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Abstract

Advances in genomics in recent years have provided key insights into defining cancer sub-

types “within-a-tissue”—that is, respecting traditional anatomically driven divisions of medi-

cine. However, there remains a dearth of data regarding molecular profiles that are shared

across tissues, an understanding of which could lead to the development of highly versatile,

broadly applicable therapies. Using data acquired from The Cancer Genome Atlas (TCGA),

we performed a transcriptomics-centered analysis on 1494 patient samples, comparing the

two major histological subtypes of solid tumors (adenocarcinomas and squamous cell carci-

nomas) across organs, with a focus on tissues in which both subtypes arise: esophagus,

lung, and uterine cervix. Via principal component and hierarchical clustering analysis, we

discovered that histology-driven differences accounted for a greater degree of inherent

molecular variation in the tumors than did tissue of origin. We then analyzed differential

gene expression, DNA methylation, and non-coding RNA expression between adenocarci-

nomas and squamous cell carcinomas and found 1733 genes, 346 CpG sites, and 42 micro-

RNAs in common between organ sites, indicating specific adenocarcinoma-associated and

squamous cell carcinoma-associated molecular patterns that were conserved across tis-

sues. We then identified specific pathways that may be critical to the development of adeno-

carcinomas and squamous cell carcinomas, including Liver X receptor activation, which was

upregulated in adenocarcinomas but downregulated in squamous cell carcinomas, possibly

indicating important differences in cancer cell metabolism between these two histological

subtypes of cancer. In addition, we highlighted genes that may be common drivers of adeno-

carcinomas specifically, such as IGF2BP1, which suggests a possible link between embry-

onic development and tumor subtype. Altogether, we demonstrate the need to consider
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biological similarities that transcend anatomical boundaries to inform the development of

novel therapeutic strategies. All data sets from our analysis are available as a resource for

further investigation.

Author summary

In clinical practice, the organ in which a cancer arises typically classifies it. However,

developments in our understanding of cancer have revealed that this method overlooks

key aspects of cancer biology relevant to both disease prevention and treatment. In fact,

work characterizing the genetic make-up of cancers arising in a single organ has revealed

that a shared organ of origin does not necessarily imply biological similarity (i.e. not all

lung cancers share similar biological and molecular properties). While this approach,

known as “within-a-tissue subtyping,” identifies key differences between cancers that

arise in a single organ, a broader perspective may highlight important biological similari-

ties between cancers across organs. Here we utilize this second approach, or “across-tissue

subtyping,” to gain insight into similarities between cancers (of different organs) that

share the same histology—or appear similarly under a microscope. Using publicly avail-

able data from The Cancer Genome Atlas (TCGA), we compare gene expression of two

major classes of solid tumors—adenocarcinomas (which arise from cells that form glands)

and squamous cell carcinomas (which arise from flattened cells that form physical barri-

ers). We identify several genes and biological pathways that may be common to adenocar-

cinomas and serve as targets for highly versatile therapies.

Introduction

The classification of cancers for specific and tailored clinical management has been a topic of

ongoing study. Historically, cancers have been classified primarily by the organs in which they

originate—a convenient strategy that aligns with traditional anatomical divisions of medicine.

Accordingly, many currently available treatments, such as surgery and radiation, are anatomi-

cally driven, and tumors arising in different sites are often managed in different ways (and by

different subspecialty divisions), even if they possess histological similarity (i.e. squamous cell

carcinomas arising in the head and neck, as opposed to the anogenital region). Meanwhile, sys-

temic treatments such as chemotherapy largely do not discriminate between histologically dis-

tinct tumors arising within the same organ (i.e. squamous cell carcinomas and

adenocarcinomas of the esophagus). These tumors, on the whole, are commonly treated in the

same manner. In fact, current guidelines suggest similar treatment of squamous cell carcino-

mas (SCCs) and adenocarcinomas (ADCs) in the esophagus as well as the cervix, despite

observations of differences in prognosis, risk factors, patterns of recurrence, and even response

to treatment [1–3].

Recent efforts to re-classify cancers for both clinical and research purposes have addressed

this latter issue by utilizing “within-a-tissue” subtyping, identifying molecular signatures that

can distinguish between tumors arising within the same organ [4–7]. This has facilitated the

development of biologically relevant targeted therapies for particular cancer subtypes, such as

molecular subtypes of lung cancer. However, a less common approach has been “across-tis-

sues” analysis [8], which focuses on more global molecular patterns that may transcend tradi-

tional anatomic boundaries. This latter approach may provide key insights into common
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cancer-associated genes and pathways that span several organ sites, which may facilitate drug

development by allowing for the generation of therapeutics that can impact a wider popula-

tion. For example, categorizing cancers based on mutational burden and immunogenicity has

been critical to the broad application of immunotherapies, such as immune checkpoint inhibi-

tors, across a wide array of solid malignancies. In addition, recent perspectives have called for

a unified approach to the management and study of SCCs, based on observed similarities in

risk factors, genomics, and functional biology [9].

Expanding on this concept, we sought to characterize further the molecular and functional

similarities between SCCs and ADCs. ADCs represent the most common type of cancer as a

whole, comprising over two-thirds of all cases (of solid and hematologic malignancies com-

bined) in the United States from 2009 to 2013 [10]. Typically originating in organs containing

native glandular tissue, adenocarcinomas are the predominant subtype of cancers arising in

the breast, colon, prostate, lung, pancreas, stomach, ovary, kidney, and, in the western hemi-

sphere, the esophagus [11]. To our knowledge, there is no literature explicitly comparing ade-

nocarcinomas across tissues of origin at the genomic and transcriptomic levels.

In this study, we utilized data generated by The Cancer Genome Atlas (TCGA) Research

Network to study molecular and functional differences between SCCs and ADCs arising

within the same organ site. By focusing on organs in which both these subtypes arise, namely

the esophagus, lung and uterine cervix, we aimed to determine whether tissue of origin or

another property, such as histology, contributes more significantly to observed variation in

molecular signatures among tumors. Using a transcriptome-centered approach, we demon-

strate here that differences in histology account for more variation than anatomic or tissue ori-

gin. Furthermore, via differential gene expression, DNA methylation, and microRNA analysis,

we identify 1733 genes, 346 CpG sites, and 42 miRNAs that distinguish ADCs and SCCs

between organs, and show that histology correlates with distinct transcriptional and epigenetic

programs that are largely consistent across organ sites. Lastly, utilizing pathway and survival

analysis, we highlight common markers of ADCs that not only have prognostic value but may

also have functional roles in tumorigenesis, thus serving as potential targets for broad thera-

peutic intervention.

Results

Histology accounts for more transcriptome variation than tissue of origin

To identify the most significant drivers of variation in gene expression, we first performed a

principal component analysis (PCA) of gene expression data from 80 esophageal adenocarci-

nomas (EAC), 81 esophageal squamous cell carcinomas (ESCC), 533 lung adenocarcinomas

(LUAD), and 502 lung squamous cell carcinomas (LUSC) (Fig 1A). After ruling out significant

batch effects (S1 Fig), we discovered that the greatest component driving gene expression vari-

ation (PC1) accounted for significantly more variation (34% of total) than other components

(Fig 1B). Using multiple regression, we next determined the relative importance of histology

and organ site to predicting PC1. We found that of the variance that our regression model

could explain, histology accounted for 90.7%, while organ site only accounted for 9.3% (Fig

1C). We built on these findings using hierarchical clustering, which revealed two main clusters

that appeared to be defined by histology: EAC tended to cluster with LUAD, while ESCC

tended to cluster with LUSC (Fig 1D). Interestingly, while the majority of EAC samples

formed its own subcluster, this pattern was less apparent in ESCC. When we determined the

relative contribution of histology or organ site to cluster number via multiple regression, we

noted a much stronger contribution from histology (Fig 1E), with histology accounting 98.9%

of the variance explained by the regression model (organ site accounted for 1.1%). These
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Fig 1. Histology explains a greater degree of gene expression variation than organ site. (A) Principal Component Analysis (PCA) plot depicting two

largest components of variance in gene expression in four cancer types. (B) Elbow plot showing the proportion of variance explained by the first 20

principal components (PC1 explains 0.34 or 34% of total variance). (C) Bar chart depicting relative importance (percent variance explained) by histology

and organ site, respectively, based on a multiple linear regression model with PC1 as the response variable. Regression model created was

[PC1 = 47.2 ×Histo + 21.66 ×Organ − 42.85], where explanatory variables were demarcated as Histo (0 = SCC, 1 = ADC) and Organ (0 = Esophagus,

1 = Lung). (D) Heatmap of differentially expressed genes between esophageal cancers and lung cancers, with hierarchical clustering. (E) Bar chart

depicting relative importance (percent variance explained) by histology and organ site, respectively, based on a multiple linear regression model with

Cluster number (1 or 2) as the response variable. Regression model created was [Cluster = 0.80 ×Histo + 0.12 ×Organ + 1.01], where explanatory

variables were demarcated as Histo (0 = ADC, 1 = SCC) and Organ (0 = Lung, 1 = Esophagus).

https://doi.org/10.1371/journal.pgen.1006938.g001
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findings suggest that histology may be of greater importance to a tumor’s molecular profile

than its tissue of origin.

Histology-driven gene expression patterns are consistent across organs

To understand how consistent histology-driven molecular patterns were across organs, we

first compared mRNA expression between ADCs and SCCs in the esophagus and lung. We

identified 3443 differentially expressed genes between EAC and ESCC, and 4198 differentially

expressed genes between LUAD and LUSC, with 1733 genes that were common in both com-

parisons (S2 Fig and S1 File). Among these were known markers of squamous cell-fate deter-

mination, TP63 and SOX2, which have a role in both the development of normal squamous

tissue in the esophagus as well as tumorigenesis along the squamous lineage in the lung [12,13]

and esophagus [14,15]. Other notable genes relatively upregulated in SCCs were keratins

KRT14 and KRT17; DSC3, a member of the desmocollin family (a component of intercellular

desmosomes); FAT2, an atypical cadherin found to be induced by ΔNp63α (isoform of TP63)

and promote invasion in LUSC [16]; EGFR, a key growth factor receptor in many cancers;

CCNA1, which encodes for cyclin A1, a cell cycle regulator; and WNT3A, a member of the

Wnt family of signaling proteins, which also may have a role in SCCs [17]. Upregulated in

ADCs were glandular markers such as mucins MUC3A and MUC13; claudins (which modulate

tight junction permeability) CLDN2 and CLDN18, which has recently been targeted therapeu-

tically in advanced gastric and gastroesophageal junction adenocarcinomas [18]; drivers of cell

differentiation such as GATA6; hepatic nuclear factors such as HNF1B, FOXA2, FOXA3; and

SPINK1 (serine protease inhibitor Kazal-type 1), which has been associated with a number of

gastrointestinal and genitourinary cancers [19].

Next, we evaluated if global patterns of histology-driven gene expression were similar across

organ sites by constructing heatmaps with clustering using the differentially expressed genes

(DEGs) identified in the esophagus and lung, respectively (Fig 2A and 2B). We found that his-

tology drove a clear and consistent pattern of expression in both the esophagus and lung.

Importantly, these DEGs were able to distinguish ADCs from SCCs across both organs after

applying hierarchical clustering. These data indicate gene expression profiles determined by

histology are largely consistent across different organ sites.

Histology-driven epigenetic patterns are similar across organs

To determine if the patterns observed in differential gene expression in ADCs versus SCCs

were associated with epigenetic changes, we compared DNA methylation in each histological

subtype. We identified 1734 differentially methylated CpG sites between EAC and ESCC, 1650

differentially methylated CpG sites between LUAD and LUSC, with 346 CpG sites in common

between the comparisons (S2B Fig and S2 File). When we observed patterns of DNA methyla-

tion and applied hierarchical clustering, we again found that the cancers grouped by histology

and not by organ site (Fig 3A and 3B). Interestingly, while EAC and LUAD appeared to form

distinct subclusters within the ADC cluster, ESCC and LUSC were more homogeneous in

DNA methylation profile and thus did not form separate subclusters.

We then sought to identify particularly important genes by intersecting differentially

expressed genes with those that were differentially methylated. We identified 174 such genes

in the esophagus, 193 genes in the lung, and 33 common genes between them. Genes that were

downregulated and hypermethylated in ADCs were squamous markers such as DSC3 and

KRT5, as well as transcription factors such as FOXE1 and TP73, whose isoforms have demon-

strated both tumor suppressor and oncogenic properties [20]. Interestingly, TP73 overexpres-

sion in SCCs coincided with TP63 overexpression in SCCs relative to ADCs (S2C Fig). The
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predominant isoform of TP63 in squamous epithelia and SCCs is ΔNp63 [21], which has been

demonstrated previously to reversibly inhibit TP73-dependent transcription by direct

Fig 2. Global molecular patterns defined by histology are consistent across both esophagus and

lung. (A) Heatmap depicting mRNA expression of DEGs between EAC and ESCC in ADCs and SCCs of

esophagus and lung, with hierarchical clustering. (B) Heatmap depicting mRNA expression of DEGs between

LUAD and LUSC in ADCs and SCCs of esophagus and lung, with hierarchical clustering.

https://doi.org/10.1371/journal.pgen.1006938.g002
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promoter binding or physical interaction with the p73 protein, leading to decreased apoptosis

[22]. We did not, however, detect a consistent downregulation of p73 target genes [23],

Fig 3. Overall DNA methylation patterns defined by histology are consistent across esophagus and

lung. (A) Heatmap depicting DNA methylation of differentially methylated CpG sites between EAC and ESCC

in ADCs and SCCs of esophagus and lung, with hierarchical clustering. (B) Heatmap depicting DNA

methylation of differentially methylated CpG sites between LUAD and LUSC in ADCs and SCCs of

esophagus and lung, with hierarchical clustering.

https://doi.org/10.1371/journal.pgen.1006938.g003
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including those involved in apoptosis (PMAIP1 and BBC3), which may be due to selective inhi-

bition of specific downstream targets or activation by alternative regulators (S2C Fig). By con-

trast, genes that were upregulated and hypomethylated included mucins like MUC1;

SERPINA1, a serine protease inhibitor that acts in the liver and lung; HNF1B, a transcription

factor that regulates in renal and pancreatic development; and ME3, a mitochondrial malic

enzyme whose deletion was shown recently to confer lethality in SMAD4-deleted pancreatic

adenocarcinoma [24]. These data demonstrate that histological subtype-specific patterns of

gene expression correspond to changes in epigenetic profiles.

Histology-defined microRNA expression

We then analyzed other potential influences on gene expression. MiRNAs have gained signifi-

cant attention due to their post-transcriptional regulation of gene expression by destabilizing

mRNA and silencing translation. Using miRNA expression data acquired from TCGA, we

compared the levels of specific miRNAs in ADCs and SCCs of the esophagus and lung. We

identified 118 differentially expressed miRNAs in the esophageal comparison, and 125 in the

lung, with 42 overlapping miRNAs (S2D Fig and S3 File). The miRNAs relatively overex-

pressed in SCCs included miR-994, which has been found to be part of intronic sequence of

ΔNp63 and is highly expressed keratinocytes [25], as well as miR-224, which has been impli-

cated in the progression of colorectal cancer and non-small cell lung cancer (NSCLC) [26,27].

On the contrary, miRNAs upregulated in ADCs included miR-215, which has been shown to

modulate gastric tumor cell proliferation by targeting RB1 [28], and miR-375, which has been

observed to be upregulated in lung adenocarcinoma but downregulated in lung squamous cell

carcinoma, and promotes cell proliferation by decreasing levels of ITPKB, a putative tumor

suppressor [29,30]. Interestingly, also downregulated in ADCs was miR-149, which was dem-

onstrated previously to have tumor suppressor capacity in breast cancer migration and inva-

sion by targeting small GTPases Rap1a and Rap1b [31]. Furthermore, similar to mRNA

expression, patterns of miRNA expression were largely conserved for ADC and SCC across

both esophagus and lung (Fig 4A and 4B). These findings suggest that similar patterns of

miRNA expression also govern differences in histology, which can be observed across different

primary organ sites.

Distinct functional pathways are upregulated in ADC versus SCC

Given the histologically-driven patterns observed in transcriptome, epigenome and post-tran-

scriptional profile, we next performed pathway analysis based on differentially expressed genes

to identify functional pathways specific to ADCs or SCCs. Using DEGs from our previous

ADC vs. SCC comparisons (i.e. EAC vs. ESCC), we performed pathway analysis with Ingenu-

ity software. As a reference, we also performed pathway analysis using DEGs from cancer vs.

normal comparisons (i.e. EAC vs. normal esophagus) (Fig 5A). This reference comparison

allowed us to determine whether differential pathways identified in ADC vs. SCC were signifi-

cantly altered in cancer biology (relative to normal), and whether these differences were due to

changes in ADC, SCC, or both. Importantly, the LUAD vs. normal lung (both glandular) and

ESCC vs. normal esophagus (both squamous) comparisons provided insight into whether dif-

ferential pathways were simply markers of a specific histological state, since pure histological

markers would be unlikely to result in differences observed in these comparisons.

In our analysis, there were several pathways relatively upregulated in ADCs compared to

SCCs (Fig 5B). Intriguingly, the only pathway that was also consistently upregulated in ADC

versus normal tissue was liver X receptor / retinoid X receptor (LXR/RXR) activation (S3A

Fig). LXR/RXR activation was also downregulated in SCCs relative to normal tissue (S3A Fig),

Transcriptomic profiling and molecular classification of cancer

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1006938 August 7, 2017 8 / 22

https://doi.org/10.1371/journal.pgen.1006938


suggesting a dichotomous function in these different histological subtypes. Furthermore, dif-

ferences in LXR/RXR activation were maintained in the LUAD vs. normal lung and ESCC vs.

Fig 4. Global miRNA expression patterns defined by histology are consistent across both esophagus

and lung. (A) Heatmap depicting miRNA expression of differentially expressed miRNAs between EAC and

ESCC in ADCs and SCCs of esophagus and lung, with hierarchical clustering. (B) Heatmap depicting miRNA

expression of differentially expressed miRNAs between LUAD and LUSC in ADCs and SCCs of esophagus

and lung, with hierarchical clustering.

https://doi.org/10.1371/journal.pgen.1006938.g004
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Fig 5. Pathway and upstream regulator analysis using DEGs between ADC and SCC. (A) Schematic illustrating workflow from differential gene

expression analysis to pathway and upstream regulator analysis, along with use of reference comparisons (cancer vs. normal). (B) Putative functional

pathways that may play a role in the development of ADC and SCC, by activation z-score. (C) Potential upstream regulators with a functional impact on

ADC versus SCC, by activation z-score.

https://doi.org/10.1371/journal.pgen.1006938.g005
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normal esophagus comparisons, indicating that it is likely more than a simple marker for glan-

dular histology (S3A Fig). Other pathways relatively upregulated in ADCs included HIPPO

signaling, Relaxin signaling, and Androgen Signaling; however, these pathways were mostly

downregulated in all cancers relative to normal tissue (S3A Fig). The differentially expressed

genes corresponding to each pathway are listed in a supplementary table (S1 Table).

There were several pathways that were relatively downregulated in ADCs compared to

SCCs. Some of these pathways were also downregulated in ADCs relative to normal tissue,

including p38 MAPK Signaling and Paxillin Signaling. The remaining pathways were upregu-

lated in SCCs relative to both ADCs and normal tissue, suggesting an important functional

role in the carcinogenesis of SCCs. This included Basal Cell Carcinoma Signaling, the planar

cell polarity (PCP) pathway, and Wnt signaling. Of note, Basal Cell Carcinoma Signaling is

closely related to Sonic Hedgehog (SHH) Signaling, which has been associated with the carci-

nogenesis of SCCs of the oral mucosa, uterine cervix, esophagus and lung [32–35], where it

may have a role in mediating stemness via transcription factors like SOX2 [34,35]. Further-

more, aberrant Wnt signaling and non-canonical Wnt/PCP signaling, which normally regu-

lates cell shape via the cytoskeleton [36], have been hypothesized to have a unique role in SCCs

[17], and may represent a functional distinction between SCCs and ADCs [37].

Expanding on this pathway analysis, we investigated potential upstream regulators driving

changes in gene expression (Fig 5B). Notably upregulated in ADCs relative to SCCs was

STK11 (or LKB1), loss of which has been previously shown to induce adeno-to-squamous dif-

ferentiation of lung tumors in mice [38]; GATA4 and GATA6, important for cell differentia-

tion and commonly amplified in EAC and gastric cancers [4]; and NKX2-1, a commonly used

marker for lung adenocarcinomas. Furthermore, the estrogen receptor was found to be rela-

tively upregulated in ADCs versus SCCs and normal tissue. Several genes were also found to

be likely upstream regulators of SCC formation. For instance, CDH1, which codes for E-cad-

herin, a membrane protein important for cellular adhesion, was relatively downregulated in

SCCs, which aligns with reports of its methylated and suppressed expression in oral SCCs [39].

Other notable genes relatively upregulated in SCC were GLI1, a downstream mediator of

hedgehog signaling; SMAD4, which is involved in TGF-β signaling and is commonly is deleted

in EAC and LUAD [4,5]; CCND1, a cyclin that is commonly amplified in ESCC [4]; and

TWIST1, thought to be important in epithelial-to-mesenchymal transition [40]. The activation

of these upstream regulators in each cancer type relative to corresponding normal tissue is

shown in a supporting figure (S3B Fig).

Identifying genes important for survival in ADC

We next sought to highlight additional gene candidates that may serve as prognostic markers

among ADCs, given the lack of unifying features previously described in the literature. Using

the 500 genes showing the greatest variance in expression, we performed Cox proportional

hazards survival analysis to find genes significantly correlated with survival outcomes in both

EAC and LUAD. We discovered 109 such genes in EAC, and 691 genes in LUAD, with 32

genes in common between them (Fig 6A and 6B). Genes whose increased expression was cor-

related with worse survival outcomes included TPX2, KIF4A, IGF2BP1, and HSPA6. On the

contrary, genes whose expression was correlated with a better prognosis included MS4A1
(CD20), SUSD2, and CX3CL1 (Fractalkine). As an example, we constructed Kaplan-Meier

curves for IGF2BP1, or IMP-1, which we described previously as a modulator of tumor growth

in colorectal cancer [41]. Not only did higher expression of IGF2BP1 correlate with poorer out-

comes in EAC and LUAD (Fig 6C and 6D), but the same trend was seen when we pooled sev-

eral other ADCs from the TCGA Pan-Cancer dataset (including cancers of the breast,
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Fig 6. Genes correlated with survival in ADCs. (A) Genes whose expression is correlated with worse survival in ADCs. (B) Genes

whose expression is correlated with better survival in ADCs. (C) Kaplan-Meier curve depicting survival in high IGF2BP1 and low

IGF2BP1 expression groups in EAC (log-rank test). (D) Kaplan-Meier curve depicting survival in high IGF2BP1 and low IGF2BP1

expression groups in LUAD (log-rank test). (E) Kaplan-Meier curve depicting survival in high IGF2BP1 and low IGF2BP1 expression

groups in pooled ADCs, excluding EAC and LUAD (log-rank test). (F) Kaplan-Meier curve depicting survival in high IGF2BP1 and low

IGF2BP1 expression groups in pooled SCCs (including ESCC and LUSC) (log-rank test).

https://doi.org/10.1371/journal.pgen.1006938.g006
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prostate, endocervix, endometrium, ovary, pancreas, stomach, kidney, colon, rectum, and thy-

roid) (Fig 6E). Notably, the same trend was not observed in a pooled SCC dataset (including

cancers of head and neck, esophagus, lung, and ectocervix) (Fig 6F). Intriguingly, while ESCC

and LUSC had 88 and 206 genes associated with survival, respectively, they shared no genes

that had the same directional association with outcomes.

Validation: Expression patterns in the uterine cervix

As a validation, we attempted to reproduce our results in a third organ site in which both

ADCs and SCCs arise: the uterine cervix. While the predominant subtype of cancer in the cer-

vix is squamous cell carcinoma (CESC) associated with human papilloma virus (HPV) infec-

tion, several types of adenocarcinoma, specifically endocervical, endometroid, and mucinous

adenocarcinoma, can also develop. Using data acquired from TCGA, we pooled 44 samples of

these various types of cervical ADCs (ECA) and compared them with 254 CESC samples by

using gene expression, DNA methylation, and miRNA expression data acquired from the

esophagus and lung comparison. Upon clustering, we found that the same genes, methylated

CpG sites, and miRNAs distinguishing histology in the esophagus and lung were also largely

able to distinguish histology in the cervix (Fig 7A–7C).

The pathways we had identified previously to be important to ADC and SCC, respectively,

also maintained similar patterns in the cervix, with deviations only in Regulation of Cellular

Mechanics by Calpain Protease, Melatonin Signaling, and Calcium-induced T Lymphocyte

Apoptosis in pathways favoring ADCs (Fig 7D). LXR/RXR Activation was once again upregu-

lated in ECA relative to CESC. In pathways that were relatively downregulated in ADCs,

Notch Signaling and the PCP pathway maintained strong associations with SCC; however,

there was a weaker relationship in the cervix between squamous histology and Basal Cell Car-

cinoma Signaling, Sonic Hedgehog Signaling, or TGF-β Signaling. We also performed

upstream regulator analysis of ECA and CESC, again observing similar patterns to the histo-

logical subtypes of the esophagus and lung (Fig 7E). Notable differences included ALDH2,

STK11 in genes relatively upregulated in ADCs, and CTNNB1 and GLI2 in genes relatively

downregulated in ADCs. Altogether, histology-driven differences in transcriptome, epigen-

ome, as well as pathways and upstream regulators, were largely consistent across all three

organ sites studied.

Discussion

Our analyses have revealed major differences in the transcriptomic and epigenomic profile of

ADCs and SCCs, but major similarities among ADCs and SCCs spanning several anatomic

sites. Importantly, histology was the greater determinant of molecular variation than organ

site, which further emphasizes the need to re-classify tumors and re-structure current treat-

ment paradigms. While genomic subtyping studies have demonstrated the need to consider

molecular characteristics (and biological relevance) when managing tumors arising within the

same organ, we also highlight the premise that some molecular features may be shared by

tumors arising in different organs. Capitalizing on this property of cancer could lead to the

development of widely applicable targeted therapies.

Importantly, we highlighted several specific properties that may unify ADCs, including a

large collection of genes, CpG methylation sites, and miRNAs. Specifically, we identified LXR/

RXR activation as having a putative role in the development of ADC. Indeed, several recent

reports have highlighted liver X receptors as potential therapeutic targets, as they appear to

regulate aerobic glycolysis (the Warburg effect) and lipogenesis [42], which malignant cells

depend upon to sustain rapid proliferation, while also modulating antitumor immunity [43].
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Fig 7. Validation in endocervical adenocarcinoma and cervical squamous cell carcinoma. (A) Heatmap depicting mRNA expression of common

DEGs between ADC and SCC (esophagus and lung) in the cervix, with hierarchical clustering. (B) Heatmap depicting DNA methylation of common
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In fact, one study utilized an inverse agonist SR9243 to inhibit LXR activity, suppressing

tumor growth in several colon, prostate, lung and pancreatic adenocarcinoma cell lines [42].

Curiously, our analyses also indicated that LXR/RXR activation was downregulated in SCCs

relative to normal tissue. This is in line with a previous report that described the spontaneous

development of peripheral squamous cell lung cancer in mice with ablated LXRα,β (NR1H3-/-
and NR1H2-/-) [44]. Taken together, this evidence points to a possible dichotomous role of

LXRs in ADCs versus SCCs and may indicate key differences in cell metabolism between these

histological subtypes of solid malignancies. Despite these findings, however, other studies on

LXRs have reported a downstream antiproliferative effect that can be harnessed by using LXR

agonists (oxysterols) in several cancer types, including multiple ADCs [45]. It is clear, there-

fore, that further investigation on the precise role of LXRs in different contexts is required.

In addition, we identified candidate genes that correlate with patient outcomes and may

have a functional role in ADC carcinogenesis, such as IGF2BP1. Intriguingly, increased

IGF2BP1 expression was found to be associated with worse survival in EAC, LUAD, and a

pooled dataset of other ADCs spanning breast to colon (Fig 6C–6F). The same pattern was not

observed in a pooled SCC dataset. IGF2BP1 is an mRNA binding oncofetal protein, not nor-

mally expressed in adult tissues, that we previously demonstrated to have a role in modulating

colorectal tumor growth in vitro and in vivo, and may also play a role in early metastasis [41].

Similar findings were reported previously in ovarian and breast adenocarcinomas [46,47].

This association further emphasizes the importance of developmental pathways in tumorigen-

esis, and specifically indicates a possible link between embryonic drivers of differentiation and

histological subtypes in cancer. Notably, there have been efforts to develop inhibitors of

IGF2BP1, with some recent success in the identification of a compound that selectively kills

IGF2BP1 expressing cells [48].

Liver X receptors and IGF2BP1 are just two examples of therapeutic targets that may be par-

ticularly effective in ADCs. Our analysis has revealed an entire catalog of gene candidates for

further study, including those that correlate with survival outcomes, though an association

with survival is not a prerequisite for being an effective target (i.e. estrogen receptor positivity

in breast cancer). Notably, our findings also have implications for the use of currently available

therapeutics in ADCs versus SCCs. For example, our upstream regulator analysis highlighted

several putative regulators that have greater activity in SCCs than ADCs, such as GLI1 and the

PI3K family. These results suggest that SCCs may have greater sensitivity to GLI1 or Hedgehog

inhibitors, as well as PI3K inhibitors, than ADCs. Another finding with potential therapeutic

relevance is TP73 methylation and low expression in ADCs. TP73 is a known tumor suppres-

sor [20], and its methylation could contribute to reduced apoptosis in response to chemo- or

radiotherapy relative to SCCs [3]. One could hypothesize that the use of DNA methylation

inhibitors, such as 5-azacitidine or decitabine, could restore sensitivity to cytotoxic therapy in

ADCs, although this requires experimental validation.

We then noted that although global histology-driven patterns were conserved in esophagus

and lung, some of these similarities may have been due to a common embryonic precursor, as

both the esophagus and lung are derived from the foregut endoderm [49]. To address this, we

tested our findings in a third organ, the uterine cervix, which develops from the parameso-

nephric ducts and is mesodermal in origin. We found that histology-driven differences were

differentially methylated CpG sites between ADC and SCC (esophagus and lung) in the cervix, with hierarchical clustering. (C) Heatmap depicting

miRNA expression of common differentially expressed miRNAs between ADC and SCC (esophagus and lung) in the cervix, with hierarchical

clustering. (D) Pathways identified using DEGs from ECA versus CESC, compared to results from the esophagus and lung. (E) Upstream regulators

identified using DEGs from ECA versus CESC, compared to results from the esophagus and lung.

https://doi.org/10.1371/journal.pgen.1006938.g007
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largely maintained even in the cervix (Fig 7A–7C). There were some notable exceptions, how-

ever, which could be related to different embryonic tissue origin or differences in other factors

such as the local tumor microenvironment. For example, STK11 was discovered to be relatively

downregulated in ESCC and LUSC, but relatively upregulated in CESC (Fig 7E). These find-

ings are consistent with other reports: while loss of STK11 has been associated with lung, skin,

and head and neck SCCs [50], inherited loss of STK11, as in Peutz-Jeghers syndrome, has been

associated with endometrial adenocarcinoma and a rare variant of endocervical carcinoma,

minimal deviation adenocarcinoma of the endocervix [51]. Differences observed between the

cervix and the esophagus and lung could also be due to distinct risk exposures. For instance,

ALDH2, which is important for acetaldehyde (a metabolite of ethanol and an ingredient in

tobacco smoke) metabolism and whose deficiency increases the risk for esophageal and head

and neck SCCs, was found to be relatively downregulated in ESCC and LUSC, but was not sig-

nificantly different when comparing ECA and CESC (Fig 7E). This could be due to direct

exposure of the aerodigestive tract and respiratory mucosa to acetaldehyde via alcohol con-

sumption and cigarette smoking, respectively, in ALDH2-/- individuals.

Lastly, there were some technical limitations to our in silico analysis. First, TCGA datasets

can be susceptible to batch effects, although when we assessed the data, variation due to batch

was determined to be of relatively insignificant impact (S1 Fig). Similarly, although TCGA

datasets are generally large, they may not be representative of the general population, and criti-

cally, samples sent for sequencing are often not purely tumor cells and may contain associated

stromal and immune components, as well as normal tissue. Additionally, because we were pri-

marily interested in global molecular patterns, our analysis was not sensitive to relatively rare

variants such as those described in genomic and mutational analyses. It should be noted that

highlighted candidate pathways and genes need to be verified further for functional signifi-

cance with additional in vitro or in vivo analyses.

Conclusion

These analyses further emphasize the need to re-categorize tumors in a biologically relevant man-

ner—not only as a practice in pathology and research, but also in the clinic. Over the last decade,

molecular subtyping efforts have already called for a shift in approach to viewing cancers—such

that esophageal carcinoma, for instance, would not be viewed as a single entity [4–6], but as multi-

ple diseases with distinct characteristics and patterns of behavior. While our findings distinguish-

ing between histological subtypes support this premise, we also propose that broader strategies of

classification to direct research efforts and clinical management may be more aligned to the prag-

matic concerns of drug development while still being biologically relevant. Consider the example

of immune checkpoint inhibitors, which are being widely applied across cancers.

In this report, we emphasize the call for a unified approach to the study, prevention, and

treatment of SCCs, and on possible commonalities underlying ADCs. Despite apparent het-

erogeneity among ADCs, we have identified patterns of gene expression, functional pathways,

and prognostic markers that may similarly unify our approach to ADCs. Furthermore, our

analyses have provided a catalog of additional candidate genes and markers that can be further

investigated. To our knowledge, this is the first study identifying common features among ade-

nocarcinomas arising from different organ sites.

Methods

Data acquisition

Publicly available gene expression, DNA methylation, and microRNA (miRNA) data from

TCGA were downloaded from the Genomic Data Commons (GDC) Data Portal and pre-
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processed via the TCGAbiolinks R package [52]. Details regarding specific data type and subse-

quent analysis are described below. Survival outcomes data were acquired from the University

of California Santa Cruz (UCSC) Xena at http://xena.ucsc.edu.

Differential gene and microRNA expression

Harmonized gene expression data (HTSeq counts)—to allow for easy comparison between

cancer types—from GDC was downloaded for esophageal carcinoma (TCGA-ESCA), lung

adenocarcinoma (TCGA-LUAD), lung squamous cell carcinoma (TCGA-LUSC), and cervical

and endocervical carcinoma (TCGA-CESC), and assembled into a matrix using TCGAbiolinks
[52]. Potential batch effects were visualized by constructing a PCA plot by batch and cancer

type, using the R package DESeq2 [53]. Considering insignificant batch effects and to avoid

masking biologically significant differences, no corrections for batch were applied. Using the

edgeR package in R [54], the counts data were filtered for low counts (less than 1 count per mil-

lion in greater than 50% of each group, i.e. esophageal adenocarcinoma vs. esophageal squa-

mous cell carcinoma) and normalized within samples using the trimmed means of M-values

(TMM) method [55]. Differentially expressed genes (DEGs) were filtered using the glmTreat
function in edgeR, which tests for significant differences relative to a set log2-fold change

(logFC) cutoff of 0.5. Results were then filtered by a false discovery rate (FDR) of 0.05.

Harmonized microRNA expression data for ESCA, LUAD, LUSC, and CESC were acquired

from the GDC Data Portal and preprocessed via TCGAbiolinks [52]. Low counts were filtered

as above differential expression analysis was performed using edgeR. A logFC cutoff of 0.5 and

FDR cutoff of 0.05, as above, were used.

DNA methylation analysis

Legacy DNA methylation data (Illumina Human Methylation 450, aligned to hg19) from GDC

was downloaded via TCGAbiolinks [52]. Using the TCGAanalyze_DMR function, we searched

for differentially methylated CpG sites using beta-values, with a cutoff difference in beta-values

of 0.25 and adjusted p-value of 10−20. The results from these data were then integrated with the

differential gene expression data.

Principal component analysis, hierarchical clustering and visualization

To identify global patterns in gene expression, raw counts were first quantile-normalized

within and across samples, using the TCGAanalyze_Normalization function, then transformed 
using the varianceStabilizingTransformation function in DESeq2 to reduce heteroscedasticity 
(chosen over log transformation to minimize variance at low count values) [53]. Principal

component analysis (PCA) was performed using the prcomp function in R. Hierarchical clus-

tering was performed in R by Euclidean distance and the ward.D2 method. To determine the

relative contribution of explanatory variables (Histology and Organ) to variance, we first con-

structed multiple linear regression models for response variables “PC1” and “Cluster”, respec-

tively, using the lm function in R. We then utilized the relaimpo package [56], which refers to

the Lindeman, Merenda, Gold (1980) method of R2 partitioning by average over orders [57],

in order to determine the contribution to variance of each explanatory variable.

For visualization, the PCA were plotted by cancer type using the plotPCA function in

DESeq2 [53]. For heatmaps, normalized gene expression data (as described above) and

miRNA expression data were further scaled to a mean of 0 and standard deviation of 1, while

for DNA methylation, β-values were used directly in visualization. All heatmaps were con-

structed using the ComplexHeatmap R package [58]. Bar charts were constructed in GraphPad

Prism.
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Pathway and upstream regulator analysis

Pathway analysis and identification of upstream regulators, using differentially expressed

genes as input, were performed using QIAGEN Ingenuity Pathway Analysis software (using

the core analysis feature). The same cutoffs as described in the differential gene expression

analysis were used to filter significant genes. To determine significant pathways across differ-

ent organs, we used the comparison analysis function in Ingenuity. Significant pathways were

filtered by activation z-score (absolute value� 1.0) and adjusted p-value (� 0.05), in the ADC

vs. SCC experimental comparisons.

Specifically, the DEGs from seven comparisons were initially used as input for Ingenuity

(Fig 5A). These included three ADC vs. SCC comparisons (esophagus, lung, and cervix), as

well as four reference cancer vs. normal comparisons. As discussed in the text, these reference

comparisons help to determine whether differential pathways identified in ADC vs. SCC were

also significantly altered in cancer biology (relative to normal), and whether these differences

were due to changes in ADC, SCC, or both. Additionally, the LUAD vs. normal lung (both

glandular) and ESCC vs. normal esophagus (both squamous) comparisons provided insight

into whether differential pathways were simply markers of a specific histological state, since

changes in these comparisons would not be expected for simple histological markers.

Survival analysis

Survival outcomes for TCGA samples were downloaded from UCSC Xena. To identify genes

that have potential prognostic and functional significance, we only analyzed the top 500 genes

with greatest variance in either ADCs or SCCs. Given the continuous nature of gene expres-

sion data, we used a cox proportional hazards model to identify genes correlated with survival.

In order to improve sensitivity, no correction for multiple testing was applied. Survival was

visualized by plotting Kaplan-Meier curves in GraphPad Prism 7.0. Importantly, TCGA pan-

cancer data was acquired from UCSC Xena. Pooled ADC data contained 14 different ADC

types with 4934 samples. Pooled SCC data contained 4 SCC types with 1346 samples. For sur-

vival, high expression and low expression groups were determined by cutoff at the 75th

percentile.

Statistical analysis

Statistical analysis for principal component analysis, linear correlation, differential expression,

and Cox proportional hazards were performed in R. Pathway statistical analysis was built-in to

Ingenuity. Log-rank tests for Kaplan-Meier were performed using GraphPad Prism.

Supporting information

S1 Fig. Principal Component Analysis plot depicting batch effect versus group (cancer

type) effect.

(TIF)

S2 Fig. ADC versus SCC of esophagus and lung show overlap in DEGs, DNA methylation

and miRNA expression. (A) Venn diagram showing number of DEGs in EAC versus ESCC

and LUAD versus LUSC, with overlap. (B) Venn diagram showing number of differentially

methylated CpG sites in EAC versus ESCC and LUAD versus LUSC, with overlap. (C) Heat-

map depicting relationships in mRNA expression between TP63 and TP73, followed by expres-

sion of downstream target genes of p73 transcriptional regulation. (D) Venn diagram showing

number of differentially expressed miRNAs in EAC versus ESCC and LUAD versus LUSC,
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with overlap.

(TIF)

S3 Fig. Pathway and upstream regulator analysis of cancer versus normal tissues. (A) Sig-

nificant pathways from Fig 5, with relationships between four cancer types (EAC, LUAD,

ESCC, LUSC) relative to respective normal tissue. (B) Significant upstream regulators from

Fig 5, with relationships between four cancer types (EAC, LUAD, ESCC, LUSC) relative to

respective normal tissue.

(TIF)

S1 Table. Differentially expressed genes corresponding to each functional pathway identi-

fied by ingenuity pathway analysis.

(XLSX)

S1 File. ADC versus SCC differential gene expression data.

(XLSX)

S2 File. ADC versus SCC differential DNA methylation data.

(XLSX)

S3 File. ADC versus SCC differential miRNA expression data.

(XLSX)
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