Batch-wise linear mixed models

Denote by n the number of samples, c the number of fixed effects
(i.e. the SNP of interest and all covariates) and b the batch size. Let
X j 2 Rn�c denote the matrix of fixed effects, including a column of
ones for the intercept, the covariates and the jth SNP xj 2 Rn

(Fig. 1A). Let Xb
j 2 Rb�n�c be the 3D tensor containing the matrices

X j to X jþb�1 and let Yb 2 Rb�n�1 denote the 3D tensor containing b
copies of the phenotype vector y 2 Rn (Fig. 1B). Further, let V ¼
r2

gK þ r2
e I 2 Rn�n denote the variance–covariance matrix. For com-

putational efficiency, instead of using generalized least squares, we
first compute the Cholesky decomposition V ¼ CCT and linearly
transform Xb

j and Yb, before computing the coefficients using ordin-
ary least squares. Let Cb 2 Rb�n�n denote the 3D tensor containing
b copies of C. Then, the linearly transformed data is given by

~X
b

j ¼ ðCbÞ�1Xb
j ¼ ðC�1X j; . . . ;C�1X jþb�1Þ (6)

~Y
b ¼ ðCbÞ�1Yb ¼ ðC�1y; . . . ;C�1yÞ: (7)

Now, we can compute the coefficients bb
j 2 Rb�c and the re-

sidual sums of squares RSSb
j 2 Rb for those b SNPs starting at the

jth SNP as follows:

bb
j ¼ ðð ~X

b

j Þ
T ~X

b

j Þ
�1ð ~X b

j Þ
T ~Y

b
(8)

RSSb
j ¼ ð~Y

b � ~X
b

j b
bÞTð~Y b � ~X

b

j b
bÞ (9)

where ð ~X b

j Þ
T ¼ ððC�1X jÞT ; . . . ; ðC�1X jþb�1ÞTÞ 2 Rb�c�n. Finally,

we can compute the test statistics tb
j 2 Rb for all b SNPs:

tb
j ¼ ðn� cÞ

RSSb
0 � RSSb

j

RSSb
j

(10)

where RSSb
0contains b copies of the residual sum of squares of the

null model. Once we have computed the test statistics for all SNPs,
we can sequentially calculate all P-values.

2.3.2 Efficient permutation-based linear mixed models

When performing GWAS with permutations, let additionally q de-
note the number of permutations. Then for each permutation ðkÞy of
y with k 2 f1; . . . ; qg, we get a new 3D tensor ðkÞYb 2 Rb�n�1. Let
qYb 2 Rq�b�n�1 be the 4D tensor containing ðkÞYb for all k and let
qXb

j 2 Rq�b�n�c be the 4D tensor containing q copies of Xb
j

(Fig. 1C). Now for each permutation ðkÞy of y, we estimate associ-
ated variance components ðkÞr2

g and ðkÞr2
e and obtain a new vari-

ance–covariance matrix ðkÞV 2 Rn�n. We compute the Cholesky
decomposition ðkÞV¼ðkÞCðkÞCT for each k and again linearly trans-
form the data. Let qCb 2 Rq�b�n�n denote the 4D tensor containing
the 3D tensors ðkÞCb 2 Rb�n�n for all k. Then, we can transform the
data via

q ~X
b

j ¼ ðqCbÞ�1qXb
j ¼ ðð1ÞCbÞ�1Xb

j ; . . . ; ððqÞCbÞ�1Xb
j

� �
(11)

q ~Y
b ¼ ðqCbÞ�1qYb ¼ ðð1ÞCbÞ�1ð1ÞYb; . . . ; ððqÞCbÞ�1ðqÞYb

� �
(12)

Now similar to above, we compute the coefficients
qbb

j 2 Rq�b�c, the residual sums of squares qRSSb
j 2 Rq�b and the

test statistics qtb
j 2 Rq�b for all q permutations and b SNPs at once:

qbb
j ¼ ðq ~X

b

j Þ
T q ~X

b

j

� ��1

ðq ~X
b

j Þ
T q ~Y

b
(13)

qRSSb
j ¼ ðq ~Y

b�q ~X
b

j
qbb

j Þ
Tðq ~Y

b�q ~X
b

j
qbb

j Þ (14)

qtb
j ¼ ðn� cÞ

qRSSb
0�qRSSb

j

qRSSb
j

(15)

where

ðq ~X
b

j Þ
T ¼ ðð1ÞCbÞ�1Xb

j

� �T

; . . . ; ððqÞCbÞ�1Xb
j

� �T
� �

(16)

is a 4D tensor in Rq�b�c�n and qRSSb
0 2 Rq�b contains b copies of

the RSS of the null model for each permutation.

2.4 Implementation
The permGWAS framework is implemented in Python3 using com-
monly used libraries for scientific computing, such as numpy (Harris
et al., 2020), scipy (Virtanen et al., 2020), pandas (McKinney
et al., 2011) and PyTorch (Paszke et al., 2019) to support efficient
tensor arithmetic as well as multi-core and GPU support. In add-
ition, specialized packages for estimating the variance components
[limix (Lippert et al., 2014)] and file IO (h5py, pandas-plink)
are used. permGWAS can be used as a standalone command line tool
or directly within Python. Our implementation allows both, the
usage of multi-core CPU architectures with and without GPU sup-
port. To ensure a smooth experience on different environments and
machines, we provide a standardized Docker environment. Our
framework supports several common genotype and phenotype file
formats, including HDF5, CSV and PLINK (Purcell et al., 2007).
Further, permGWAS supports filtering for minor allele frequency and
also including one or more covariates to account for certain fixed
effects. By default, permGWAS computes as a kinship matrix the
realized relationship kernel (Hayes et al., 2009); however, it is also
possible to provide any other type of genetic similarity matrix. In
order to run the tool on different machines, the batch size for the
simultaneous computation of univariate tests as well as the batch
size for permutation-based tests can be adjusted. To reduce the
memory footprint, it is also possible to load genotypic data continu-
ously in chunks from a HDF5 file, in case a pre-computed kinship
matrix is provided. All code is open-source and publicly available on
GitHub, including more details and information on how to run the
tool: https://github.com/grimmlab/permGWAS.

2.5 Data and simulations
We evaluate the performance and runtime of permGWAS on simu-
lated data as well as on publicly available genotype and phenotype
data from the model plant A.thaliana.

2.5.1 Arabidopsis thaliana data

As genotypic data a fully imputed SNP-Matrix of 2029 accessions
and approximately 3M segregating markers is used (Arouisse et al.,
2020). Phenotypic data for 516 different traits were downloaded
from the central and manually curated AraPheno database (Seren
et al., 2016; Togninalli et al., 2020).

2.5.2 Simulations

Artificial phenotypes were simulated for 200 random A.thaliana
accessions using the fully imputed SNP matrix from above. For each
synthetic phenotype, 1001 SNPs with a minor allele frequency of
5% or higher were randomly sampled, where 1 SNP was considered
causative and the other 1000 were used to simulate the polygenic
background. Here, each background SNP contributed a small ran-
dom amount, drawn from a normal distribution with l¼0 and r ¼
0:1 to the phenotypic value. Random noise drawn from a gamma or
normal distribution was added, such that the polygenic background
accounts for 70% of the total phenotypic variance. Finally, a fixed
effect for the causative SNP was added to explain roughly 20% of
the total genetic variance. In this manner, 6 different sets containing
50 phenotypes each, were simulated. The sets differed by the distri-
bution of the noise, where 1 set had normally distributed noise and
the other 5 sets used gamma-distributed noise with shape parame-
ters of 0.1, 1, 2, 3 and 4. For evaluation, permGWAS was applied
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with 100 permutations on each of the 300 simulated phenotypes.
Each phenotype was classified as true positive (TP) if any SNP in a
50 kbp window around the causative marker was significant. In
addition, each phenotype was classified as false positive (FP) if any
SNP outside the 50 kbp window around the causative marker was
significant. In this way, a phenotype can be true positive and false
positive at the same time. We define the phenotype-wise FDR as

FDR :¼ FP
TPþFP . These values were calculated separately for the

P-value thresholds based on both, the Bonferroni and permutation-
based thresholds.

3 Results and discussion

In the following, we evaluate permGWAS with respect to runtime
and statistical power using simulated data, as well as more than 500
public available phenotypes from the model species A.thaliana.

3.1 Results on synthetic data
3.1.1 Runtime comparisons

We analyzed the runtime of permGWAS with respect to (i) the num-
ber of markers, (ii) the number of samples and (iii) the number of
permutations. For all runtime experiments, we used data from a
flowering time related phenotype in A.thaliana, FT10 (flowering
time at 10 degrees; DOI: 10.21958/phenotype:261) (The 1001
Genomes Consortium, 2016), and down- and up-sampled the
phenotype and corresponding SNP matrix to generate synthetic data
with varying numbers of samples. We compared the runtime of
permGWAS with two state-of-the-art and commonly used LMMs,
EMMAX (Kang et al., 2010) and FaST-LMM (Lippert et al., 2011). For
both, we used the binary C/Cþþ implementations. All runtime
experiments were conducted on the same machine running Ubuntu
20.04.3 LTS with a total of 52 CPUs, 756 GB of memory and 4
NVIDIA GeForce RTX 3090 GPUs, each with 24 GB of memory.
For our experiments, we restricted the number of CPUs to 1 and 8
cores and a single GPU using dedicated Docker containers. We took
the mean of the runtime over three runs for each experiment.

First, we compared the runtime on environments with a single
CPU and GPU. For this purpose, we fixed the number of samples to
1000 and varied the markers between 104 and 5� 106 to evaluate
the effect of an increasing number of SNPs. As summarized in

Figure 2A, all models show a linear dependency with respect to the
number of SNPs. permGWAS (the GPU and CPU version) outper-
forms both, the binary implementation of EMMAX and FaST-LMM.
Our dockerized Python implementation of permGWAS is almost
one order of magnitude faster than the C/Cþþ implementation of
FaST-LMM (for 1000 samples and 5� 106 markers 0.33 and 2.8 h,
respectively). This can be mainly explained due to the batch-wise
computation of several univariate statistical tests simultaneously.

Next, to estimate the effect of the number of samples on the run-
time, we fixed the number of SNPs to 106 and varied the number of
samples between 100 and 104. In Figure 2B, we can observe that
EMMAX outperforms all other comparison partners for sample sizes
smaller than 500. However, the runtime increases quickly for larger
samples sizes. Again permGWAS outperforms both comparison part-
ners by at least one order of magnitude. Here, the runtime of the
GPU version of permGWAS for 104 samples and 106 markers was ap-
proximately 1.7 h, while for FaST-LMM and EMMAX the runtime was
more than 7 and 19 h, respectively.

Finally, to compare the runtime of the permutation-based ap-
proach, we fixed the number of samples to 1000 and the number of
SNPs to 106 and conducted between 10 and 500 permutations with
permGWAS using a single GPU architecture versus a single CPU.
Since EMMAX and FaST-LMM only perform one univariate test at a
time and are not designed for permutation-based tests, we took the
runtime for 1000 samples and 106 markers from the previous ex-
periment and estimated the runtime for permutations by multiplying
with the number of permutations. This is just an estimate of the min-
imal runtime, since no data pre-processing and post-processing steps
are included (e.g. preparing permuted phenotypes, merging result
files to estimate adjusted P-values/thresholds). The advantage of the
GPU architecture becomes most obvious when using permutations,
as illustrated in Figure 2C. The GPU version of permGWAS is at least
an order of magnitude faster than the CPU version of permGWAS.
More importantly, permGWAS (GPU) is more than one order of
magnitude faster than EMMAX and more than two orders of magni-
tude faster than FaST-LMM. Even for 1000 samples, 106 SNPs and
500 permutations permGWAS (GPU) takes less than 1.8 h. In con-
trast, EMMAX would require at least more than 2.7 days, while
FaST-LMM might take more than 11 days for 500 permutations.
Results for environments with 8 cores are summarized in
Supplementary Figure S1 and show similar results.

Fig. 1. Schematic illustration of matrices and tensors of the permGWAS architecture. (A) Commonly used matrix representation when computing sequential univariate tests,

where y 2 Rn is the phenotypic vector for n samples and X j 2 Rn�c denotes the matrix of fixed effects, including a column of ones for the intercept, the covariates and the jth

SNP xj 2 Rn. (B) 3D-tensor representation of a LMM to compute univariate tests batch-wise. The phenotype is represented as a 3D tensor containing b copies of the pheno-

type vector y 2 Rn and Xb
j 2 Rb�n�c is a 3D tensor containing the matrices X j to X jþb�1. (C) 4D-tensor representation of a permutation-based batch-wise LMM. The pheno-

type is represented as a 4D tensor containing for each permutation ðkÞy the 3D tensor ðkÞYb for all q permutations and qXb
j 2 Rq�b�n�c is a 4D tensor containing q copies of Xb

j
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In addition, we re-analyzed over 500 A.thaliana phenotypes with
100 permutations each on a single GPU (Nvidia RTX A5000 with
24 GB RAM) in less than 8 days. The respective runtimes are shown
in Supplementary Figure S2. Notable, for phenotypes with a sample

size above 800 individuals, the 24 GB RAM weren’t sufficient and
the analysis has been performed on an HPC environment allowing
for additional RAM.

In summary, permGWAS is more efficient than the commonly
used state-of-the-art LMMs, such as EMMAX and FaST-LMM, due to
its tensor-based and batch-wise reformulation. Especially when per-
forming GWAS with more than a few hundred of samples and per-

mutations, EMMAX and FaST-LMM take several days to weeks to
compute the results, while our implementation only needs a few
hours. Although the GPU implementation of permGWAS is faster
than the corresponding CPU implementation, the CPU version still

outperforms existing methods.

3.1.2 FDR for skewed phenotypes

Our simulations show that the phenotype-wise FDR increases, if the
respective phenotypes become more skewed. Using a static
Bonferroni threshold, the phenotype-wise FDR increases from 30%
for slightly skewed phenotypes to 50% in the most extreme case

(Fig. 3D). The latter means that in nearly all of the simulated pheno-
types, not only true, but also false associations have been found
(Supplementary Table S2).

Noticeably, the permutation-based threshold becomes more and
more stringent, if the phenotypic distribution becomes more skewed
(Fig. 3C), thereby controlling the phenotype-based FDR more reli-
able (Fig. 3D and Supplementary Table S2). Skewed phenotypic dis-

tributions will violate model assumptions, and associations with low
P-values can arise randomly. This will get controlled by permuta-
tions that can account for model violations, as underlying assump-
tions are also violated in a model without genetic signal. Hence,

permutations can control for false associations that arise through
non-normal phenotypic distributions.

On the other hand, for normally distributed phenotypes,

the permutation-based threshold is less stringent compared to the
Bonferroni threshold (Supplementary Fig. S3C) and increases the
power to recover true associations (Supplementary Fig. S3D).
However, also slightly more false positives are detected. To summar-

ize, simulations suggest that a permutation-based threshold is more
flexible compared to a static Bonferroni threshold and will provide a
higher power to detect true associations for normally distributed
phenotypes, as well as control FDR for skewed phenotypes.

3.2 Permutation-based GWAS in Arabidopsis thaliana
After we highlighted the advantages of a permutation-based thresh-
old with simulated data, we re-analyzed 516 real phenotypes that
we have downloaded from the phenotypic data repository AraPheno
(Seren et al., 2016; Togninalli et al., 2020). As expected for real
data, many of these are non-normally distributed. Using the
Shapiro–Wilk test on the phenotypic data, only 90 phenotypes had a
P-value > 0.05, indicating a normal distribution (Supplementary
File S1). As expected by our simulations, we observed a correlation
between the phenotypic distribution and the calculated
permutation-based threshold (Supplementary Fig. S4). All but two
phenotypes that are normally distributed (Shapiro–Wilk test > 0.05)
show a less stringent permutation-based threshold compared to the
Bonferroni threshold (Supplementary Fig. S4 inset). In summary, for
the 516 analyzed phenotypes, the permutation-based thresholds are
293 times more stringent and 223 less stringent compared to the
Bonferroni threshold. Although, we do not know the ground truth
of true and false associations for this data, permutation-based
thresholds markedly reduce the overall number of associations, espe-
cially for skewed phenotypes. Comparing the 100 most skewed phe-
notypes (P-value from the Shapiro–Wilk test < 10�19), nearly all
(96) show a significant association using the Bonferroni threshold,
while only six of the most normal distributed phenotypes (P-value
from the Shapiro–Wilk test > 0.02) have a significant association.
Using the permutation-based threshold, these numbers change to 53
and 15, respectively (summary results of all analyzes can be found in
Supplementary File S1). A priori, there is no reason why skewed
phenotypes should more often show true associations. Therefore,
the number of reported associations with the permutation-based
threshold seems more realistic. In general, we can observe different
scenarios: (1) for some cases, a less stringent permutation-based
threshold will identify a significant signal that would not have been
significant using the Bonferroni threshold (Fig. 4A). This scenario is
true for 22 different phenotypes, especially if their phenotypic distri-
bution is normal (Supplementary Fig. S5A); (2) We observed 123
cases, where the Bonferroni threshold would indicate significant
associations, but the permutation-based threshold would rather as-
sume that these are false positives (Fig. 4B) and (3) for another 111
cases, even after using a permutation-based threshold, skewed phe-
notypes show still significant associations (Fig. 4C). Most pheno-
types that belong to scenario (2) or (3) are non-normally distributed
(Supplementary Fig. S5B and C).

Although follow-up experiments would be needed to confirm
that associations deemed positive in the scenarios (1) and (3) are
true positives, anecdotally many of this candidates seem plausible.

A B C

Fig. 2. Runtime comparison of permGWAS versus EMMAX and FaST-LMM. Note that all axes are log-scaled. (A) Computational time as function of number of SNPs with fixed

number of 1000 samples. (B) Computational time as function of number of samples with 106 markers each. (C) Computational time as function of number of permutations

with 1000 samples and 106 markers each. Dashed lines for EMMAX and FaST-LMM are estimated based on the computational time for 1000 samples and 106 markers times the

number of permutations
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3.3 Number of permutations and minor allele

frequencies
In the previous paragraph, we emphasized the benefits of using a
permutation-based threshold instead of a Bonferroni threshold. We
performed 100 permutations for each phenotype, but more permu-
tations could give a more accurate estimate of the threshold. To in-
vestigate the effect of the number of permutations on the
permutation-based threshold, we performed additional permuta-
tions for two different A.thaliana phenotypes. One phenotype is
nearly normally distributed, while the other is markedly skewed
(Supplementary Fig. S6A and C). We performed 100, 200, 300, 400,
500 and 1000 permutations. Here the used 5% threshold is nearly
identical and stable across the different number of permutations per-
formed for both phenotypes (Supplementary Fig. S6B and D). Thus,
our empirical results suggest that 100 permutations will give rise to
a reliable estimate of the threshold and enable a fast analysis of
many phenotypes and or huge data.

Next, we analyzed if minor allele frequency has an effect on false
positives and the respective calculated permutation-based thresh-
olds. It has been suggested that rare variants can easily associate
with phenotypic extremes and thus that false positive associations of
rare alleles are more prone in non-normally distributed phenotypes
(Peloso et al., 2016). If this is true, a permutation-based threshold
should be able to account for excessive false associations of rare
alleles. Using permGWAS with increasing minor allele filters and

thereby excluding rare alleles from the analysis, the Bonferroni
threshold is just reflecting the lower amount of markers tested, while
the permutation-based threshold has a non-linear dependency. For
normally distributed phenotypes, the change in the permutation-
based threshold is similar to Bonferroni (Supplementary Fig. S7A),
while for a skewed phenotype a clear effect of excluding rare alleles
is observed. As an example, in the analysis of phenotype #372 (DOI:
10.21958/phenotype:372) from A.thaliana, the calculated
permutation-based threshold increases from 10�16 if all markers are
analyzed to 10�10 if only alleles with a minor allele count of at least
10 are considered (Supplementary Fig. S7B). For skewed pheno-
types, the permutation-based threshold is clearly dependent on the
allele frequency. permGWAS can compute and provide a distinct
threshold for different allele frequencies that is—unlike
Bonferroni—dependent on the phenotpic distribution and not the
amount of markers tested.

4 Conclusions

We introduced permGWAS, an efficient LMM for GWAS with popu-
lation structure correction and permutation-based significance
thresholds that can reliably control false positives for phenotypes
with skewed distributions. Our method uses a 4D tensor
reformulation of a LMM using a permutation strategy proposed by
Westfall–Young (Westfall and Young, 1993) to compute univariate
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association tests batch-wise, on both modern multi-core and GPU
environments. We compared permGWAS in terms of runtime with
EMMAX (Kang et al., 2010) and FaST-LMM (Lippert et al., 2011),
two state-of-the-art LMMs. We could show that permGWAS outper-
formed both models in terms of computational and statistical per-
formance. Especially, permGWAS is highly efficient in a
permutation-based setting, due to the 4D tensor reformulation and
the available GPU support [2 h for permGWAS (GPU) versus several
days for EMMAX and FaST-LMM for 1000 samples, 106 markers and
500 permutations]. These reformulations enable performing
permutation-based thresholds in practice.

We demonstrated through simulations and the re-analyses of
publicly available data from the model plant species A.thaliana that
the use of a permutation-based threshold has many advantages com-
pared to the classically used Bonferroni threshold. Bonferroni cor-
rection is thought as a very conservative way to control false
positives in GWAS, and indeed for normal distributed phenotypes,
we could show that the permutation-based threshold is less stringent
and can identify more true positive associations. Further, for non-
normally distributed phenotypes, as often observed in biological
data, the permutation-based threshold is quite often even more strin-
gent. Here, our data suggest that we could reliably control false pos-
itives under those scenarios. A sensible next step would be to
investigate how to extend permGWAS to Generalized LMMs, e.g. to
properly handle the analysis of binary traits. To summarize, we
highlight that the use of permutation-based thresholds should be
considered the default choice in any GWAS and with permGWAS we
provide the tool to enable this.
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